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Semantic Event Fusion of Different Visual
Modality Concepts for Activity Recognition

Carlos F. Crispim-Junior, Vincent Buso, Konstantinos Avgerinakis, Georgios Meditskos, Alexia Briassouli,
Jenny Benois-Pineau, Yiannis Kompatsiaris, François Brémond

Abstract—Combining multimodal concept streams from heterogeneous sensors is a problem superficially explored for activity
recognition. Most studies explore simple sensors in nearly perfect conditions, where temporal synchronization is guaranteed.
Sophisticated fusion schemes adopt problem-specific graphical representations of events that are generally deeply linked with their
training data and focused on a single sensor. This paper proposes a hybrid framework between knowledge-driven and
probabilistic-driven methods for event representation and recognition. It separates semantic modeling from raw sensor data by using
an intermediate semantic representation, namely concepts. It introduces a algorithm for sensor alignment that uses concept similarity
as a surrogate for the inaccurate temporal information of real life scenarios. Finally, it proposes the combined use of an ontology
language, to overcome the rigidity of previous approaches at model definition, and a probabilistic interpretation for ontological models,
which equips the framework with a mechanism to handle noisy and ambiguous concept observations, an ability that most
knowledge-driven methods lack. We evaluate our contributions in multimodal recordings of elderly people carrying out IADLs. Results
demonstrated that the proposed framework outperforms baseline methods both in event recognition performance and in delimiting the
temporal boundaries of event instances.

Index Terms—Knowledge representation formalism and methods, Uncertainty and probabilistic reasoning, Concept synchronization,
Activity recognition, Vision and scene understanding, Multimedia Perceptual System.

F

1 INTRODUCTION

1 THe analysis of multiple modalities for event recognition2

has recently gained focus, especially after the popular-3

ization of consumer platforms for video-content sharing,4

such as YouTube and Vimeo. The need to automatically5

analyze and retrieve subsets of video content according to6

textual or image queries has motivated research about ways7

to semantically describe videos.8

This work focuses on a similar problem but different9

task: event recognition from heterogeneous sensor modal-10

ities, where we seek to recognize complex activities of daily11

living undertaken by people in ecological scenarios. This12

task requires us to accurately detect and track people over13

space and time, and recognize concepts and complex events14

across modalities. At the same time, it is necessary to handle15

the temporal misalignment of different modalities, and the16

different sources of uncertainty that intervene in them.17

Combining multimodal, visual concept streams from18

heterogeneous sensors is a problem superficially explored19

for activity recognition. Single-sensor, data-driven studies20

have proposed rigid, problem-specific graph representa-21

tions of an event model [17] [29]. But, once a new source22

of information is available, these models need to be re-23

designed from the scratch. On the other hand, knowledge-24
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driven methods provide a generic formalism to quickly 25

model and update events using heterogeneous sources of 26

information [8] [10]. However, their performance degrades 27

drastically in the presence of noise from underlying pro- 28

cesses. Finally, most existing work on multimodal scenarios 29

considers nearly perfect settings, where sensors and modal- 30

ities are completely time synchronized. In real life settings, 31

temporal misalignment among sensors is quite frequent, 32

specially when heterogeneous sensors are combined. This 33

misalignment is commonly aggravated by sensors with vari- 34

able sampling rates, a characteristic that creates non-linear 35

associations among the time points of different sensors. 36

In this paper, we propose two contributions for multi- 37

modal event recognition. Firstly, we introduce an algorithm 38

for aligning sensor data using semantic information as a 39

surrogate for the inaccurate time synchronization of real life 40

scenarios. Secondly, we propose a probabilistic, knowledge- 41

driven framework, namely semantic event fusion (SEF), 42

to combine multiple modalities for complex event recog- 43

nition. The knowledge-driven aspect of our method eases 44

model definition and update, avoiding the long training step 45

required for pure data-driven methods. The probabilistic 46

basis of our event models permits us to handle uncertain 47

and ambiguous observations during event recognition, a 48

limitation for other knowledge-driven methods. 49

We demonstrate the performance of SEF framework in 50

the combination of different visual sensors (video camera, 51

color-depth, wearable video camera) to recognize Instru- 52

mental Activities of Daily Living (IADL) of elderly people 53

during clinical trials of people with dementia. In these 54

settings event recognition needs to be accurate and event 55

temporal intervals precisely assessed, since their results are 56
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used as indicators of a person’s performance in such activi-57

ties. This is the first time such diversity of visual sensors is58

deployed for this task.59

1.1 Framework architecture60

The semantic event fusion framework is structured in a61

hierarchical fashion where, firstly, we use a set of detectors62

to extract (interpret) low-level concepts from raw sensor63

data. Secondly, we align sensor concept streams using se-64

mantic similarity. Thirdly and finally, we initialize ontolog-65

ical event models with aligned concept observations, and66

then perform probabilistic event inference for complex event67

recognition.68

The multimodal framework adopts the following defini-69

tions:70

• Concept: any type of object from the real-world or71

derived from it that is modeled as a physical object72

or a atomic event (primitive state) in the ontology73

language.74

• Detector: a process that provides an interpretation of75

raw sensor data to the conceptual world.76

• Instance: an observed example of a concept.77

Figure 1 illustrates the architecture of the SEF frame-78

work. Detectors (A-C) process their input sensor data79

(S0 − S2) and provide their results as an intermediate,80

conceptual representation for complex, high-level event in-81

ference. The conceptual representation forms the basis to82

build low-level event models and from their composite83

and temporal relationship the framework infers complex,84

composite activities.85

The paper is organized as follows. Section 2 summa-86

rizes related work. Section 3 presents the methods used for87

multimodal concept recognition from heterogeneous visual88

sensors. Section 4 introduces the proposed framework for89

semantic event fusion. Section 5 presents the dataset and90

the baseline methods used for evaluation; and Sections91

6, 7 and 8 presents Results, Discussion and Conclusions,92

respectively.93

2 RELATED WORK94

Activity recognition methods have studied different sensor95

perspectives to model the semantic and hierarchical nature96

of daily living activities. Most approaches using hetero-97

geneous sensors focus on simple sensors (e.g., pressure,98

contact, passive infrared, RFID tags) spread over the tar-99

geted environment [14] [25] [19] [23]. Knowledge- and logic-100

driven methods have been extensively used in these settings101

[8] [12] [10] [2], as they facilitate the modeling of prior102

knowledge, sensor data, and domain semantics by means103

of rules and constraints.104

For instance, Cao et al. [8] have proposed a multimodal105

event recognition approach, where they employ the notion106

of context to model human and environmental informa-107

tion. Human context (e.g., body posture) is obtained from108

video cameras, while environmental context (semantic in-109

formation about the scene) is described by inertial sensors110

attached to objects of daily living. A rule-based reason-111

ing engine is used to combine both contexts for complex112

event recognition. Chen et al. [10] have proposed a hybrid113

approach between knowledge-driven (ontology-based) and 114

data-driven methods for activity modeling and recognition. 115

Domain heuristics and prior knowledge are used to ini- 116

tialize knowledge-driven event models, and then a data- 117

driven method iteratively updates these models given the 118

daily activity patterns of the monitored person. Even though 119

simple sensors are easy to deploy and maintain, they limit 120

activity recognition to simple phenomena (e.g., opened/ 121

closed drawer, presence in the restroom, mug moved), thus 122

limiting the system’s ability to describe and recognize more 123

complex and detailed human activities. 124

Moreover, despite the flexibility of deterministic logic- 125

based methods for event definition, they are very sensitive 126

to noisy observations from underlying components, and 127

they demand the laborious manual definition of all sensor 128

value combinations that satisfy the recognition of an activity. 129

Existing work combining logic and probabilistic methods 130

have proposed to formalize knowledge as weighted rules 131

over raw sensor data [7] [4]. But, the lack of separation 132

between raw-sensor data and event modeling makes these 133

approaches very specific to the environments where they are 134

deployed. 135

Approaches based on visual signals have focused on 136

probabilistic, hierarchical representations of an event. These 137

representations combine different types of features, from 138

low-level motion and appearance patterns [35] [22] to more 139

semantically rich features (e.g., action segments, context 140

information) [38] [36]. For instance, in [38] authors have 141

proposed to first detect action segments from raw video 142

data, and then use a two-layered Conditional Random 143

Field to recognize activities from the segment patterns and 144

context information (e.g., boolean variables indicating object 145

interaction). Despite the progress of these approaches at 146

activity recognition, they still focus on a single modality, and 147

tend to adopt rigid, problem-specific graph representations 148

for an event. Moreover, to achieve their best performance 149

with proper generalization, they require a large quantity of 150

training data and a training step that may take days. 151

Studies on video content retrieval have investigated 152

ways to extend the standard low-level, visual feature rep- 153

resentations for actions [35] by aggregating other modali- 154

ties commonly present in video recordings, such as audio 155

and text [27] [29] [17]. In [17], authors have introduced a 156

feature-level representation that models the joint patterns 157

of audio and video features displayed by events. In [29], a 158

multimodal (audio and video) event recognition system is 159

presented, where base classifiers are learned from different 160

subsets of low-level features, and then combined with mid- 161

level features, such as object detectors [21] for the recog- 162

nition of complex events. These studies have showed that 163

by decomposing complex event representation into smaller 164

semantic segments, like action and objects, inter-segment 165

relations not attainable before can be captured to achieve 166

higher event recognition rates. Nevertheless, these methods 167

only recognize the most salient event in an entire video 168

clip. The task targeted by this paper require us to precisely 169

segment variable-length spatiotemporal regions along the 170

multimodal recording, and accurately classify them into 171

activities. 172

This paper proposes a hybrid framework between 173

knowledge-driven and probabilistic-driven methods for 174
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event representation and recognition. It separates event175

semantic modeling from raw sensor data by using an in-176

termediate semantic representation, namely concepts. An177

ontological language is used as a generic formalism to178

model complex events from their composite relations with179

concepts and domain knowledge, overcoming the rigidity of180

hierarchical, graph-based representations. Finally, we pro-181

pose a probabilistic interpretation for the ontological event182

models, which equips the framework with a mechanism to183

handle noise and ambiguous observations.184

None of the approaches described above addresses the185

temporal synchronization of multiple modalities. Most ex-186

isting work considers nearly perfect settings, where all187

sensors are at least coarsely time synchronized and have188

a fixed sampling rate. Therefore, they adopt a sliding time189

window to accumulate information about event temporal190

components and to cope with small temporal misalignment191

between sensors [19] [2] [32]. This multipurpose use of a192

sliding time window tends to overestimates event duration,193

since window size is generally set to temporal lengths194

that are longer than typical event instances. In real-world195

settings, sensor synchronization is generally inaccurate, and196

sensors tend to have a variable data sampling rate. These197

conditions increase alignment complexity and make data198

fusion very challenging, since they create non-linear asso-199

ciations between the time points of different sensors.200

To address the lack of time synchronization between201

sensors and cope with variable data acquisition rate, we202

propose a novel algorithm to temporally align sensors us-203

ing semantic information as a surrogate for inaccurate or204

missing temporal information. Since the proposed algorithm205

seeks the global semantic alignment between sensor con-206

cept streams, it copes with non-linear associations between207

different sensor time points. Finally, it also translates all208

concept streams to the time axis of a reference stream,209

preserving not only concept temporal relations but also210

temporal information.211

3 MULTIMODAL CONCEPT RECOGNITION212

To handle the complexity of real-world activities of daily213

living and abstract event model definition from low-level214

data, we adopt multimodal concept detectors to extract low-215

level concepts from raw sensor data [29] [17] [27]. Three216

types of concept detectors are used: knowledge-driven217

event recognition (KER, subsection 3.3), action recognition218

(AR, subsection 3.1), and object recognition (OR, subsection219

3.2).220

KER detector employs an off-the-shelf color-depth cam-221

era (Kinect, S0,Fig.1), since this sensor provides real-time,222

3D measurements of the scene. These measurements im-223

prove the quality of people detection and tracking algo-224

rithms by resolving 2D visual ambiguities with depth in-225

formation, and making these algorithms invariant to light226

changes. AR detector employs a standard video camera227

(S2,Fig.1) due to the broader field of view of this sensor228

when compared to the color-depth sensor. OR detector229

complements the previous detectors with a wearable video230

camera (S1,Fig.1). This type of sensor has a closer view of231

the most salient object in the field of view of the person.232

Salient objects are a key piece of information to describe233

how activities are realized, and also to overcome situations 234

where a person is occluded or too far from fixed cameras 235

[37]. 236

The novelty of this paper in terms of multimodal activity 237

sensing refers to the variety (or heterogeneity) of visual 238

concept modalities in use, i.e., the phenomena and points of 239

view we use to describe the activities of daily living, and not 240

to a specific choice of sensors. For instance, events from the 241

global displacement patterns of a person, action from the 242

local and finer motion patterns, and the different types of 243

objects being that appear during an activity of daily living. 244

The choice of sensors that are going to feed the proposed 245

concept detectors can be adapted to user needs. For instance, 246

in a smaller scene than the one used for this work, one may 247

choose to feed AR detector with the RGB image of Kinect 248

instead of using an extra video camera. Alternatively, for 249

the same size of scene, one could replace the Kinect sensor 250

and the video camera with a stereo-camera system and 251

then profit from both the 3D measurements and the scene 252

coverage from a single sensor solution. In summary, the user 253

of the system should select the sensors that provide the best 254

trade-off between scene coverage, system setup complexity 255

and solution cost that fits his/her needs. 256

Fig. 1. Semantic event fusion framework: detector modules (A-C) pro-
cess data from their respective sensors (S0-S2) and output concepts
(objects and low-level events). Semantic Event Fusion uses the onto-
logical representation to initialize concepts to event models and then
infer complex, composite activities. Concept fusion is performed on
millisecond temporal resolution to cope with instantaneous errors of
concept recognition.

3.1 Action recognition from color images 257

Action recognition is usually addressed in the state of the art 258

by localizing actions using a sliding spatiotemporal window 259

[18]. However, these approaches entail a high computa- 260

tional cost due to the exhaustive search in space and time. 261

Furthermore, activities are localized in rectangular spatial 262

areas, which do not necessarily correspond to the area where 263

they actually occur, increasing computational cost and false 264

alarms due to search in irrelevant regions. Rectangular 265

spatial search areas are most likely to contain both a moving 266

entity - e.g., human - and background areas, which both 267

contribute with features to the overall scene descriptor. As a 268

result, the feature vector describing the activity will contain 269

erroneous, false alarm descriptors (from the background). 270

The exhaustive search in time also increases computational 271

cost due to the large number of features being compared and 272

the overlapping sliding window that is usually to improve 273

detection accuracy rates. 274
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We propose a novel algorithm for spatiotemporal lo-275

calization that overcomes the limitations of the current276

spatiotemporal sliding window based methods, which both277

succeeds in reducing the computational cost, while also278

achieving higher accuracy. To avoid the problems intro-279

duced by searching in rectangular spatial areas, we examine280

only pixels that are likely to contain activities of interest,281

so spatial localization examines regions of changing motion,282

the Motion Boundary Activity Areas (MBAAs). To avoid the283

high computational cost introduced by exhaustive search284

over time, temporal localization deploys statistical change285

detection, applied at each frame. Changes are detected in286

an online manner in the outcomes of a Support Vector Data287

Description (SVDD) classifier. The SVDD characterizes each288

activity by a hypersphere built from training data: as it289

is different for different human activities, changes in its290

outputs also correspond to different activities. The resulting291

method for sequential detection of changes between SVDD292

outcomes, where the latter use only data inside MBAAs, is293

thus called Sequential Statistical Boundary Detection. The294

sequential nature of the change detection results in a faster295

activity boundary detector, as sequential change detection296

has been proven to provide quickest detection.297

Action cuboids are then extracted in the resulting subse-298

quences. The action cuboids are much smaller in size than299

regions used for spatiotemporal activity localization and300

precisely localize pixels with the activity of interest, both in301

space in time. Thus, their motion and appearance properties302

are used for recognition in a multiclass SVM model. In303

concluding, the main novelty of our approach lies in the304

spatiotemporal activity localization. Spatial localization also305

takes place in an original manner, by isolating regions of306

changing activity, thus avoiding false alarms and increasing307

the system’s accuracy, while temporal localization is acceler-308

ated as fewer subsequences need to be classified in order to309

detect the activities that occurs inside them [3]. This detector310

provides valuable cues about the actions taking place given311

its local motion patterns, but it does not identify the author312

of the action. For this reason, AR detector is a natural313

complement for the knowledge-driven event recognition314

that recognizes person-centered events (subsection 3.3).315

3.2 Object recognition from egocentric vision316

We employ several detectors of “active objects” (objects317

either manipulated or most salient in the field of view of318

the user), as we consider that the identification of these319

objects is a crucial step towards activity understanding. The320

recognition of activity-related objects adds more robustness321

to event models, especially when the emphasis is placed on322

activities of daily living. OR detector considers one concept323

detector per object category. The processing pipeline (Fig.324

2) is shared by all detectors until the image signature step.325

A nonlinear classification model is learned for each object326

category.327

We have built our model based on the well-known Bag-328

of-Words (BoW) paradigm [13] and used saliency masks as329

a way to enrich the spatial discrimination of the original330

BoW approach. Hence, for each frame in a video sequence,331

we extract a set of N SURF descriptors dn [5], using a dense332

grid of circular local patches. Next, each descriptor dn is333

Fig. 2. Processing pipeline for saliency-based object recognition in first-
person camera videos

assigned to the most similar word j = 1..V in a visual 334

vocabulary by following a vector-quantization process. The 335

visual vocabulary is computed using k-means algorithm 336

over a large set of descriptors of the training data set. We 337

set the size of dictionary V to 4000 visual words. In parallel, 338

our system generates a geometric spatiotemporal saliency 339

map S of the frame with the same dimensions of the image 340

and values in the range [0, 1] (the higher the S the more 341

salient a pixel is). Details about the generation of saliency 342

maps can be found in [6]. We use the saliency map to weight 343

the influence of each SURF descriptor in the final image 344

signature, so that each bin j of the BoW histogram H is 345

computed by the next equation: 346

Hj =

N∑
n=1

αnwnj , (1)

where the term wnj = 1 if the descriptor or region n 347

is quantized to the visual word j in the vocabulary and 348

the weight αn is defined as the maximum saliency value S 349

found in the circular region of the dense grid. 350

Finally, the histogram H is L1-normalized to produce 351

the image signature. A SVM classifier [11] with a non- 352

linear χ2 kernel [33] is then used to recognize the objects of 353

interest over the weighted histogram of visual words. Using 354

Platt approximation [30], we produce posterior probabilistic 355

estimates Ot
k for each occurrence of an object k in frame t. 356

3.3 Knowledge-driven event recognition 357

KER detector equips the SEF framework with the ability 358

to handle multiple people in the scene and derive person- 359

centered events. Its processing pipeline is decomposed into 360

people detection, tracking, and event recognition. 361

3.3.1 People Detection 362

People detection is performed using the depth-based frame- 363

work of [28] that extends the standard detection range of 364

color-depth sensors from 3-4 meters (Microsoft and Prime- 365

Sense) to 7-9 meters away. It works as follows: first, it per- 366

forms background subtraction in the depth image to identify 367

foreground regions that contains both moving objects and 368

potential noise. These foreground pixels are then clustered 369

into objects based on their depth values and neighborhood 370

information. Among these objects, people are detected using 371

a head and shoulder detector and tracking information 372

about previously detected people. 373
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3.3.2 People Tracking374

People tracking [9] takes as input the video stream and the375

list of objects detected in the current and previous frames376

using a sliding time window. First, a link score is computed377

between any two detected objects in this time window using378

a weighted combination of six object descriptors: 2D and379

3D positions, 2D object area, 2D object shape ratio, color380

histogram and dominant color. Then, successive links are381

formed to represent the several paths an object can follow382

within the temporal window. Each possible path of an object383

is associated with a score given by all the scores of the384

links it contains. The object trajectory is determined by385

maximizing the path score using Hungarian algorithm [20].386

3.3.3 Event representation and recognition387

We extend the declarative constraint-based ontology lan-388

guage proposed in [34] [12] to define event models based on389

prior knowledge about the scene, and real-world objects (e.g.,390

person) dynamically detected by underlying components391

(e.g., people detection and tracking).392

An event model is composed of three main parts:393

• Physical Objects refer to real-world objects involved394

in the realization of the event (e.g., person, kettle).395

• Components refer to sub-events of which the model396

is composed of.397

• Constraints are conditions that the physical objects398

and/or the components should satisfy.399

Fig. 3. Physical object sub-tree of the ontology language

KER detector uses three types of physical objects (Fig.400

3): person, zones and equipment. Constraints are classified401

into non-temporal (e.g., inter-object spatial relations, object402

appearance); and temporal (e.g., time ordering between two403

event components). Temporal constraints are defined using404

Allen’s interval algebra, e.g., BEFORE, MEET, AND [1]. An405

alarm clause can be optionally defined to rank events by406

their importance for a sub-subsequent task, e.g., to trigger407

an external process.408

Events are hierarchically categorized by their complexity409

as (in ascending order):410

• Primitive State models a value of property of a411

physical object constant in a time interval.412

• Composite State refers to a composition of two or413

more primitive states.414

• Primitive Event models a change in value of a phys-415

ical object’s property (e.g., posture), and416

• Composite Event defines a temporal relationship417

between two sub-events (components).418

This detector provides person-centric events derived419

from knowledge about global spatiotemporal patterns that420

people display while performing activities of daily living. 421

Example 1 illustrates the low-level, primitive state model 422

Person inside ZonePharmacy that maps the spatial rela- 423

tion between a person’s position and the contextual zone 424

zPharm. For instance, this zone may corresponds to the 425

location of a medicine cabinet in the observed scene. 426

Example 1. Primitive state “Person inside Zone Pharmacy” 427

PrimitiveState(Person_inside_ZonePharmacy, 428

PhysicalObjects( (p1: Person),(zPharm: Zone)) 429

Constraints( 430

(p1->position in zPharm->Verticies) 431

Alarm ((Level : NOTURGENT)) 432

) 433

4 SEMANTIC EVENT FUSION 434

The abovementioned concept detectors for actions, 435

knowledge-based events and objects constitute the founda- 436

tions of the semantic event fusion framework. They bridge 437

the gap between the raw sensor data and the concep- 438

tual world and provide a natural separation between data 439

specifics and event semantic modeling. 440

SEF takes place over concept observations and is respon- 441

sible for linking these concept instances to related event 442

models, and then infer whether the available evidence is 443

sufficient to recognize one of the target events. To achieve 444

this goal, SEF needs to handle the time misalignment among 445

sensors and the different sources of uncertainty that inter- 446

vene in concept and complex event recognition. 447

We divide SEF framework into four steps: model repre- 448

sentation, semantic alignment, event probability estimation, 449

and complex event probabilistic inference. 450

4.1 Model Representation 451

To represent the concept dependencies and semantics of 452

complex events (e.g., temporal order that involved concepts 453

need to display), we extend the constraint-based ontology 454

language used in KER detector to multimodal composite 455

events. 456

The mapping between concept detector observations 457

and the ontology language representation is performed as 458

follows: actions from the AR detector are mapped to in- 459

stances of primitive states. Objects from the OR detector are 460

linked as instances of a new class of physical object, namely 461

handled object. This class, as the name suggests, represents 462

objects that can be manipulated with the hands (e.g., kettle, 463

teabag, pillbox, etc). Finally, events from the KER detector 464

are mapped as instances of low-level, composite events. 465

Example 2 presents the ontological model of the 466

multimodal, composite event “PreparePillBox SEF”. This 467

model combines multimodal physical objects (person, zone, 468

and handled object) and sub-events “PreparePillBox KER” 469

and “PreparePillBox AR”. 470

471

Example 2. Multimodal, Composite Event “Prepare pill box” 472

CompositeEvent(PreparePillBox_SEF, 473

PhysicalObjects( (p1: Person),(zPharm: Zone), 474

(PillBox: HandledObject)) 475

Components( 476
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(c1: PrimitiveState PreparePillBox_AR() )477

(c2: CompositeEvent PreparePillBox_KER(478

p1,zPharm)))479

Constraints(480

(c1->Interval AND c2->Interval)481

(duration(c2) > 3))482

Alarm ((Level : URGENT))483

)484

The concept dependencies of a complex event are the485

basis to quantify concept similarity across different visual486

modalities and hence align them, and to estimate composite487

event probability for probabilistic event inference. Figure488

4 illustrates the concept dependencies extracted from the489

multimodal event “Prepare drink SEF”.490

Fig. 4. Composite relations between concepts and event models. Multi-
modal Event “Prepare drink” is composed of conceptual events “prepare
drink” from KER and AR detectors and conceptual objects “Tea bag”,
“Kettle” and “Glass” from OR detectors. For instance, the hierarchically
lower event “Prepare drink” from KER detector can be further decom-
posed into two sub-events, while other detector concepts are atomic.

4.2 Semantic alignment491

To align heterogeneous concept streams we propose a novel492

algorithm that uses concept similarity as surrogate for in-493

accurate temporal information. For instance, concepts are494

considered similar if they are part of the same complex495

event. However, semantic alignment is a complex problem496

on its own, since two concepts related to the same complex497

event may model very different aspects of the given event.498

For example, while the OR detector will generate fine-499

grained object-wise observations about the activity taking500

place (e.g., telephone), KER detector will generate event-501

wise observations for the same period of time (e.g.,“talk on502

the telephone”). These conceptual differences create non-503

linear matches between concept streams. Similarly, some504

sensors might have variable sampling rates, a characteristic505

which may introduce non-linear time deformations in the506

derived concept stream.507

To find the non-linear alignment between two concept508

streams we employ Dynamic Time Warping (DTW), an509

algorithm that seeks the optimal alignment between two510

time-dependent sequences [26]. By seeking for the global511

semantic alignment, we overcome both the coarse onto-512

logical alignment of concept detectors and the non-linear513

deformations introduced by the variable sampling rate of514

sensors.515

Algorithm 1 describes the proposed method for semantic516

alignment. The algorithm starts by identifying each complex517

event with an unique code. Then, for each concept stream si,518

it creates an encoded concept stream ci, where concepts are 519

represented by the code of the complex event they belong 520

to. Once all encoded streams are generated, they are aligned 521

to the encoded reference stream (c0, KER detector), in a 522

pairwise manner, using the DTW variant proposed by [31]. 523

For each warped concept stream cw,i generated by DTW, 524

the temporal translation function ∆ determines the warping 525

deformations (position additions) that the alignment to ci 526

stream has introduced into c0. By pruning the new positions 527

in cw,0 from cw,i, function ∆ projects cw,i into the time 528

axis of the original reference stream c0. Finally, we remove 529

spurious, instantaneous concepts from the concept stream 530

ca,i using median filtering. 531

Algorithm 1. Pseudo-code of the semantic alignment 532

533

//Shared semantic encoding 534

for each si ∈ S: 535

for each t ∈ si: 536

ci(t) = Ω(si(t)) 537

538

//Semantic Alignment and Temporal Projection 539

C = C \ c0 540

for each ci ∈ C: 541

cw,0 , cw,i = Φ(c0,ci) 542

ca,i = ∆(c0 , cw,0 , cw,i) 543

cf,i = medianFiltering(ca,i) 544

where, 545

• Ω : maps concepts to the composite event they are 546

part of, 547

• si, S : concept stream i, and its set S, 548

• ci, C : encoded concept stream i and its set C , 549

• t : time point t, 550

• cw,i: warped version of ci, 551

• ca,i: aligned version of ci, 552

• cf,i: smoothed version of ca,i, 553

• Φ: DTW function, 554

• ∆: temporal translation function. 555

The proposed algorithm assumes that the events and 556

concepts used for the semantic alignment have an one- 557

to-many relationship, respectively. To achieve the optimal 558

alignment, the proposed algorithm requires that the streams 559

have a sufficient amount of similar concepts, and that con- 560

cept detectors have a reliable performance at the recognition 561

of these concepts. 562

Concept similarity is extracted from the ontological rep- 563

resentation of complex events (targeted activities). KER de- 564

tector is chosen as the reference stream due to its sensor 565

sampling rate be on an intermediate temporal resolution 566

compared to other sensors, and due to its high performance 567

at the recognition of different concept classes. 568

For probabilistic concept detectors that provide a confi- 569

dence value for all their concept classes at every time point 570

t, like OR detector, the alignment procedure implements 571

two extra steps. Before the semantic alignment, we generate 572

a concept stream sg from the most likely concept of the 573

detector at each time point t. Then, we semantically align 574

the stream sg and the reference stream. Once alignment is 575

done, we use the temporal translation data found for sg 576
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and the reference stream to generate aligned, object-specific577

concept streams. These extra procedures are necessary since578

a single-object concept stream will most of the time lack579

enough semantics for accurate semantic alignment.580

4.3 Event Probability Estimation581

To estimate event probability from the combination of multi-582

modal sources of information is not a trivial task, since each583

modality carries different sources of uncertainty. For exam-584

ple, to accurately fuse multiple concepts it is necessary to585

consider not only the concept detector confidence on a given586

instance, but also its reliability as an source of information.587

Additionally, the relevance of a concept for an event model588

should be modeled to fully profit from the complementary589

nature of multimodal sources of information.590

Studies in video content retrieval have mostly ex-591

plored the complementary information provided by differ-592

ent modalities of raw video signals. Currently they lack593

mechanisms to handle other factors that interfere in real-594

world applications of event recognition, like information rel-595

evance and reliability. For instance, motion features should596

have a higher relevance than appearance features to dis-597

criminate walking from standing events. Similarly, a concept598

detector from a wearable camera should be more reliable599

in object recognition than one derived from a fixed camera600

attached to the ceiling of a room.601

We formalize the probability of a composite event (cs)602

as a function of the probability of its concepts (ce) and the603

factors that affect them. We use a Countable Mixture Distri-604

bution (CMD, Eq. 4) to integrate the concepts’ probability605

and the factors that intervene in them (concept weight).606

Concept weights are defined based on two factors: the607

concept relevance to the given event model and the concept608

reliability given a detector. Equation 5 presents the proposed609

CMD, which quantifies the probability of a composite event610

given its observed concepts. A partition function (Eq. 7) is611

adopted to normalize the weights of the CMD.612

Reliability (RB) handles detector differences in concept613

recognition. It measures the detector precision at the recog-614

nition of each one of its concepts (Eq. 2). Relevance (RV)615

models the contribution of a concept to the recognition of a616

given event (Eq. 3). It also facilitates event modeling, since617

domain experts can focus on listing concepts they deem618

important for a complex event, and the framework will learn619

the degree of relevance of each assigned concept to the given620

event model.621

P (cei,j,k|dk) =
|TP |

|TP |+ |FP |
(2)

where,622

• P (cei,j,k|dk): reliability of concept i part of compos-623

ite event j given detector k,624

• |TP |: number of times concept cei is correctly recog-625

nized by concept detector k during a true instance of626

composite event j,627

• |FP |, number of times cei is observed by the concept628

detector k given there is no true realization of event629

j.630

P (csj |cei,j,k) =
|cei,j,k ∩ csj |
|cei,j,k|

(3)

where, 631

• P (csj |cei,j,k): number of times composite event csj 632

is detected during an instance of concept cei,j,k, 633

• |cei,j,k∩csj |: number of times cei,j,k is present during 634

an instance of event csj , 635

• |cei,j,k|: number of times cei,j,k is observed. 636

f(x) =

N∑
i=1

wi × P (xi),

wi >= 0,∑
wi = 1

(4)

P (csj) =

∑
cei,j,k∈csj w(cei,j,k)× P (cei,j,k)

Z(csj)
(5)

w(cei,j,k) = P (csj |cei,j,k) + P (cei,j,k|dk) (6)

Z(csj) =
∑

cei,j,k∈csj

w(cei,j,k) (7)

where: 637

• P (csj |cei,j,k): conditional probability of composite 638

event j given concept k from detector i, 639

• P (cei,j,k): probability of concept k from detector i, 640

part of composite event j, 641

• P (cei,j,k|dk): reliability of concept i from composite 642

event j given detector k, 643

• w(cei,j,k): weight of concept cek from detector i, part 644

of composite event j. 645

CMD models provide a compact representation of the 646

different random variables that intervene in the estimation 647

of the probability of the modeled event. It speeds up event 648

inference, since the probability of an event probability is 649

locally estimated based only on the probability of related 650

concepts and uncertainties. 651

4.4 Probabilistic Inference 652

Event models guide the inference process considering ev- 653

idence related only to the event model in analysis, then 654

reducing the computational complexity of the inference 655

process. Logic and temporal constraints can be then used 656

throughout the event inference step to impose real-world 657

constraints to event models. Probabilistic inference equips 658

the framework with means to handle event ambiguity over 659

mutually exclusive complex events, and to filter out events 660

which are unlikely to correspond to real-world events. 661

The inference step takes as input the concepts extracted 662

by the visual concept detectors at each time t, and links them 663

as parts of related composite event models. For each event, 664

it computes event probability using the corresponding CMD 665

model (Eq. 5). Maximum a posteriori (Eq.8) is employed to re- 666

trieve the most likely event from a set of mutually exclusive 667
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candidates. Finally, probability thresholding is used over the668

most likely event to decide whether its probability corre-669

sponds to a real-life event. Probability thresholding provides670

an efficient way to find the probability level from where a671

complex event CMD has sufficient evidence to recognize a672

real-world event. Moreover, it can be easily translated into673

a supervised learning problem of parameter tuning, and it674

preserves semantic meaning for human analysis.675

cs =

{
argmaxcsjP (CS), if P (csj) > thcsj
∅, otherwise

(8)

where,676

• cs: most likely composite event,677

• CS: set of mutually exclusive composite events,678

• thcsj : probability threshold thcsj for the recognition679

of the composite event j.680

4.5 Parameter Learning681

The parameters of the SEF framework are determined us-682

ing a supervised learning method (maximum likelihood es-683

timation) in a 10-fold cross-validation scheme. Three main684

parameters are learned for the estimation of the probability685

of an event model: the RV and the RB of a concept, and686

the probability threshold of an event. These parameters687

are computed based on the overlap between instances of688

concepts and ground-truth annotations of composite events.689

Ground-truth instances are annotated by domain experts690

visualizing recordings of the color-depth sensor.691

Finally, the composite relations between concepts and a692

complex event, which are necessary for semantic alignment693

and event probability estimation, are extracted from com-694

plex event models. Event models are provided by domain695

experts using the multimodal event ontology representa-696

tion.697

5 EXPERIMENTS698

The evaluation of the proposed framework for multimodal699

event recognition is performed as follows: firstly, we eval-700

uate the effects of the semantic alignment over the per-701

formance of concept detectors. Secondly, we evaluate the702

overall semantic fusion by comparing its results to two703

baseline methods: Ontology-based Semantic Fusion (OSF,704

Subsection 5.2) and Support Vector Machine (subsection705

5.3). All evaluations are run over multimodal recordings706

of elderly people carrying out activities of daily living707

(subsection 5.1). Results are reported for validation and test708

sets of a 10-fold cross-validation scheme.709

5.1 Data set: monitoring activities of senior people710

Participants aged 65 years and above were recruited by the711

Memory Center (MC) of Nice Hospital. The clinical protocol712

asks participants to undertake a set of physical tasks and713

IADLs in a hospital observation room, furnished with home714

appliances [15]. Experimental recordings used two fixed715

cameras: color-depth camera (Kinect ®, Microsoft ©, ~10716

frames per second), standard color camera (AXIS®, Model717

Fig. 5. Observation room where daily living activities are undertaken.
Contextual zones are depicted as free-from closed polygons in red, and
contextual objects as black ellipses.

P1346, 8 frames per second); and a wearable camera, GoPRO 718

Hero - first generation. 719

Participants undertake IADLs for approximately 15 min- 720

utes, as the clinical protocol aim is to evaluate the level 721

of autonomy of the participant by organizing and carrying 722

out a list of these activities. Figure 5 illustrates the obser- 723

vation room where participants undertake IADLs, and the 724

semantic zones that are annotated to incorporate a priori 725

knowledge about the scene. 726

The clinical protocol IADLs are the following: 727

• Prepare drink (P. Drink, e.g., prepare tea/coffee), 728

• Talk on the telephone (T. Telephone, e.g., calling, 729

answering), 730

• Read (e.g., read newspaper, magazine), 731

• Prepare pill box (P. Pill box), 732

• Manage finances (M. Finances, e.g., write a check, 733

establish account balance), 734

• Search bus line (S. Bus line) 735

• Water the plant (W. Plant), and 736

• Watch TV (W. TV). 737

OR detector produces probability estimations [0,1] over 738

12 visual concepts: account, medication basket, checks, in- 739

structions (activities to perform), kettle, map, medical in- 740

structions, telephone, remote, TV, tablet, and watering can. 741

AR detector provides estimations about a set of mutually 742

exclusive atomic actions: answer phone, call phone, look 743

on map, pay bill, prepare drugs, prepare drink, read paper, 744

water plant, and watch TV. KER detector generates events 745

for all protocol activities, except for “watch TV” and “search 746

bus line”. 747

5.2 Baseline 1: Ontology-based Semantic Fusion 748

The ontology-based framework for semantic fusion (OSF) 749

[24] is based on the use of RDF/OWL [16] ontologies to 750

capture the dependencies among low-level domain obser- 751

vations and complex activities (events). More specifically, 752

following a knowledge-driven approach, it defines the Con- 753

text Dependency Models of the domain that captures the 754

background knowledge required to detect the complex ac- 755

tivities. The context dependency models serve as input to 756

the semantic interpretation procedure for the recognition 757

and classification of complex activities. The objective of the 758

interpretation procedure is to analyze traces of observations 759

provided by the various modules of the application domain 760

and group them into meaningful situations, classifying them 761

as complex activities. The interpretation algorithm consists 762
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of three steps: (a) definition of partial context, (b) identifica-763

tion of contextual links and (c) recognition and classification764

of situations. Details about the OSF approach are available765

in [24].766

The ontology-based semantic fusion serves as a baseline767

for the delimitation of the temporal boundaries and the768

recognition of events if a holistic view of the concepts of769

the entire multimodal recording is employed. Its limitations770

are the following: it cannot handle interleaved activities,771

nor can it resolve conflicts after the recognition process. It772

also does not handle dynamic and incremental generation of773

partial contexts and context links in (near) real-time activity774

recognition, as it uses all recognized events. Finally, this775

baseline approach does not handle uncertainty in the input776

data, and assumes all observations (primitive and high-777

level) have the same confidence (100%).778

5.3 Baseline 2: Support Vector Machine779

The second baseline consists of linear SVM classifiers that780

learn to recognize activities of daily living from multimodal781

concept instances observed during a time-window. This782

method demonstrates the fusion performance of a fully783

supervised learning approach, which operates over a con-784

ceptual representation of raw sensor data (KER events, OR785

objects, and AR actions), and learns the best combination of786

concept observations from training data. The input for this787

baseline is a normalized histogram of concept observations788

across semantically aligned, concept streams. We compute a789

histogram for the concepts of each composite event across790

all concept streams during a time window. In the training791

set, time windows correspond to the exact time interval792

of the events from ground-truth data. For validation and793

test sets we browse the recording in a frame-wise fashion794

and compute histograms over a continuous sliding time795

window. The search for the most appropriate size for the796

time-window started with the average duration of activity797

classes in the training set. Model parameters and time-798

window size are learned and evaluated in the same 10-fold799

cross-validation scheme used to learn the parameters of the800

proposed approach. One-versus-all scheme is adopted to801

learn the classifier of each composite event. Model param-802

eters are chosen based on the performance of the baseline803

method in the validation set.804

5.4 Evaluation805

To evaluate the proposed methods, we quantify the frame-806

wise agreement between the output of evaluated methods807

with event annotation provided by domain experts (ground-808

truth data). Frame-wise agreement may seem strict, but809

our goal is to achieve a high event recognition rate and810

a precise assessment of the temporal boundaries of event811

instances. Performance results are reported on the cross-812

validation scheme test sets, unless specified otherwise. F1-813

score is employed as the performance index.814

For the evaluation of the semantic concept synchroniza-815

tion method, we compare the performance of detectors AR,816

KER and OR before synchronization (NA), warped and817

smoothed (WS), and semantically synchronized (warped,818

backprojected and smoothed, WBS). Warped variant of con- 819

cept streams are provided as a performance baseline to the 820

temporal translation step of the semantic alignment. 821

To evaluate the semantic event fusion framework, we 822

compare its results to the performance of two state-of- the- 823

art baselines at two capabilities. Firstly, at the accurate 824

fusion of concepts under the presence of ambiguous and 825

noisy observations; and secondly, at the precise assessment 826

of event time intervals. We also provide the performance of 827

concept detectors as a reference to measure whether the pro- 828

posed method can go beyond their individual performances 829

by combining their complementary aspects. 830

6 RESULTS 831

6.1 Semantic alignment 832

Figure 6 illustrates an example of semantic alignment be- 833

tween the concept stream of AR detector and a concept 834

stream generated from the events annotated by a domain 835

expert (color-depth sensor images are used as reference). We 836

observe that the proposed technique accurately translates 837

the AR detector stream from its original form - coarsely 838

synchronized - to a new form that is optimally time- 839

synchronized with the reference stream, and also preserves 840

most shape characteristics of the original concept stream of 841

AR detector. 842

Table 1 presents a quantitative evaluation of the gain 843

in performance obtained by aligning the concept detector 844

streams. To evaluate the improvement brought by the align- 845

ment, we assess the performance of each concept detector 846

at individually recognizing the composite event they are 847

part of. We present results for three cases: the original 848

concept streams; the warped case, where both ground-truth 849

and sensor stream are optimally aligned, and at last, the 850

semantically aligned concept stream. 851

The semantic alignment improves the performance of the 852

KER detector compared to its original version for all event 853

classes, apart from “prepare pill box” event. It also displays 854

a higher performance than the warped case in three out of 855

seven classes, while being quite close for the remaining ones 856

(e.g., “prepare drink”, “talk on the telephone”, and “watch 857

TV“ events). In AR case, the aligned streams perform better 858

than the original stream for all cases, but worse than the 859

warped streams for half of the events (“prepare drink”, 860

“reading”, “talk on the telephone” and “watch TV” events). 861

Finally, the aligned streams of OR detector outperform the 862

original ones for all cases, except for two event classes: “pre- 863

pare pill box” and “talking on the telephone”. Currently, the 864

aligned concept streams of OR performs worse than their 865

warped streams for the majority of cases. 866

6.2 Semantic Event Fusion 867

Figure 7 presents the performance of the semantic event 868

fusion in the validation set and according to the probabil- 869

ity threshold adopted. We observe that most event classes 870

have their highest recognition rates adopting a probability 871

threshold between 0.4 and 0.5. Exceptions are “search bus 872

line” and “talk on telephone” events, where the threshold 873

value of 0.1 achieves the highest performance. 874

Table 2 compares the performance of the SEF framework 875

(with and without probability thresholding) to its individual 876
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Fig. 6. Semantic alignment between the concept stream of the action recognition detector (AR) and a concept stream (GT) generated from events
manually annotated by domain experts using the time axis of the color-depth camera. X-axis denotes time in frames, and Y-axis denotes activity
code (1-8), respectively, search bus line on the map, establish bank account balance, prepare pill box, prepare a drink, read, talk on the telephone,
watch tv, and water the plant. From top to bottom, images denote: (A) original GT and AR streams, (B) GT and AR streams warped, AR stream
warped and smoothed (in red), (C) original GT and AR stream warped and then backprojected onto GT temporal axis, (D) original GT and AR
warped, backprojected, and then smoothed with median filtering.

Fig. 7. Event recognition performance according to probability threshold. BT refers to the threshold with best performance for each event

TABLE 1
Semantic Alignment versus Event Recognition

mean
F1-score

Detector / Stream alignment
KER AR OR

IADL NA WS WBS NA WS WBS NA WS WBS
S. Bus line 16.6 27.7 27.8 40.9 44.3 45.0 11.7 13.7 13.7
M.Finances 0.0 0.0 0.0 61.7 60.9 62.1 26.7 30.9 28.7
P. Pill box 69.0 61.8 62.6 49.4 55.3 57.1 23.8 24.5 21.7
P. Drink 71.9 86.6 85.9 31.6 51.4 49.2 0.0 0.0 0.0
Read 73.8 97.9 98.2 50.8 62.9 56.8 0.1 8.3 7.0
T.Telephone 68.2 83.9 83.3 38.9 66.5 60.9 13.7 14.2 13.0
W. TV 9.9 30.5 27.3 17.2 42.9 36.5 10.1 17.1 14.7
W. Plant 47.4 86.4 86.4 9.0 21.4 21.9 0.0 0.0 0.0
N : 17 participants; 15 min. each; Total: 255 min.
(−) denotes concepts not available for the detector.
AR: action recognition, KER: Knowledge-driven event recognition, and
OR: Object recognition.
NA: Not aligned, WS: warped and smoothed, and
WBS: warped, and backprojected and smoothed

concept detectors, before and after semantic alignment, on877

the validation set. Results demonstrate that the proposed878

framework has a performance higher than the semantically879

aligned versions of its individual detectors, with two excep- 880

tions: “managing finances” and “talking on the telephone” 881

events. For the first event, the stream of the action detector 882

without alignment has a performance 9% higher than the 883

proposed method, while for the second event the aligned 884

version of KER detector has a performance 14% higher. 885

Probability thresholding improves the event recognition in 886

the majority of cases. 887

Table 3 compares the performance of the proposed 888

framework to the individual concept detectors in the test set, 889

before and after semantic alignment. The proposed frame- 890

work outperforms methods only using individual concept 891

detectors in all cases and classes, with the exception of 892

aligned KER in the events “talk on the telephone” (-17.5%), 893

reading (-2.8 %), and search bus line (-1%). 894

Figure 8 illustrates the F1-score of 12 classes of objects 895

provided by OR concept detector. We observe that OR 896

method has an average F1 − score performance of 56 % 897

in 9/12 classes that appear in the test set recordings, and 43 898

% when considering all of them. The average precision of 899

OR is 85.77 %, which demonstrates the high reliability of its 900
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TABLE 2
Event recognition performance in the validation set

mean
F1-score

Stream alignment / Detector
None Aligned Proposed

IADL KER AR OR KER AR OR WT BT
S. Bus line 13.1 47.3 8.3 13.9 45.3 17.8 51.1 51.1
M.Finances 0.0 73.0 24.0 0.0 66.7 27.0 61.8 64.7
P. Pill box 71.4 55.1 21.4 66.3 56.7 24.0 62.4 79.7
P. Drink 77.6 37.2 0.0 91.6 53.5 0.0 71.2 91.0
Read 73.2 49.9 0.0 98.2 54.8 0.5 94.5 97.7
T.Telephone 65.9 44.0 14.4 89.0 62.6 14.9 75.8 75.8
W. TV 13.0 22.4 11.9 30.0 44.9 17.6 47.6 56.6
W. Plant 45.3 11.0 0.0 83.4 26.7 0.0 75.6 84.2
WT: without probability thresholding
BT: event recognition performance of the best threshold values

TABLE 3
Event recognition performance in the test set

mean
F1-score

Stream alignment / Detector
None Aligned Proposed

IADL KER AR OR KER AR OR BT
S. Bus line 28.6 19.6 23.2 74.1 43.8 0.0 73.1
M.Finances 0.0 27.4 37.6 0.0 43.7 35.4 43.7
P. Pill box 60.6 28.6 32.4 49.1 58.7 24.7 65.0
P. Drink 43.7 4.0 0.0 57.5 27.6 0.0 64.0
Read 77.2 56.2 0.6 98.0 68.9 45.9 95.2
T.Telephone 77.6 18.7 10.7 93.1 54.2 5.2 75.6
W. TV 0.0 0.0 4.3 18.5 8.4 5.1 35.8
W. Plant 56.8 0.0 0.0 100.0 0.0 0.0 100.0

observations.901

Fig. 8. Performance of OR concept detector per object class.

Table 4 presents the performance of the SEF framework902

at event recognition varying the concept detectors in use903

from a single detector to their pairwise combination, up904

to the full set. We observe that SEF presents the highest905

performance for six out of eight IADLs, and OR module has906

a complementary role to another detectors.907

Table 5 compares the performance of the proposed ap-908

proach to two baselines methods: OSF, and SVM. We ob-909

serve that the proposed semantic event fusion outperforms910

all baseline approaches.911

7 DISCUSSION912

7.1 Semantic alignment913

We have proposed a method for heterogeneous visual sen-914

sor alignment based on semantic similarity. Results at event915

TABLE 4
Event recognition performance versus concept detector composition

pairwise All
IADL A+O K+O K+A K+A+O
S. bus line 43.82 0 43.64 73.11
M.finances 43.68 35.99 43.68 43.73
P. pill box 58.75 55.84 60.31 65.02
P. drink 27.59 63.4 54.21 64.04
Read 68.86 97.6 93.94 95.22
T.telephone 54.17 74.18 92.48 75.58
W. TV 8.42 8.89 20.68 35.8
W. Plant 0 50 98.97 100
Average 38.16 48.24 63.49 69.06
A+O: AR and OR; K+O: KER and OR
K+A+O: KER and AR and OR

TABLE 5
Comparison to baseline methods in the test set

mean F1-score Fusion approach
Baselines Ours

IADL SVM OSF
S. bus line 44.19 31.36 73.10
M.finances 43.99 0.00 43.73
P. pill box 45.86 49.11 65.02
P. drink 20.02 24.29 64.03
Read 90.18 91.82 95.22
T.telephone 72.12 0.00 75.58
W. TV 2.32 0.00 35.80
W. Plant 0.00 0.00 100.00
Average 39.83 24.57 69.06
OSF: Ontology-based Semantic Fusion

recognition level show that semantically aligned, concept 916

detectors outperform their original form and their warped 917

variant in the majority of cases. As such, our method is capa- 918

ble of accurately translate the optimal alignment achieved at 919

warped space to the temporal axis of the reference concept 920

stream. 921

Regarding the cases where the semantically aligned con- 922

cept streams perform worse than their warped version, this 923

behavior is mostly due to a loss of information during 924

the temporal projection of the warped concept stream onto 925

the temporal axis of the reference stream. This loss mainly 926

happens when DTW removes time points from stream re- 927

gions with a high variance in concept classes for a brief 928

period of time. Changes in these regions severely penalize 929

the performance of the aligned method if less-frequent, 930

short-lengthened concepts are removed because they are 931

temporally closer to longer concepts used for matching. 932

Finally, for the cases where the original concept stream 933

outperforms both synchronized and warped streams, results 934

suggest that this case is due to the DTW algorithm has not 935

achieved the optimal alignment between the two streams. 936

7.2 Semantic Event Fusion 937

The evaluation of SEF framework performance according to 938

the set of concept detectors used (Table 4) has shown out 939

that all concept detectors provide meaningful information 940

and are complementary. This is corroborated by the fact that 941

the combination of the three concept detectors outperforms 942

their pairwise combinations in six out of eight investigated 943

IADLs. It has also shown that even if the observations of 944

a given detector have a poor performance when directly 945
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mapped from concepts (e.g., OR module, Figure 8) onto946

activity observations (e.g., Table 3), SEF can still use them947

as a complementary source of information (e.g., AR + OR948

improves AR individual recognition on five events, and949

KER + OR improves KER recognition on three events, see950

Table 4).951

Regarding the performance of SEF compared to baseline952

methods, results demonstrate that SEF outperforms all of953

them in the test set of the 10-fold cross-validation scheme.954

This performance superiority is due to the framework capa-955

bility of handling incomplete, ambiguous and noisy obser-956

vations from heterogeneous concept detectors. The higher957

performance of the proposed framework compared to its958

individual detectors demonstrates its capability of exploring959

the complementary aspects of the detectors.960

OSF baseline presents a performance close to the pro-961

posed approach on activities like “read”, “prepare pill box”,962

and “prepare drink”, and outperforms SVM baseline on the963

last two events. Its higher performance compared to SVM964

baseline is due to the existence of conceptual information965

from all detectors for the events in question. For instance,966

this behavior is not observed for “manage finances” and967

“watch tv“ events. “Manage finances” event has only con-968

cepts from AR and OR detectors, since this event happens969

most of the time outside of the field of view of KER sensor.970

Results demonstrate the lack of ability of OSF baseline in971

handling partial evidence. Similarly, the decrease of this972

baseline performance is observed for “watch tv“, and since973

this event is also undertaken at the border of the field of974

view of the color-depth sensor, the KER detector generates975

noisy observations in certain situations, which compromises976

OSF performance due to its lack of uncertainty handling.977

SVM baseline gives better results than OSF for the events978

“read” and “talk on the telephone”, “search bus line”,979

“manage finances”, and “prepare pill box”. This superiority980

highlights this baseline’s capability of implicitly learn how981

to handle incomplete evidence, but still with less accuracy982

than the proposed approach. Both baselines underperform983

for brief activities, like “water plant”. For OSF this perfor-984

mance is attributed to noise and low reliability of the AR985

detector for the event in question. For SVM baseline, the low986

performance is mostly due to the reliance on a sliding time987

window, which provides less information for short events,988

compared to that obtained for event of longer duration.989

From the described observations, we conclude the se-990

mantic fusion framework handles uncertain and incomplete991

evidence more accurately than baseline methods, especially992

when there is a disparity of reliability across intermediate993

detectors. It also goes beyond noise filtering, since it com-994

bines evidence from different sources in a complementary995

and semantically meaningful way.996

8 CONCLUSION997

This paper introduced a framework for semantic event fu-998

sion, composed of a novel probabilistic, knowledge-driven999

framework for event representation and recognition, and1000

a novel algorithm for the semantic alignment of non-1001

synchronized heterogeneous concept streams.1002

The knowledge-driven framework decomposes complex1003

events into concepts, separating raw sensor data from event1004

semantics modeling. Its main novelty lies in the combina- 1005

tion of an ontological language for event modeling with 1006

a probabilistic inference method for uncertainty handling. 1007

This combination fosters more flexible event modeling than 1008

graphical model representations. At the same time it results 1009

in more reliable management of uncertainty than existing 1010

knowledge-driven methods. 1011

The semantic alignment algorithm uses concept simi- 1012

larity across visual concept detectors as a surrogate for 1013

inaccurate temporal information. This method overcomes 1014

the limitation of state of the art approaches that require at 1015

least coarse time-synchronization among sensors and rely 1016

on a sliding time window for concept fusion. 1017

As the extensive evaluation of our framework illus- 1018

trates, the combination of these two contributions achieves 1019

a higher fusion performance in the presence of partial, com- 1020

plementary and uncertain information compared to baseline 1021

methods that uses supervised learning. Our method also 1022

delimits the temporal boundaries of activities more accu- 1023

rately than an ontology-driven approach over the entire set 1024

of observed concepts. 1025

Future work will investigate ways to improve the per- 1026

formance of the semantic alignment algorithm on concept 1027

streams which contain regions featuring a high variance 1028

of concepts, and to adapt it to on-line scenarios, where 1029

not all concept stream information is available at once. Fi- 1030

nally, it will also explore the dynamic estimation of concept 1031

reliability, e.g., in response to observed changes on scene 1032

characteristics. 1033
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Editor Comments 

Associate Editor 

Comments to the Author: 

Reviewers of the paper have been received. One reviewer still points out some major concerns. 

However I am happy with the improved version of the manuscript. I agree that some of the reviewers 

comments have to be addressed before publication. Please note that although you have a minor 

revision you should carefully address all reviewers’ comments. 

We would like to thank you all again for the careful evaluation of our revised contribution for 

the special issue “Multimodal Human Pose Recover and Behavior Analysis” of the IEEE 

Transactions on Pattern Analysis and Machine Intelligence.  You may find below our answers to 

the remaining questions of reviewers, which are addressed by the latest version of our paper. 

Reviewer Comments 

Reviewer: 1 

Recommendation: Author Should Prepare A Major Revision For A Second Review 

Comments: 

Q1-a) “Regarding the effectiveness of the OR module using a wearable camera … What is not clear to me 

is that, if the design in the OR module, namely a BoW representation of SURF descriptors with a saliency 

mask and a SVM classifier, is sufficient to handle a seemingly difficult 18-class object recognition task. I 

was interested in the recognition accuracy of these 18 object classes, which is the direct output of the 

classifier.”  

Fig. A illustrates the F1-score of 12 classes of OR which are the most relevant for the targeted 

activities of daily living. We observe that OR method has an average F1-score performance of 56 

% in 9/12 classes that appear in the test set recordings, and 43 % when considering all of them. 

The overall precision of OR for all classes is 85.77 %. This difference between F1-score and 

precision denotes trustworthy observations, but places OR in a more complementary role than a 

standalone detector for activity recognition. 

We have added Fig. A to the paper as Fig. 8 (see page 11) and the comments above are added to 

page 11, L895-901. 
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Figure A. Performance of OR concept detector per object class. 

 

Q1-b) It is possible that even if the recognition rate of the objects is not very high, the OR module is still 

helpful as its errors might be corrected by the results of the other two concept detectors, and the 

combination of the three sensors may lead to better results. ... But it would be more convincing to 

experimentally demonstrate that the performance using all three concept detectors is much better than 

the one when just combining KER and AR. 

As suggested by the reviewer, we have provided activity recognition results of SEF 

framework using as input pair-wise combinations of concept detectors (Table 1), and we 

compare them to the results of SEF framework using all detectors at once. 

The combination of OR with other detectors in a pair-wise fashion shows its meaningful 

and complementary role. For instance, it improves AR recognition for 5 events, and KER 

recognition for 3 events. But more importantly, it is the combination of all concept 

detectors (AR+KER+OR) that has the highest average F1-score (higher value in 6/8 

activities).  
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Table 1. Performance of information fusion given different concept detectors 

 Pairwise 
All 

Events AR+OR KER+OR KER+AR 

Search bus line 43.82 0.00 43.64 73.11 

Manage finances 43.68 35.99 43.68 43.73 

Prepare pill box 58.75 55.84 60.31 65.02 

Prepare drink 27.59 63.40 54.21 64.04 

Read 68.86 97.60 93.94 95.22 

Talk on telephone 54.17 74.18 92.48 75.58 

Watch TV 8.42 8.89 20.68 35.80 

Water Plant 0.00 50.00 98.97 100.00 

The top performer pairwise combinations are highlighted in yellow. The combination of all 

detectors is highlighted in blue when it outperforms the pairwise combinations. 

These answers are added to the paper at page 11 lines 937-951. 

Q2. It is not mentioned in the paper how the performance will change in a new environment after the 

retraining of some concept detectors and the adjustment of the reliability model during fusion. It is a 

little concerning that the performance for many activity classes on the test set and the validation set are 

quite different (above 15% gap in 6 out of 8 classes), even in the same room configuration. It is 

mentioned that the system has been deployed in three different locations.  Did you get feedback from 

the customers regarding the performance of the system? 

Currently, for every new environment where we install the system we first check if the 

performances of pre-trained concept detectors degrade (e.g., AR and OR). If it degrades, we add 

video samples from the new scene into the previous training set of the detector and retrain it. 

Although we do not have a quantitative evaluation of detector performances in other 

environments, our observations have shown activity recognition performances in the range of 

test set results, if not higher (Table 3). We retrain concept detectors due to the large intra-class 

variance of daily living actions and objects, e.g., the appearance and shape of a kettle may vary 

considerably in different real-world environments.  

As we progress with the deployment of the system, we hope to acquire a sufficient amount of 

training data to overcome the need of retraining concept detectors. It should be emphasized 

that, for one of the major contributions of this work, the Semantic Event Fusion framework, 

nearly no changes are necessary when we deploy it to newer environments. 

Q3. Minor issue: in Table 4, it is stated in the title that the comparison is on the test set, while the 

results of the proposed method are the same with the ones in the validation set. 

By mistake we have included results from the validation set in the former version of Table 4. We 

have fixed it in the new revision of the paper and now it only contains results from the test set. 

We thank the reviewer again and apologize for any inconvenience. 
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Reviewer: 2 

Comments: 

Q1: “… The argument that the authors have provided for including a Kinect is that it can still capture the 

depth even if there is not light in the scene, and the argument for including a fixed RGB camera is that it 

can provide a better field of view compared to the Kinect that is already in the setup for extracting the 

depth and already provides RGB. “ 

The novelty of this paper in terms of activity sensing refers to the variety (or heterogeneity) of 

visual concept modalities in use, i.e., the activity patterns and points of view we have used to 

recognize the activities of daily living, and less on optimization given a specific choice of sensors.  

For instance, we model the global displacement patterns of a person in the scene, his/her local 

and finer motion patterns, and the types of objects being handled during an activity. You can 

find a quantitative analysis of the benefit of employing these three types of concept detectors at 

Table 2 in page 3. Briefly, it is the combination of these patterns that permits a real-world, 

semantically rich description of activities of daily living, both in small and large rooms, which is 

robust and reliable enough to be deployed in practice. 

This paper focuses on studying the benefits of each concept detector to the overall performance 

of the Semantic Event Fusion framework. But, the final decision about which sensors to use will 

remain to the user, who should consider the combination of sensors that provides the best 

trade-off between scene coverage, system setup complexity and solution cost. 

Finally, the ever expanding proliferation of wearables and other ambient sensors will make such 

multimodal monitoring schemes very common in the future, so we consider our work very 

timely in this respect.  

Q1.1 First of all, I don't agree with the first argument, because if the there is no light in the scene the 

other two cameras will not work anyway, so it is almost of no value if you still can extract the depth 

from the Kinect camera. 

We agree with the reviewer, our choice of sensors is mostly beneficial for daytime monitoring of 

activities of daily living, since only Kinect sensor works effectively at nighttime. Regarding Kinect, 

we have chosen this sensor due to its real-time, off-the-shelf 3D measurements of the scene and 

its objects, as stated in page 4, lines 47-60. The 3D measurements of this sensor improve the 

quality of people detection and tracking algorithms by resolving visual ambiguities with depth 

information, and make these algorithms invariant to light changes that occur during daytime.  

Currently, we have no setting that can provide multimodal data to SEF framework during 

nighttime period.  Additional experiments have taken place beyond the scope of this paper 

(after its submission) in home environments (see Figure B), where there is only one camera, a 

color-infrared led camera.  This camera provides RGB video in a lit environment during the day 

and infrared grayscale visual information in the absence of light. The resulting grayscale 
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images/videos are not as descriptive as the combined color-depth features, however they are 

still a useful source of information about the scene, which can be fused with other sensor 

measurements. Our initial experiments have shown that this fusion leads to satisfactory activity 

recognition accuracy even during nighttime.  On a different site, composed of studio apartments 

in a nursing home, we have only been using the depth map of Kinect cameras to monitor 

people, due to privacy concerns. The data they provide, as in the case of the home 

environments, are still useful, and can lead to accurate activity recognition when fused with the 

other sensor data. Future work will investigate the findings of ongoing experiments on nighttime 

monitoring to extend SEF activity recognition for this period of the day.  

 

Figure B. Example of night-time event monitoring with color-infrared camera 

Q1.2 Regarding the second argument, there is not much discussion in the paper, except few places 

repeating the same argument that due to the better field of view, the authors have preferred the fixed 

RGB camera to the RGB data that they get from first version of the Kinect camera.  

Does it mean that a newer version of Kinect can solve the problem? How much difference exactly are we 

talking about?  

The important factor here is the coverage of the scene by the fixed sensor (camera). Indeed, we 

could have used the RGB image from Kinect 1 instead of the color camera, but the field of view 

of Kinect 1 does not cover the entire observation room in use. 

Since the newer version of Kinect has a broader angle of field of view, we could use only Kinect 2 

for AR and KER modules for new recordings in our observation room, however this was not 

tested in our experiments since the newer sensor was not yet available at the beginning of the 

clinical trials. 

Q1.3 What is the effect of this much difference on the overall performance exactly in terms of the 

performance of the system?  

 We should not expect any difference in performance if we use the RGB signal of Kinect instead 

of a regular RGB camera to feed concept detectors, like AR. One can use Kinect sensor as input for both 

AR and KER detectors when this sensor covers the entire room to monitor. This is the case for some of 

our ongoing experiments in smaller rooms. 
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Q1.4 Why not to use a stereo setup instead of Kinect and the fixed RGB? A stereo setup can possibly 

provide a very good field of view.  

Yes, a set of stereo-cameras could also be put in place as suggested by the reviewer, however it 

would be more expensive and time consuming to set up than a Kinect. Some stereo-cameras 

could be an affordable solution such as Intel Real-sense, but this camera has a shorter field of 

view. The use of a Kinect sensor provides a good trade-off between cost and complexity to 

setup. 

We have added the above answers to page 3, lines 234-253 of the paper. 
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