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Abstract

Appearance based person re-identification in real-world
video surveillance systems is a challenging problem for
many reasons, including ineptness of existing low level fea-
tures under significant viewpoint, illumination, or camera
characteristic changes, to robustly describe a person’s ap-
pearance. One approach to handle appearance variability
is to learn similarity metrics or ranking functions to implic-
itly model appearance transformation between cameras for
each camera pair, or group, in the system. The alterna-
tive, that this paper follows, is the more fundamental ap-
proach of improving appearance descriptors, called signa-
tures, to cater for high appearance variance and occlusions.
The novel signature representation for multi-shot person re-
identification presented in this paper uses multiple appear-
ance models, each describing appearance as a probability
distribution over some low-level feature for a certain por-
tion of individual’s body. Combined with metric learning,
it achieves rank-1 recognition rates of 92% and 79% on
PRID2011 [12] and iLIDS-VID [33] datasets, respectively.

1. Introduction
The goal of person re-identification (Re-ID) is to identify

a person at distinct times, locations, or in different camera
views. The problem often arises in the context of search
of individuals or long term tracking in a multi-camera vi-
sual surveillance system with non-overlapping views. In
a real-world system, Re-ID of a person is very challeng-
ing because of significant alteration in an individual’s ap-
pearance due to changes in camera properties, illumination,
viewpoint and pose. On the contrary, inter-person appear-
ance similarity is generally high in absence of biometric
(facial or iris) cues, due to low resolution imaging or view-
point (Fig 1). Occlusions may impede visibility, and be-
cause a Re-ID system is driven by automatically acquired
person tracks in practice, the individual may be only par-
tially visible or improperly localized. These are significant
challenges for appearance based Re-ID algorithms.

(a) (b) (c) (d)

Figure 1: Associated challenges with Re-ID: occlusion, ab-
sence of biometric cues, variance in viewpoint, illumina-
tion, pose, and camera properties.

Re-ID is often treated as a retrieval problem; i.e., given
one or more images of an unknown person (probe) and a
dataset (gallery) that consists of (images or image sets of)
a number of unknown persons, the goal is to rank the per-
sons in the gallery based on their similarity from the probe.
Hence, the Re-ID process is often divided into two stages:
i) representing each person using his appearance signature
acquired from image(s), and ii) sorting candidate matches
using a matching function (similarity metric or a ranking
function) of appearance signatures. For good performance,
signatures should be invariant under scene (viewpoint, illu-
mination, camera, etc.) variance, and discriminative given
high inter-person similarity. Significant amount of liter-
ature is available related to description of appearance for
single-shot scenario, i.e. when only one image is available
to learn appearance signature. However, the work focus-
ing on signature representation for multi-shot scenario, i.e.
when multiple images are available to learn each signature,
is limited despite that multi-shot scenario is more relevant



to video surveillance systems due to availability of multiple
images of a person that are grouped using an object tracking
algorithm. This paper concentrates on multi-shot Re-ID.

Availability of multiple images per person in multi-shot
case can be helpful in learning robust appearance signa-
tures; however, the set of images belonging to a person may
have variable illumination, occlusion, person’s orientation,
pose and alignment. Thus aggregating information from
multiple images require careful consideration. For instance,
the trivial solution to use the mean of appearance descrip-
tors obtained from different images of a person as multi-
shot signature is adversely affected by large variance in a
person’s appearance. Therefore, the alternative is to repre-
sent a multi-shot signature as a set of image-wise (spatial)
descriptors. Thus the space complexity becomes linear in
number of images instead of number of identities. More im-
portantly, this significantly increases the time complexity of
matching, as computation complexity of employed set met-
rics grows quadratically in terms of average cardinality of
the sets. To reduce associated high space and compute cost,
most Re-ID methods use a small random subset instead of
all images of a person. Hence a trade-off is required be-
tween signature robustness and computational/storage cost.
This paper proposes a novel signature representation for
multi-shot scenario to automatically trade-off signature ro-
bustness with computational/storage cost. The proposed ap-
proach explicitly deals with variability in illumination, per-
son’s orientation and pose, and implicitly deals with occlu-
sion and alignment problems.

Specifically, appearance of a person is modeled as a
multi-channel appearance mixture, where each channel cor-
responds to a particular region (part) of the body - full,
upper, or lower. We call the representation Part Appear-
ance Mixture (PAM). Appearance of each part is defined as
a multi-modal parametric probability distribution of low-
level features. Coarse parts localization and dense feature
grids are used to enable computation sharing between dif-
ferent channels for computational efficiency. Independently
for each person and part, model selection is used to find
a compact appearance model by trading off signature vari-
ance. Since part models are probability distributions, f-
Divergence based distance is used to define similarity be-
tween two signatures. Furthermore, we define a learn-able
metric to compute similarity between two signatures. For
the proposed metric, KISSME [15] algorithm is adopted to
learn feature transformations between different scenes by
directly learning transformation between probability distri-
butions. The increase in computational cost of signature
computation is compensated by the decrease in time com-
plexity of signature matching and metric learning. More
importantly, despite decreased storage complexity, signa-
ture robustness is increased that leads to significantly better
performance than current state-of-the-art.

To summarize, the main contributions of this paper is
a novel signature representation for multi-shot Re-ID to
cater for high variance in a person’s appearance by auto-
matically trading compactness with variability. A signa-
ture is acquired over coarse body regions of a person in a
computationally efficient manner instead of reliance on fine
body part localization. The representation has probabilistic
interpretation of appearance signatures that allows for ap-
plication of information theoretic similarity measures. We
also define a Mahalanobis based distance measure to com-
pute similarity between two signatures. The metric is also
amenable to existing metric learning methods and appear-
ance transformation between different scenes can be learned
directly using proposed signature representation.

2. Related work
Earlier literature can be broadly divided along two main

aspects of person Re-ID: signature modeling and matching
function learning. Matching function learning approaches
[8, 9, 13, 15, 17, 19, 21, 24, 27, 29, 30, 33, 37, 40] focus
on improving Re-ID performance regardless of the under-
lying signature representation used to model appearance of
individuals. Given training data, their objective is to learn
a model that minimizes intra-class variance and maximizes
inter-class variance of signatures. Most of the approaches
use supervised training of models, hence require significant
annotation effort which may not be attractive for real-world
applications, however, significant improvements are possi-
ble for underlying representation. On the other hand, sig-
nature modeling approaches focus on creating invariant and
discriminative representations for individual’s appearance,
which are robust to viewpoint, illumination, and camera
changes, as well as, occlusions and localization errors.

Single-shot approaches such as [2, 11, 16, 20, 24, 25,
28, 31, 35, 39, 40] construct signature using only one im-
age. These approaches use a mixture of color, texture, edge
or “deep” features to identify persons given only one im-
age. Hence they do not explicitly use additional information
available in multi-shot case.

Other approaches such as [3, 4, 5, 6, 10, 14, 19, 22, 23,
36, 38, 41] are used for multi-shot Re-ID; however, they
extract features from each image independently and then
aggregate information. For instance, after extracting de-
scriptors of input images independently, [3] uses Karcher
mean to accumulate information, [41] uses max-pooling
and [36] uses LSTM to aggregate information from multiple
images of a person into a single feature vector. Hence they
fail to capture multi-modality of an individual’s appearance.
Other methods represent a multi-shot signature as a set of
image descriptors acquired from different images of a per-
son and use a set based similarity metric such as minimum
point-wise distance (MPD), or average point-wise distance
(APD). For computational and storage efficiency, instead of



Figure 2: Appearance variation of an individual in one
scene. As the person walks across the room with illumi-
nation variance, number of images are not uniformly dis-
tributed between darker and brighter regions.

using all images, a smaller subset is selected. [4, 19, 38]
use a fixed number of randomly selected images; however,
uninformed random sampling is prone to losing valuable
information unless a large number of samples are drawn.
For instance, in Fig. 2, for the person walking across the
space with illumination variance, number of images are not
uniformly distributed between darker and brighter regions.
Thus brighter images may be left out from a small random
subset. Thus, matching the person with images collected
from an outdoor camera becomes more difficult.

On the other hand, [6, 10] group images of a person
into a fixed number of clusters using their HSV histograms
and randomly select one image from each cluster to extract
multiple feature descriptors. This falsely assumes that ap-
pearance modalities in different feature domains are aligned
with HSV histogram feature, which limits efficiency of
multiple feature fusion. Nonetheless, [5] uses viewpoint
cues and [33] use motion cues to discover track segments
for different appearance modalities and extract spatiotem-
poral descriptors such as HOG3D. In addition to tempo-
ral segmentation, [21] also uses body-part segmentation
to extract more localized spatiotemporal features. Con-
sequently, results in [5, 21, 33] show that a sophisticated
multi-shot representation can outperform trivial aggrega-
tion of image based (spatial) descriptors; for instance multi-
shot SDALF [10] that uses color and texture features is
outperformed using HOG3D features [21]. However, all
of [5, 21, 33] focus on segmentation using either orienta-
tion of a person or the walk cycle and completely ignore the
effect of lighting and other factors on the appearance.

Alternatively, we propose that appearance modalities in
multi-shot case should be discovered: i) independently for
each descriptor space (feature or body-part), and ii) using
variance of respective features as cues instead of “exter-
nal” ones like orientation or pose, because most low-level
features are not robust to arbitrary transformations, such as
pose or orientation changes; thus variance based cues sub-
sume pose and orientation cues. We achieve these goals by
independently learning appearance model of each body re-
gion and feature descriptor given the set of images of a per-
son. Furthermore, by modeling appearance as parametric

distribution we retain more information about appearance
of a person with high compression that allows us to better
discriminate between persons with similar appearance.

3. Part Appearance Mixture
3.1. Signature model

A scene may have variable illumination and a person
may have arbitrary pose, or orientation w.r.t. camera. This
requires that low-level appearance descriptors be invariant
to illumination, viewpoint, and/or pose changes. Varma and
Ray [32] show that low-level appearance descriptors trade-
off invariance with discriminative power. Therefore, instead
of relying on invariant appearance descriptors, we explicitly
deal with variance in a person’s appearance by modeling it
as a multi-modal probability distribution of descriptors. In
particular, we use Gaussian Mixture Model (GMM) to rep-
resent appearance. Furthermore, to add robustness to occlu-
sion, signature of a person consists of three part indepen-
dently learned appearance models, one each for full, upper
and lower body region of the person.

Formally, given a set of Nq images {Iqn|n = 1 : Nq} of
person q, the corresponding PAM signature, Q, is defined
as a set of appearance models Mq

p, one for each part p:
Q = {Mq

p|p ∈ {full, upper, lower}} . Each appearance
model defines distribution of a low level feature for part p of
person q using a multivariate GMM,Mq

p = {πq
p,k,G

q
p,k|k =

1 : Kq
p} with Kq

p components, where πq
p,k is the prior prob-

ability of the kth Gaussian Gqp,k ∼ N (µq
p,k,Σ

q
p,k) hav-

ing mean µq
p,k and covariance Σq

p,k. Fitting GMM with
full covariance matrix is difficult when number of points is
limited and dimensionality of feature is high. To address
this concern, we restrict covariance matrices to be diago-
nal, hence reducing the number of free parameters. This
also significantly improves computational efficiency of sig-
nature learning and matching.

3.2. Parameter learning

Parameters of each appearance mixture Mq
p are esti-

mated independently for each person q and part p. The
number of modes of a person’s appearance is not known
a priori. Therefore, both the problems of “mode discovery”
- finding the number of modes, and “mode description” -
appearance description using low-level features, need to be
solved. Our strategy is to use variance in low-level feature
descriptors of images as a cue to solve both problems of
mode discovery and mode description together.

For a fixed number of components Kq
p , given the set of

feature descriptors Sq
p = {sqp,n|n = 1 : Nq} corresponding

to images {Imq
n : n = 1 : Nq} and part p, the parameters of

each appearance model Mq
p can be easily estimated using

Expectation-Maximization algorithm. However, each per-
son may have different number of images and may require



different number of GMM components to correctly repre-
sent appearance. Therefore, the number of components Kq

p

cannot be determined a priori. To automatically find opti-
mal number of components for each appearance model, we
use Alkaline Information Criterion based model selection to
learn an appearance mixture.

3.3. Efficient computation of part models

We use part models to handle occlusions. Instead of fea-
ture pruning, which is non-trivial and scenario specific, we
build multiple models with some redundancy and accumu-
late their results. For computational efficiency, coarse lo-
calization of upper and lower body is used. Specifically,
upper (or lower) body region is defined as ∼ 60% of the
total height from the top (or bottom) of the bounding box
localizing the person. Although it is possible to use dif-
ferent low-level features for each part (or have redundant
parts with different features), for computational efficiency
we suggest use of same feature for all three parts. Further-
more, by using descriptors that describe an image region us-
ing concatenation of features computed locally over dense
spatial grid, such as HOG, MCSH [38], LOMO [19], com-
putation can be shared between full-body and other parts.
Specifically, upper-body descriptor can be constructed by
concatenating only the local features corresponding to the
top ∼ 60% of the bounding box. Lower-body descriptor
can be constructed similarly. Thus, only additional compu-
tational cost is that of model selection, which can be per-
formed independently in parallel.

4. Similarity metric for PAM
Similarity metric is an important element of a Re-ID

method. In our case, a signature is a set of part appear-
ance mixtures. Given the definition of a distance measure
between two appearance mixtures, d(M1,M2), similarity
between two signatures Q and G is defined as the sum of
similarities of different part models. To convert distance
between two appearance mixtures into similarity, we use
Gaussian similarity kernel.

Sim(Q,G) =
∑
p∈P

exp

(
−d(M

q
p,Mg

p)− γp,g
1
3 (βp,g − γp,g)

)
(1)

where P = {full, upper, lower}, d(Mq
p,Mg

p) =
d(Mq

p,Mg
p)/maxĝ∈Gal d(Mq

p,Mĝ
p) is the distance be-

tween a query person q and a gallery person g max normal-
ized over gallery set Gal; and βp,g, γp,g are the maximum
and minimum normalized distances, respectively, between
person g in Gal and any other person q̂ in Query set. The
factor of 1

3 above makes Gaussian similarity kernel goes to
zero for q̂ that has maximum normalized distance from g.

Earlier set based representations often define similarity
between two appearance models as average or minimum

distance between their elements. Similarly, we define dis-
tance between two GMMs as the sum of distance between
their components, weighted by the product of their priors.

d(M1,M2) =
∑

i=1:K1,j=1:K2

π1iπ2jd(G1i,G2j) (2)

where, πnk is the prior for component k of GMM n.
Popular point distance choices are Euclidean and Maha-

lanobis distance; however, some methods such as [38, 7]
use coding theory to compute distance. We evaluated one
static and one adaptive (learn-able) definition of d(Gi,Gj).
The details of the two distance measures are as follows:

4.1. Static distance between signatures

The elements of our signature representation are GMMs,
so we use f-Divergence based distances to define similarity
between two signatures. In particular, Jeffrey’s Divergence
(JDiv), i.e. symmetric KL Divergence, has closed form so-
lution for Gaussian densities and since we restrict covari-
ance matrices to be diagonal, it can be computed efficiently.

JDiv(Gi,Gj) =
1

2
(µi − µj)

TΨ(µi − µj)+ (3)

1

2
tr{Σ−1i Σj +Σ−1j Σi − 2I}

where Ψ = Σ−1i +Σ−1j .
An alternative to using Jeffrey’s Divergence is to use

Bhattacharyya distance (BD) between two Gaussians.

BD(Gi,Gj) =
1

8
(µi − µj)

TΓ−1(µi − µj)+ (4)

1

2
ln{|Σi|−1/2|Σj |−1/2|Γ|}

where Γ = 1
2 (Σi +Σj).

However, we empirically found JDiv to work better than
BD; therefore, when training data is not available we use
JDiv to define static distance between two Gaussian com-
ponents: d(Gi,Gj) = JDiv(Gi,Gj)

4.2. Adaptive distance between signatures

To take advantage of metric learning techniques, we use
Mahalanobis-Riemannian Distance (MRD) between two
Gaussian distributions that can be learned using exist-
ing metric learning algorithms, such as KISSME [15] or
XQDA [19]. MRD is defined based on the observation that
f-Divergence based measures, such as Jeffrey’s Divergence
(Eq.3) and Bhattacharyya distance (Eq.4) have closed form
solutions for Gaussian distributions that can be factored into
two terms corresponding to distance between their first and
second order moments, i.e. mean and covariance. In both
cases, the term corresponding to distance between means



of Gaussian distributions has the form of Mahalanobis dis-
tance. Then by replacing the term corresponding to dis-
tance between covariances of Gaussian distributions with
Riemannian metric for symmetric positive definite matrices,
MRD is proposed by [1] as follows:

MRD(Gi,Gj) = α(uTMu)
1
2 + (1− α)dR(Σi,Σj) (5)

where, u = µi − µj is the difference of mean vectors; α
controls the weight between the two distance components,
and dR(, ) is the Riemannian metric between the two co-
variance matrices defined as follows:

dR(Σi,Σj) =

(
E∑

e=1

log2λe

) 1
2

(6)

where, dig(λ1, λ2, ..., λE) = Λ is the generalized eigen-
value matrix for the generalized eigenvalue problem:
ΣiV = ΛΣjV , and V is the column matrix of its gen-
eralized eigenvectors. Solving above equation is computa-
tionally efficient for diagonal covariance matrices.

We estimate parameters of matrix M using
KISSME[15], i.e. M = Σ−1+ − Σ−1− , where Σ+

and Σ− are feature-difference covariance matrices of
positive and negative classes, respectively. As Mahalanobis
distance term in Eq. 5 is defined between the means of
two Gaussian distributions, µi and µj , given ground truth
similarity labels, yij ∈ {+,−}, between pairs of Gaussian
distributions, (Gi,Gj), the positive and negative class
covariance matrices are defined as:

Σ+ =
∑

yij=+

(µi − µj)(µi − µj)
T (7)

Σ− =
∑

yij=−
(µi − µj)(µi − µj)

T (8)

Similarity labels between Gaussian pairs are trivially de-
rived from similarity labels of person pairs. For each part,
corresponding Mahalanobis metric is learned independently
from the appearance models for that part. Alternatively, ma-
trixM can be estimated using XQDA [19] in similar spirit.

Our initial attempts to use the learned metric did not lead
to good results. The reason is that by learning a Maha-
lanobis metric, distance between Gaussian means is com-
puted in a transformed feature space related to learned ma-
trix M ; however, distance between Gaussian covariances
is computed in the original feature space. Therefore, we
modify the above definition of MRD to share informa-
tion of learned matrix M with Riemannian metric between
Gaussian covariances. Specifically, we project the covari-
ance matrices of Gaussian distributions using decomposi-
tion LLT = M of learned matrix M . This gives us the
following modified definition of MRD, called Covariance
Projected MRD (CPMRD), where we set α = 0.5:

CPMRD(Gi,Gj) = uTMu+ dR(L
TΣiL,L

TΣjL) (9)

Thus, when training data is available, we use d(Gi,Gj) =
CPMRD(Gi,Gj) to compute the distance between two
Gaussian mixtures using equation 2. To address overfitting
concerns, we limit the number of metric parameters by pro-
jecting Gaussian distributions (both mean and covariance)
to a lower dimensional subspace using PCA before metric
learning. This additionally makes metric learning and sig-
nature matching computationally efficient.

5. Implementation details

To emphasize on the contribution of proposed represen-
tation, we used PAM with two different image descrip-
tors: HOG - normalized after concatenation of indepen-
dently computed 8-bin, 3 channel (RGB), histogram of un-
signed oriented gradients descriptor for local regions using
an overlapping 3 × 11 grid of 32 × 32 pixels with 16 pix-
els overlap for the input image re-scaled to 64× 192 pixels,
and LOMO [19]. As explained earlier, for efficient compu-
tation, we only compute the image descriptor for the full-
body. Given the full-body descriptor, we extract the upper
and lower descriptors of reduced dimensions from the full-
body descriptor. For HOG, upper- and lower-body descrip-
tors correspond to 3 × 6 grids aligned with top and bottom
of the bounding box of the person, respectively. A full-
body HOG descriptor has 792 dimensions, whereas upper-
and lower-body descriptors have 432 dimensions. On the
other hand, full-body LOMO descriptor with 26960 dimen-
sions is computed over 3 scales, by dividing an image in
24, 11 and 5 horizontal bands. To extract upper- and lower-
body LOMO descriptors, we aggregate information over all
3 scales from 12, 6 and 3 horizontal bands aligned respec-
tively with top or bottom of bounding box of the person.
When doing PCA before metric learning, we keep enough
components to retain 95% of the variance in original data,
but a minimum of 200 and a maximum of 1000.

6. Experiments and results

To demonstrate effectiveness of our Part Appearance
Mixture representation, PAM, we performed experiments
on two publicly available datasets, iLIDS-VID [33] and
PRID2011 [12]. These datasets were chosen because they
provide multiple images per individual collected in realis-
tic visual surveillance settings using two cameras. Both
datasets offer viewpoint variations. In addition, PRID2011
has significant color inconsistency between two cameras,
whereas iLIDS-VID has significant occlusions. For each
experiment on either dataset, we follow evaluation protocol
of [33] for fair comparison with other approaches. Specifi-
cally, performance is average over 10 trials of random train-
test splits of non-overlapping person IDs, using only the
identities with at least 21 images, even though our approach
does not impose any restriction on minimum number of im-



iLIDS-VID PRID2011
Model Complexity HOG LOMO HOG LOMO
Median 2 3 2 3
Maximum 4 7 5 7

Table 1: Complexity of appearance model of a person is
measured in number of GMM components.

ages to learn a signature. Additionally, for experiments us-
ing static distance measure JDiv, which does not require
supervised learning, the training split is not used at all.

Table 1 presents statistics about the optimal number
of components learned for different full-body appearance
models. Maximum model complexity (number of GMM
components) per appearance model is 5 and 7, whereas the
median is 2 and 3, for HOG and LOMO descriptors, re-
spectively. The average size of input image set is 73 frames
in iLIDS-VID; hence, on average, the compression ratio for
LOMO descriptor is (3×2)/73 ∼ 1/12 (including diagonal
covariance matrix). Model selection to find optimal appear-
ance model takes less than 20ms for HOG and 230ms for
LOMO descriptor on average. Note that appearance learn-
ing cost is paid one time per person, whereas matching cost
is paid for each query person per gallery item. Thus appear-
ance learning cost is amortized over time.

6.1. Signature quality

It is important to develop an insight about the semantics
or quality of PAM signature model. Therefore, we visual-
ize each GMM component by constructing a corresponding
composite image. Specifically, given appearance model of
a part of a person, we find likelihood of an image belong-
ing to a model component using its appearance descriptor.
Then composite image for a GMM component is generated
by summing images of the corresponding person weighted
by their likelihood. Thus in the composite image, images
with descriptors having high likelihood of belonging to a
model component are weighted more. This allows for vi-
sualization of appearance models in image space instead of
feature space. A selected sample of such signature visual-
izations is presented in Figure 3. It is easy to note that in
describing appearance, proposed signature representation is
able to: i) reduce effect of background as information is ag-
gregated over multiple images, hence it does not rely on ex-
plicit person segmentation; ii) implicitly deal with transient
occlusions due to smoothing effect; and iii) explicitly deal
with variance in person’s pose, orientation, or illumination
by finding optimal number of distinct appearance modes us-
ing variance of low-level feature as cue.

6.2. Effectiveness of representation

Since, most authors report results for end-to-end Re-
ID methods using a mix of features and learning meth-

Rank-1 recognition rate (%) Avg. Distance
PRID2011 iLISD-VID Time (ms)

Model HOG LOMO HOG LOMO HOG LOMO
RMedian 23.3 56.3 8.4 21.1 0.005 0.12
RMax 32.4 63.7 12.3 27.4 0.01 0.5
R10 34.8 63.1 14.9 27.1 0.05 1.15
FBM 44.6 67.4 18.0 29.2 0.02 0.67
PAM 50.6 70.6 22.9 33.3 0.03 1.50

Table 2: Performance of different multi-shot representa-
tions using HOG and LOMO image descriptors.

ods, a direct comparison with our complete Re-ID system
(provided in Section 6.3) is not sufficient to highlight im-
provement brought by better signature modeling. There-
fore, we first present a comparison of our complete PAM
signature model and only Full Body Mixture (FBM) with
a baseline that represents a signature as a set of HOG or
LOMO descriptors ofN randomly selected images of a per-
son, called RN. Further, to facilitate comparison of storage
and computational complexity, we use three different subset
cardinalities, N ∈ {10,Median,Max}, where Median,
and Max, are median and maximum complexity (number
of GMM components) of a person’s full-body appearance
model. Moreover, since covariance of descriptors is not
computed in baseline method, we use Euclidean distance
instead of Jeffrey’s divergence to measure distance between
two elements of the set. Recognition rates obtained at rank-
1 using these models are presented in Table 2

Understandably, performance of baseline representation
improves as the cardinality of the set increases; however, the
matching time also significantly increases with it. In com-
parison, FBM performs significantly better than all three
variants of baseline under all variations of datasets and fea-
tures, while being twice as efficient to R10 in terms of com-
putational time. The performance improvement for HOG is
considerably noticeable, which performs relatively poorly
than LOMO on both datasets. Additional improvement was
achieved for all cases when we used PAM, for signature
representation, while still taking less time for matching on
average than R10 with HOG descriptor. Similar trends in
performance were also observed when metric learning was
used with these representations. Results for learned metrics
with PAM are discussed in section 6.3.

6.3. Comparison with state-of-the-art

For comparison with existing Re-ID methods, we clas-
sify them as unsupervised or supervised based on whether
they require supervised learning of matching functions
or features. Table 3 shows recognition rates of meth-
ods that are unsupervised. Methods are grouped based
on whether they use spatial (treat images independently)
or spatiotemporal (ST) features. All competing methods,



(a) (b) (c) (d)

(e) (f) (g) (h)
Figure 3: Visualization of full-body appearance mixtures of HOG descriptor. For each person, first image is one of the input
images used to learn appearance model. The input image is followed by the composite images, one for each component
of the GMM mixture. Optimal number of GMM components for each appearance model varies between persons. (a)-(d)
GMM components focus on different pose and orientation of person. (e)-(g) Transient occlusions are implicitly dealt with in
appearance models as GMM components focus on pose and/or orientation. (h) GMM components focus on different person
alignment within the bounding box.

PRID2011 iLIDS-VID
Features Method r=1 r=5 r=10 r=20 r=1 r=5 r=10 r=20

Spatiotemporal
HOG3D[21] 20.7 44.5 57.1 76.8 8.3 28.7 38.3 60.7
FV3D[21] 38.7 71.0 80.6 90.3 25.3 54.0 68.3 87.7
STFV3D[21] 42.1 71.9 84.4 91.6 37.0 64.3 77.0 86.9

Spatial

SDALF[10] 5.2 20.7 32.0 47.9 6.3 18.8 27.1 37.3
eSDC[39] 25.8 43.6 52.6 62.0 10.2 24.8 35.5 52.9
FV2D[23] 33.6 64.0 76.3 86.0 18.2 35.6 49.2 63.8
PAM-HOG 50.6 72.2 83.6 93.0 22.9 44.3 55.7 69.3
PAM-LOMO 70.6 90.2 94.6 97.1 33.3 57.8 68.5 80.5

Table 3: Recognition rates (%) at different ranks for unsupervised methods.

except STFV3D[21], were evaluated using set based sig-
nature representation. Among spatial approaches, only
SDALF[10] uses informed selection of images via HSV his-
togram clustering. In other cases, either all images are used
or a small set is selected randomly. Among spatiotemporal
approaches, HOG3D and FV3D features are computed over
spatiotemporal volumes using optical flow energy based
segmentation of [33], while STFV3D[21] is concatenation
of Fisher vector feature descriptors computed from action
units after video segmentation.

Even with simple 2d HOG features, PAM outperforms
all other existing methods on PRID2011. On iLIDS-VID,
PAM-HOG is better than all methods using spatial features

and HOG3D based spatiotemporal model. Note that perfor-
mance improvement of PAM-HOG is significant over other
spatial features based models such as SDALF, eSDC[39]
and FV2D[23] even though HOG computation is relatively
simple in the sense that it does not use symmetry or saliency
information, nor higher order Fisher information. This
shows that PAM is a more efficient representation of ap-
pearance models than existing ones. Moreover, PAM with
LOMO achieves even better performance on both datasets.
On PRID2011, PAM-LOMO outperforms state-of-the-art
by 28% and is inferior only to spatiotemporal Fisher vector
based representation on iLIDS-VID. This shows generality
of PAM representation for different feature descriptors.



PRID2011 iLIDS-VID
Learning Method r=1 r=5 r=10 r=20 r=1 r=5 r=10 r=20

Dictionary or Feature
DVDL[14] 40.6 69.7 77.8 85.6 25.9 48.2 57.3 68.9
Color+LFDA[26] 43.0 73.1 82.9 90.3 28.0 55.3 70.6 88.0
AFDA[18] 43.0 72.7 84.6 91.9 37.5 62.7 73.0 81.8
MTL-LORAE[30] - - - - 43.0 60.1 70.3 85.3
ColorLBP+RFA-Net+RankSVM[36] 58.2 85.8 93.4 97.9 49.3 76.8 85.3 90.0

Metric or Rank

HOG3D+RankSVM[33] 19.4 44.9 59.3 77.2 12.1 29.3 41.5 56.3
Color+RankSVM[33] 29.7 49.4 59.3 71.1 16.4 37.3 48.5 62.6
ColorLBP[13]+RankSVM 34.3 56.0 65.5 77.3 23.2 44.2 54.1 68.8
DVR[33] 28.9 55.3 65.5 82.8 23.3 42.4 55.3 68.6
DSVR[34] 40.0 71.1 84.5 92.2 39.5 61.1 71.7 81.0
STFV3D+KISSME[21] 64.1 87.3 89.9 92.0 43.8 69.3 80.0 90.0
LOMO+XQDA[19] - - - - 53.0 78.5 86.9 93.4
LOMO+SBSR+XQDA[7] - - - - 68.5 87.9 93.0 96.3
CNN+KISSME[41] 69.9 90.6 - 98.2 48.8 75.6 - 92.6
CNN+XQDA[41] 77.3 93.5 - 99.3 53.0 81.4 - 95.1
PAM-HOG+KISSME 55.3 80.7 90.2 95.6 33.9 60.0 70.2 79.1
PAM-LOMO+KISSME 92.5 99.3 100.0 100.0 79.5 95.1 97.6 99.1

Table 4: Recognition rates (%) at different ranks for methods using adaptive metrics or rank functions.

Furthermore, to demonstrate suitability of our represen-
tation to metric learning and end-to-end Re-ID pipeline,
a comparison of PAM+KISSME algorithm with other su-
pervised approaches is provided in Table 4. The meth-
ods are classified based on whether they learn match-
ing functions - KISSME[15], XQDA[19], RankSVM[27],
DVR[33], and DVSR[34], or representations (features or
dictionaries) - DVDL[14], LFDA[26], AFDA[18], MTL-
LORAE[30], and RFA-Net[36], or both CNN+KISSME
and CNN+XQDA[41].

PAM with LOMO descriptor achieves 79.5% and 92.5%
rank-1 recognition rates on iLIDS-VID and PRID2011,
respectively. This is significant improvement over cur-
rent state-of-the-art on both datasets including LOMO and
CNN based methods [19, 7, 41] on iLIDS-VID, which
shows that our adaptation of KISSME is effective. No-
tice that unlike in unsupervised case, PAM outperforms
STFV3D on both datasets quite significantly. Moreover,
PAM with HOG outperforms other HOG based Re-ID
methods, HOG3D+RankSVM and DVR[33], which further
strengthens our claim that PAM is a more robust signature
representation for multi-shot Re-ID. Thus, improvement in
performance can be attributed to both improvement in rep-
resentation and its amenability to metric learning. In ad-
dition, it can achieve high recognition rates without us-
ing projection on large dictionaries [14, 18, 7], or storing
large number of image descriptors. For instance, results for
LOMO+XQDA on iLIDS-VID were obtained by using all
images of a person and the performance decreases as the
number of images is decreased.

7. Conclusion

Person Re-ID is significantly challenging due to high
intra-class variance and inter-class similarity. This paper
presents a novel representation to model appearance of a
person using coarsely localized body parts (regions). Ap-
pearance of each part is modeled as a Gaussian Mixture
Model to explicitly deal with variance in scene illumina-
tion, and pose and orientation of a person. By automati-
cally discovering number of GMM components, the model
trades-off signature variance with robustness. Our model
visualizations indicate that different GMM components au-
tomatically focus on different poses or orientations of a per-
son. Moreover, aggregation of information from multiple
images adds robustness to transient occlusions and back-
ground clutter. As a result of this improved appearance
modeling, new state-of-the-art is achieved on two publicly
available datasets.
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