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Abstract

The present work presents a new method for activity ex-
traction and reporting from video based on the aggregation
of fuzzy relations. Trajectory clustering is first employed
mainly to discover the points of entry and exit of mobiles ap-
pearing in the scene. In a second step, proximity relations
between resulting clusters of detected mobiles and contex-
tual elements from the scene are modeled employing fuzzy
relations. These can then be aggregated employing typical
soft-computing algebra. A clustering algorithm based on
the transitive closure calculation of the fuzzy relations al-
lows building the structure of the scene and characterise the
ongoing different activities of the scene. Discovered activity
zones can be reported as activity maps with different gran-
ularities thanks to the analysis of the transitive closure ma-
trix. Taking advantage of the soft relation properties, activ-
ity zones and and related activities can be labeled in a more
human-like language. We present results obtained on real
videos corresponding to apron monitoring in the Toulouse
airport in France.

1. Introduction

The technical and scientific progress requires human op-
erators to handle more and more quantities of data. Record-
ings can go to very large quantities of data either by moni-
toring a smart piece for long periods of time (days, weeks,
. . . ) or in surveillance of large infrastructures with a large
network of cameras, microphones and other sensors. Al-
though most vision systems specialize on recognizing pre-
defined events (or behaviours), mostly with the aim to raise
an alarm , little research has been done on the field of data-

mining to discover the behaviours encountered and give
a comprehensive analysis of the ongoing activity. While
a reliable monitoring system is principally aimed at the
safety/security issues, it could also be of great help for in-
frastructure designers and managers. For the everyday op-
eration of the monitored space, it is important to provide en-
vironmental figures. Some situational reporting can provide
the locations and numbers of people in the monitored areas
(occupation map) or the user activity (e.g. parking vehicle).
In this work, we aim at building a system to analyze and ex-
tract valuable information, which is generally hidden in the
raw data, to 1) learn what monitored areas are normally oc-
cupied, and then 2) characterise and report activity. This is
achieved mainly through trajectory analysis. The monitor-
ing system is mainly composed of two different processing
components. The first one is a real time analysis subsystem
for the detection and tracking of objects. This is a process-
ing that goes on a frame-by-frame basis. The second sub-
system works off-line and achieves the activity extraction
from the video. This subsystem is composed of two mod-
ules: The trajectory analysis module where we perform the
analysis of trajectories by clustering, the activity analysis
module where we obtain behavioural patterns of interaction
and build activity maps. The featured system is adaptive
with online learning capabilities. The remainder of this pa-
per is structured as follows. In the rest of this section, we
give a short overview of the related work. The object detec-
tion and tracking process is given in section2. We explain
how we model the scene in section3. The methodology
for trajectory clustering is in section4 and activity extrac-
tion is presented in section5; the experimental results are
to be found in section6. Finally, Section7 draws the main
conclusions and describes our future work.
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1.1. Related Work

Extraction of the activity contained in the video by ap-
plying data-mining techniques represents a field that has
only started to be addressed. Although the general problem
of unsupervised learning has been broadly studied in the last
couple of decades, there are only a few systems which ap-
ply them in the domain of behaviour analysis. Because of
the complexity to tune parameters or to acquire knowledge,
most systems limit themselves to object recognition [9].
For behaviour recognition, three main categories of learn-
ing techniques have been investigated.
• The first class of techniques learns the parameters of a
video understanding program. These techniques have been
widely used in case of event recognition methods based
on neural networks [6], Bayesian classifiers [11, 8] and
HMMs [4, 1]. • The second class consists in using unsu-
pervised learning techniques to deduce abnormalities from
the occurring events [19, 20]. • The third class of methods
focuses on learning behaviour based on trajectory analysis.
This class is the most popular learning approach due to its
effectiveness in scene and behaviour modelling [12, 17]
and in detecting normal/abnormal behaviours. For exam-
ple, Piciardelli et al. have proposed either an splitting al-
gorithm [13] or single-class SVM clustering [14] applied
on very structured scenes (such as roads). Anjum et al. [2]
employ PCA to seek for trajectory outliers. Similarly, An-
tonini et al. [3] transform the trajectory data employing In-
dependent Component Analysis (ICA), while the final clus-
ters are found employing an agglomerative hierarchical al-
gorithm. Hidden Markov Models (HMM) have also been
employed to detect diferent states of pre-defined normal be-
haviour [4, 15]. All these techniques are interesting, but
little has been said about the semantic interpretability ofthe
results. Indeed, more than trajectory clusters, we are in-
terested in extracting meaningful activity information with
semantic, which can be interpreted. This work comes thus
into the frame of behaviour extraction from trajectory anal-
ysis, however we have in addition a higher semantic level
that employs proximity relations between resulting clusters
of detected mobiles as well as between clusters and contex-
tual elements from the scene to, first, build the structure of
the scene and, then, characterise the ongoing different ac-
tivities of the scene. Employing such proximity relations
represents a novel contribution in the domain of behaviour
learning.

2. Real-time processing object detection and
tracking

The detection and tracking is performed using multiple
cameras with an overlapping field of view, and consists of
three stages: Detection in the image plane, tracking in the
image plane, fusion and tracking in 3D.

2.1. Detection

Detection is performed by combining change detection
and motion detection. The first detector is the Adaptive
Gaussian Mixture Model of Zivkovic [21]. This method
builds on the standard Gaussian Mixture Model approach
but permits an adaptive number of components per pixel.
This generally produces good object sillhouettes and runs
very fast, but care has to be taken setting the learning rate to
ensure that large objects are fully segmented, but equally
that newly moving objects previously part of the back-
ground do not leave ghost detections. As with most change
detection algorithms, the method remains prone to sudden
lighting variations.

To complement the change detector, a motion detector is
employed. In this method, the three most recent frames are
used{I(t), I(t − 1), I(t − 2)} to determine the motion in
the most recent frameI(t). A set of corner features is de-
tected in frameI(t + 1) using the method of [16]. These
features are then tracked forwards to frameI(t) and back-
wards to frameI(t+2) using the sparse optical flow method
of [10]. This results in two direction vectors for each fea-
ture, [d0→1, d1→2]. Features are clustered based on their
motion with a constraint on the maximum distance between
any two features. A triangulation of each cluster of features
is performed such that the cluster can be rendered to a bi-
nary motion mask.

The two binary motion masks, from the change detec-
tor and the motion detector, are combined through a simple
logical AND. Detections are the result of a connected com-
ponents analysis of the fused binary motion mask

2.2. Image Plane Tracking

Tracking in the image plane is performed using two sim-
ple templates and a KLT feature tracker. The KLT feature
tracker is used to track faster moving objects, while the tem-
plate is used to optimise the location of the target and to
retain track of objects for which there is no detection.

When the detector returns a detection, it can either be
associated to an existing tracked target, or to a new target.
When a new target is created, two small images are created.
One is a greyscale image of the size of the detection bound-
ing box, while the other is an RGB image of the same size.
The greyscale image is thedetection mask templateDt, and
is initialised from the binary motion mask of the current im-
ageMt, while the RGB image is the appearance template
At and is initialised from the RGB pixel values of the cur-
rent imageIt. Thus, on initialisation, if the top left corner
of the detection bounding box is at image coordinatesx, y:

Dt(u, v) =

{

0 if Mt(x + u, y + v) = 0
255 otherwise

(1)



At(u, v) = It(x + u, y + v) (2)

When a detection is associated to a new target, the de-
tection and appearance templates are updated as a running
average, givenn as the learning rate:

Dt(u, v) = Dt−1(u, v) +
Mt(x + u, y + v)

n
(3)

At(u, v) = Dt−1(u, v) +
It(x + u, y + v)

n
(4)

Should the detection indicate a change in the width or
height of the bounding box, the template images can be eas-
ily expanded or cropped as required.

At each frame, the appearance template can be compared
to any location in the image by simple image difference,
then the difference between the template and the image for
a position(x, y) in the image is:

∆(I, A, x, y) =
∑

u

∑

v

D(u, v)

w
δ(u, v) (5)

whereδ(u, v) is some difference (e.g. Eulidean) between
the colour of the pixelA(u, v) and the pixelI(x+u, y+v).

The position of the template in the image is optimised us-
ing the simple Stochastic Diffusion Search [5], where a set
of agents are created and distributed across the search space.
The agents then evaluate their position, communicate, and
reposition until the optimal location is deduced.This is sim-
ple and quite fast. Each tracked target maintains a set of
KLT features that are tracked between frames. If the mo-
tion is large, the SDS search is started from the location
predicted by the feature motion. Otherwise, the search is
initiated from the previous location, reducing the effect of
small motions caused by noise.

2.3. Multi-camera Fusion and 3D Tracking

The final stage of tracking is performed in the 3D co-
ordinate system of the scene (though tracking itself is per-
formed in 2D on the ground plane). Camera calibration is
used with the ground plane constraint to back project the
image position of each detected object to a position on the
ground plane of the scene. This is followed by a Nearest
Neighbour Data Associate Filter based fusion, and Kalman
filter tracking, much as is described in [18]. In summary:
for any given target tracked on the ground plane, its posi-
tion frame-to-frame is predicted by a Kalman filter. A “val-
idation gate” is used to limit the number of detections that
can be associated to the tracked object based on the distance
of the observation from the predicted position. The nearest
observation from each camera is then used to update the
Kalman filter.

3. Scene modelling

Modeling the spatial context of the scene is essential for
recognition and interpretation of activity. By contextual
areas we understand those semantic regions of the scene
where people activities are expected to be different from one
another. Contextual areas in the scene have thus a central
role to understand activities as they allow analysing possi-
ble interactions between mobile and environmental objects
of the scene and thus establish a semantic meaning. In our
current application there are three key areas where servic-
ing the plane takes place: The frontal and rear loading ar-
eas for baggage loading/unloading and the tanker area for
the plane refueling. While the former two are well defined
zones where vehicles must position themselves precisely,
the latter is a broad zone where the tanker can freely stop
for servicing. Similarly, other zones have been defined for
the ground-personal in the airport to carry out specific op-
erations. The main contextual zones,Zctx, are depicted in
figure 1. The relevant scenario areas are: Entry/Exit areas
and Parking/Servicing areas.

Figure 1. Left panel: Camera view of the Plane parked for ser-
vicing. Right panel: Apron top view with the main contex-
tual zones manually defined. 1) GPU_Zone, 2) Frontal un-
load area, 3) Rear unload area, 4) Frontal_Transporter_Zone, 5)
Rear_Transporter_Zone, 6) Tanker_Zone.

4. Trajectory analysis

The trajectory for objectOj is defined as the set of points
[ xj(t), yj(t)] corresponding to their position points;x andy
are time series vectors whose length is not equal for all ob-
jects as the time they spend in the scene is variable. Two
key points defining these time series are the beginning and
the end, [xj(1), yj(1)] and [xj(end), yj(end)] as they define
where the object is coming from and where it is going to.
We build a feature vector from these two points. Addition-
ally, we also include the directional information given as
[cos(θj), sin(θj)], whereθj is the angle which defines the
vector joining [xj(1), yj(1)] and [xj(end), yj(end)]. A mobile
object seen in the scene is thus represented by the feature
vector

vj = [xj(1), yj(1), xj(end), yj(end), cos(θ), sin(θ)] (6)



This feature vector constitute a set of simple descriptors
that have proven experimentally to be enough to describe
activities in a large variety of domains, mainly because they
are the most salient and reflect direction intention for se-
mantic interpretation, but also they are appropriate for real
world videos depicting unstructured scenes where trajecto-
ries of different types have strong overlap.

In addition, so as to enable dynamic adaptation to newly
observed data, we need a system able learn the activity
clusters in an on-line way. On-line learning is indeed an
important capability required to perform behaviour analy-
sis on long-term basis. A first approach proposed in the
state-of-the-art for on-line clustering is the Leader algo-
rithm [7]. Given a distanceD between any pair of objects,
and a thresholdT, the algorithm constructs a partition of
the input space (defining a set of clusters) and a leading
representative for each cluster, such that every object in a
cluster is within a distanceT of the leading object. The
thresholdT is thus a measure of the diameter of each clus-
ter. Fori=1 to k, the clustersCLi, are numberedCL1, CL2 ,
CL3, . . . ,CLk. The leading object representative associated
with clusterCLi is denoted byLi. The algorithm makes one
pass trough the dataset, assigning each object to the cluster
whose leader is the closest and making a new cluster, and
a new leader, for objects that are not close to any existing
leaders. However, the algorithm is extremely sensitive to
threshold parameter defining the minimum activation of a
clusterCL. A new input object defined by its feature vector
vj will be allocated to clusterCLi if vj falls into its input re-
ceptive field (hyper-sphere whose radio is given by‖ri‖=T).
DefiningT is application dependent. It can be supplied by
an expert with a deep knowledge of the data or employing
heuristics. In this work we propose to learn this parameter
employing a training set and Machine learning.

Let each clusterCLi be defined by a radial basis function
(RBF) centered at the position given by its leaderLi:

CLi(v) = Φ (Li, v, T ) = exp(−‖v − Li‖
2
T 2) (7)

RBF modelling allows for a straightforward way of on-
line learning. The RBF function has a maximum of 1 when
the difference between its leaderLi and the inputv is 0 and
thus acts as a similarity detector with decreasing values out-
putted wheneverv strides away fromLi. We can make the
choice that an object element will be included into a cluster
if CLi(v) > 0.5 , which is a natural choice. The cluster re-
ceptive field (hyper-sphere) is controlled by the parameter
T. Now, considerC = {CL1· · ·CLk} is a clustering struc-
ture of a data setX = {v1, v2, ..., vN}; {L 1,. . . ,Lk} are the
leaders in this clustering structure and P = {P1· · ·Ps} is a
defined partition of the data and {M1,. . . ,Ms} are the main
representatives (or Leaders) in the defined partition. We can
define an error function given by

E =
1

N

N
∑

j=1

Ej (8)

Ej = Φ̂ (L(vj), vj , T ) − Φ (M(vj), vj , T ) (9)

L(vj) is the Leader associated tovj in the clustering
structure C.M(vj) is the Leader associated tovj in the
’true’ partition P. The error gives thus an indication of how
many elements are misclassified according to the partition
P. Minimising this error is equivalent to refine the clustering
structure C or equivalently adjusting the parameter T con-
trolling the cluster receptive field. A straightforward wayto
adjust T and minimise the error is employing an iterartive
gradient-decent method:

T (t + 1) = T (t) − η
∂E(t)

∂T
(10)

With the purpose of tuning parameterT, and for this
application, we have defined a training dataset containing
sixty nine synthetic trajectories. These trajectories were
manually drawn on an empty scene and given semantic la-
bels according to the end-user. Thus with this synthetic
dataset we are able to tune the system to fulfill end-user
requirements.

The proposed gradient-descent methodology was ap-
plied to the training dataset. The thresholdT, in the leader
algorithm, is initially set to a large value (which causes a
merge of most trajectory types). After convergence, the
thresholdT has a value of T=0.7964, which is then selected
for our analysis. The set of Leaders defined from this pro-
cess will also guide the further partition of the incoming
data. Remark that for this application we have not encoun-
tered local minima problems. However, as gradient-descent
algorithms are clearly exposed to this problem, it could be
envisaged to verify whether the minima found is indeed the
global optima. A multiresolution analysis would be of help
for this.

5. Activity analysis

5.1. Behaviour definition

We aim at creating a system for the recognition and inter-
pretation of human activity and behaviour, and extract new
information of interest for end-users. Low-level trackingin-
formation is thus expected to be transformed into high-level
semantic descriptions conveying useful and novel informa-
tion. In our application, we establish a semantic meaning
from the scene model presented in section3. The be-
haviour knowledge can be thus expressed with semantic
concepts, instead of using quantitative data, thanks to the
defined contextual zones. Let us assume we have definedp
contextual zones on the scene model. Two different kinds
of behaviours can then be identified:



• From ZoneZctxq to ZoneZctxq′

• At ZoneZctxq

In order to cope with the uncertainty aspects, contex-
tual zones are modelled as elliptical shapes with a Gaus-
sian probability density function being associated. Each
ellipse,ε(a, b, c) , is thus defined by its major and minor axis
a, b respectively and its centre c. The membership degree
that a point p (x, y) can have to a defined zone, Zn, is then
given by

Zctxq(x′, y′) = exp

 

−

 

x′

σ
a(Zctxq)

!2!

exp

 

−

 

y′

σ
b(Zctxq)

!2!

(11)

where (x’, y’) is the image pointp’ after projection of
p into the major and minor axes which define the elliptical
zone,Zn. That isp′ = A(p− c) and A is the rotation matrix
defined by the major and minor axis of the ellipse.

The likelihood that the entry/exit points belonging to a
trajectory clusterCLi can be associated with the semantic
given by a zoneZctxq is the mean value of the membership
degree of these points to that zone.

5.2. Scene model update

Because it is not possible to define a-priori all activity
zones, the manually defined Contextual zones do not suf-
fice to describe all possible situations or evolving actionsin
the monitored scene, but only those matching the previously
modelled zones of interest. We thus learn the complemen-
tary activity zones from the results obtained on trajectory
clustering. We employ the RBF entry/exit (beginning/end)
spatial zone of influenceZcli of a trajectory clusterCLi.

Zcli(x, y) = Φ (Li(1), x, T )Φ (Li(2), y, T ) (12)

Remark that in this case employingLi(1) and Li(2)
meansZcli(x, y) is built from the entry points of trajectory
clusterCLi. We then look two establish a similarity rela-
tion between the different zones defined by the clusters. On
the end, new zones are given by the fulfillment of two rela-
tions: clusterCLi influential zoneZcli is similar to cluster
CLj influential zoneZclj and clusterCLj influential zone
Zclj does not overlap an a-priori defined contextual Zone
Zctxq. These relations are defined:

R1ij : ZoneZcli is similar to ZoneZclj

R1ij =

3
∑

k=1





∑

(x,y)∈(Xik,Yik)

Zclj(x, y)



 (13)

and Xik =
n

(k+1)
3 T cos (θ) + Li(1)

o

,

Yik =
n

(k+1)
3 T sin (θ) + Li(2)

o

with θ = 0, ..., π
8 , ..., 2π

That is, points belonging to concentric circles toLi are
employed for the similarity comparison betweenCLi and
CLj . This allows avoiding equity problems with clusters
defined on sparse regions (some clusters may be defined
with a much larger number of points than others).

R2iq: ZoneZcli overlaps ZoneZctxq

R2iq =
3

∑

k=1





∑

(x,y)∈(Xik,Yik)

Zctxq(x, y)



 (14)

It is possible to transform R2 into a new relation, R3,
which linksCLi andCLj if both clusters are related to the
same ZoneZctxq through the fulfillment of R2. The rela-
tion betweenCLi andCLj is then given by

R3ij = max
q

min [R2iq, R2qj] (15)

Remark thatR3, the complement toR3 given by
R3 = −R3, represents the relation linkingCLi andCLj

if both clusters are not related to any contextual Zone
(Zctxq). R1 andR3 can be aggegated employing a soft
computing aggregation operator such asR = R1 ∩ R3 =
max

(

0, R1 + R3 − 1
)

and made transitive with:

R ◦ R (x, y) = max
z

min (R (x, z) , R (z, y)) (16)

R is now a transitive similarity relation withR indicating
the strength of the similarity. If we define a discrimination
levelα in the closed interval [0,1], anα−cut can be defined
such that

Rα (x, y) = 1 ⇔ R (x, y) > α (17)

It is thus implicit thatα1 > α2 ⇔ Rα1 ⊂ Rα2 ; thus,
theRα form a nested sequence of equivalence relations, or
from the classification point of view,Rα induces a partition
πα of X × Y (or X2 ) such thatα1 > α2 impliesπα1 is a
refinement ofπα2 .

At this point, the difficulty comes down to select the ap-
propriateα − cut such thatπα from Rα represents the best
partition of the data. This is still a difficult and open issue
that we choose to approach by selecting the alpha-values,
which induce a significant change fromπαk to παk+1 .

To monitor those significant partition changes we choose
to study the cluster area and number of clusters induced at
each partitionπα. We achieve this in the frame of a mul-
tiresolution analysis. By analyzing induced partitions at
coarse resolutions, it is possible to smooth out small de-
tails and select theα− cut levels associated with important
changes. From the monitored scene, it would be useful to
distinguish among different information levels: (i) grouped
activity on large spaces, (ii) very detailed individual activ-
ity, (iii) somewhere meaningful in-between the last two.



For this reason, when performing activity zone discovery,
we automatically select the three highest change-inducers
α − cut levels from the previous analysis. The result is
then that we end up with a three levels hierarchy of activity
zones.

5.3. Semantic update

It is important to observe that as the system stands no
particular semantic information can be drawn for the dis-
covered activity zones. To solve this problem, we rely again
on the semantic that can be deduced from the contextual ar-
eas of the scene, as we know that this is the link to estab-
lish possible interactions between mobile and environmen-
tal objects of the scene. To this end we consider two new
relations: R4, The comparison of areas between discovered
and contextual areas, and R5, The distance relationships be-
tween discovered and contextual areas:

R4iq = ZoneZcli is similar in area to ZoneZctxq

R5iq = ZoneZcl(i) is near to ZoneZctx(q)

R = R4 ∩ R5 = max (0, R4 + R5 − 1) (18)

From R, we know for each discovered zone what is the
’best’ contextual zone to refer to. As mentioned before, the
zone areas are calculated from the convex hull enveloping
eitherCα

i or Zctxq, and the distance between zones from
the nearest vertex points of each convex hull.

6. Results

The algorithm can be applied to any given period mon-
itoring the servicing of an aircraft in the airport docking
area. In order to evaluate whether the zone model update
works properly and to asses the correctness of the new
learned zones, we took out from the a-priori knowledge,
most contextual zones defined in section5.2 and left only
the ’Frontal unload area’ and ’Rear unload area’. We then
took one video sequence with available Ground-truth anno-
tation and containing the most relevant activity events of the
sequence. These are: ’GPU positioning’, ’Handler deposits
chocks’, ’Frontal unloading operation’, ’Frontal loadingop-
eration’, ’Rear loading operation’, ’Push back vehicle posi-
tioning’. We can thus infer that those essential areas to be
learned for activity reporting are the GPU, Push back, and
loading/unloading related areas.

The algorithm for activity extraction and scene model
update is then applied according to the fulfillment of rela-
tions R1, R3 given in section 5.2. The final relationR,
which verifies the transitive closure, is thresholded for dif-
ferentα − cut values going from 0 to 0.9 and with a step
value of 0.05. Theα−cut values defining the different gran-
ularities (or information levels) for the scene are then ob-
tained from the multiresolution analysis of the mean cluster

Figure 2. Activity maps at different granularity resolutions. Num-
bers in zones indicate the most frequently employed discovered
zones:(1). ERA and large surroundings(2). just north-west of and inside ERA(3).

just south-east of and inside ERA(4). 4 meters away south-west of Frontal unload

area(5). 6 meters away south of Rear unload area(6). just west of and inside ERA

(7). just north of Frontal unload area(8). just south of Tow tractor parking area(9).

just north-west of Rear unload area(10). 11 meters away east of Rear unload area

(11). just west of and inside ERA(12). 9 meters away south-west of Cabin access

area(13). just north-west of Frontal unload area(14). just west of Tow tractor park-

ing area(15). just south of Tow tractor parking area(16). 6 meters away east of Rear

unload area

area, range value of cluster areas, and number of clusters,
which are obtained at eachα − cut level. The algorithm
calculates automatically the three highest change-inducers
α − cut levels, which will define three information levels
for scene activity reporting.

Figure 2 shows theπα partitions corresponding to the
selectedα − cut levels. The first granularity level is set
for α − cut=0, which merges all activity outside the user-
defined contextual zones and thus creates one single broad
new zone of global activity outside contextual zones. The
second granularity level corresponds to grouped activity on
large spaces and is defined as the lowestα − cut value
from those three highest change-inducersα− cut levels. In
contrast, the fourth granularity level, which is the most de-
tailed activity corresponds thus to the partition induced by
the highest change-inducerα − cut level. The third granu-
larity level, corresponds to a compromise between detailed
and large activity description (and is defined by the remain-
ingα−cut level). In this way, the different partitions can be
seen as activity maps with different granularity levels. The
new discovered zones most employed at each granularity
level are numerated on the figure.

We calculated the overlap between the learned zones and
those manually defined. This overlap can be observed in
figure 3, while the quantitative result of the comparison
is given in table 1. From the obtained results, there is



a fair amount of contextual zones (8/11) having an over-
lap of at least 30% with a learned zone calculated from the
system, which could actually be considered as True Posi-
tives from the recognition point of view. There are three
zones with a relative low overlap value of 16% and be-
low. These contextual zones could be thought as False
Negatives given by the system. However, several factors
are to be considered. First, it must be said that the activ-
ity events contained by the Ground-truth do not point to
any information allowing to deduce that the Tanker_Zone
and Rear_Bulk_Transporter_Zone are actually employed
and containing significant activity for the processed video
sequence so it is hard to say whether these zones repre-
sent indeed False Negatives. Secondly, what regards the
Tanker_Zone, this is a broad area where the Tanker vehicle
is allowed to stop, however it is unlikely that the refuel-
ing activity will spread over all such defined Tanker_Zone,
and thus discovering an activity zone at this resolution level
with that extent is rather difficult. Lastly, it must be said
that the Ground-truth does not provide any information re-
garding what are the mobiles involved on the activity event,
nor on their spatial position. Moreover, all vehicles may not
stop always on the same position. For this video sequence,
the activity related to the Rear Transporter is simply shifted
by some meters on the east direction. Our system actually
helps not only to discover completely new activity zones but
also to redefine those zones which can be changing dynam-
ically from one operation sequence to another.
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Figure 3. Level 4 activity map for the processed sequence. Red ’+’
markers represent contextual manually defines zones

As mentioned in section5.3, it is important to attach
a semantic meaning to each of the new discovered zones.
This is achieved, as mentioned before, through fulfillment
of relationsR4 andR5 linking the new discovered zones
to the user defined contextual zones by their area similar-
ity and their spatial closeness. For instance, for the numer-
ated zones in figure2, the deduced semantics are given in

Reference Zone Recognition percentage

Left_Frontal_PassangerDoor_Zone 56%
Left_Rear_PassangerDoor_Zone 76%
Right_Rear_PassangerDoor_Zone 77%
Rear_BackLoading_Zone 41%
GPU_Zone * 35%
Frontal_PassangerDoor_Zone 52%
Frontal_Transporter_Zone * 32%
PushBack_Zone 49%
Tanker_Zone 11%
Rear_Transporter_Zone * 16%
Rear_Bulk_Transporter_Zone 13%

Table 1. Recognition result for contextual areas expected to be
seen in the scene model. Those marked with ’*’ are directly re-
lated with the ’GPU positioning’ and ’loading/unloading’ events.

the figure legend. The whole activity observed from the
scene can then be reported following the behaviour defini-
tion given in section5.1and moreover at the different gran-
ularities calculated by the system. For instance, for the rear
loading/unloading activity, the obtained report is given in
table 2.

Proportion
Number of
mobiles

Description

level 4
5% 9 10 meters away east of Rear unload area
3% 5 at Rear unload area

2% 3
10 meters away east of Rear unload area to just
south of Tow tractor parking area

1% 1
just south of Tow tractor parking area to Rear unload
area

1% 1 6 meters away east of Rear unload area
level 3

8% 14 11 meters away east of Rear unload area
2% 3 at Rear unload area

1% 2
11 meters away east of Rear unload area to just south
of Tow tractor parking area

1% 1
Rear unload area to 11 meters away east of Rear un-
load area

1% 1
5 meters away west of Frontal unload area to 11 me-
ters away east of Rear unload area

1% 1
27 meters away south-east of Rear unload area to 11
meters away east of Rear unload area

1% 1
just south of Tow tractor parking area to Rear unload
area

level 2
20% 37 just south-east of and inside ERA

1% 1
just south-east of and inside ERA to just north-west
of Rear unload area

1% 1
Tow tractor parking area to just south-east of and in-
side ERA

level 1
100% 183 ERA and large surroundings

Table 2. Activity reporting (not exhaustive) related to rear loading
areas.

7. Conclusions and Future work

In this paper, we have described an artificial cognitive
vision system for activity extraction and reporting in a vi-
sual surveillance/monitoring task. The system presented
works in unsupervised manner from detected mobile trajec-
tories principally in two steps. First, similar trajectories are
grouped employing a clustering algorithm. We employ a
simple, yet advantageous incremental algorithm able to cre-
ate new clusters if necessary with new oncoming data with-
out needing to reprocess previous data. We have tuned the
algorithm by learning the coefficients indicating how flexi-
ble the cluster can be updated with new data. We are thus
able to perform analysis on long-term basis. In a second
step, the spatial information obtained from trajectory clus-



ters regarding main points of entry and exit from mobile
objects is modeled employing fuzzy relations. By apply-
ing specific relation aggregation operators, we are able to
deduce the different areas of activity in the scene. These
can either be new learned zones or a refinement of exist-
ing contextual zones previously defined. This topological
scene model update allows to infer the the behaviour of
the observed mobile objects in the scene. Such behaviour
is given in a close to a natural language reporting form.
Moreover, we study the scene activity at different granular-
ities which give the activity description in broad terms, or
with detailed information thus managing different informa-
tion levels. Delivering such reports with activity maps, fig-
ures and numbers and a semantic description of the ongoing
behaviours is an essential step for modern cognitive vision
system aiming at automatic activity interpretation. Our cur-
rent results show to be consistent in terms of zone discovery
and semantic information delivery with apriori annotated
information available for the studied application. In order
to better characterise the observed behaviours, the system
is still lacking some key descriptive information such as the
mobile object type (e.g. person, vehicle) and needs also to
exploit the temporal information also contained within the
mobile object trajectories. This two aspects constitute our
future work to enhance our system and deliver more com-
plex activity descriptions.
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