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Abstract

Achieving high detection accuracy and high inference
speed is important for a pedestrian detection system in self-
driving applications. There exists a trade-off between de-
tection accuracy and inference speed in modern convolu-
tional object detectors. In this paper, we propose a novel
pedestrian detection system, which leverages spatial atten-
tion and a two-level cascade of classification and bounding
box regression to balance the trade-off. Our proposed spa-
tial attention module reduces the search space for pedes-
trians by selecting a small set of anchor boxes for further
processing. Furthermore, we present a two-level cascade of
bounding box classification and regression and demonstrate
its effectiveness for improved accuracy. We demonstrate the
performance of our system on 2 public datasets – caltech-
reasonable and citypersons; with state-of-art performance.
Our ablation studies confirm the usefulness of our spatial
attention and cascade modules.

1. Introduction
Detection of pedestrians is fundamental to several im-

portant applications such as video surveillance and au-
tonomous driving. A good detector for these applications
is the one providing high accuracy while maintaining high
inference speed. There is usually an accuracy-vs.-speed
trade-off in modern convolutional object detectors [10]. For
example, Faster-RCNN [14] achieves better performance at
the expense of inference speed, while SSD [13] does the
opposite [10]. Pedestrian detection can be seen as a spe-
cific instance of the problem of general-category object de-
tection and most contemporary pedestrian detectors are de-
rived from Faster-RCNN [16, 2] or SSD. Hence, the speed
vs. accuracy trade-off extends to modern pedestrian detec-
tors as well. Is it possible to achieve the best of both worlds
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– high performance and high inference speed ? In this paper
we describe a pedestrian detection system which achieves it.

We introduce our proposed pedestrian detector by outlin-
ing our major contributions alongwith observations guiding
them.

1. Observation 1
It is vital to limit the search space for pedestrians in an
image for faster inference. Pedestrians cover a small
portion of the image, compared to non-pedestrian
background entities. A search space covering all po-
tential pedestrian locations alongwith locations bear-
ing close resemblance to pedestrians (e.g:- vertical
structures [17]) is desirable. During training, this pro-
vides most relevant samples (positives and hard neg-
atives) to a classifier for learning. Faster-RCNN as
against SSD, uses a region proposal network (RPN) for
this purpose. On the other hand, SSD does not limit the
search space and rather performs classification and re-
gression across all anchor boxes tiling the image space.
Contribution 1
We propose a spatial attention based alternative to
RPN for limiting the search space. Our proposed spa-
tial attention mechanism has following major features
:

• Unlike RPN, our spatial attention mechanism
does not perform classification and regression of
anchor boxes. It is a lightweight module aimed
at selecting a small set of anchor boxes. These
anchor boxes are then further processed by our
detection head. A brief comparison of our an-
chor handling approach is compared with those
of Faster-RCNN and SSD in figure 1.

• The aforementioned approach mitigates the dan-
ger of missing a pedestrian early in the pipeline
(e.g:- a RPN misclassifying a pedestrian as a
negative proposal). In addition, it eliminates a
large portion of the image (consisting of non-
pedestrian background entities) from the search
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Figure 1. Anchor handling by various object detection techniques compared with our approach based on spatial attention.

space, thereby reducing the risk of false positives.

We describe the spatial attention mechanism in sec-
tion 2.5. The difference of our method in handling an-
chors is summarized in figure 1. In Faster-RCNN, at
the first stage, a convolutional kernel slides over a fea-
ture map and at each location classifies and regresses
all the co-located anchors. In the second stage, fea-
tures are pooled from the regressed anchors and further
classified and regressed to get final detections. In SSD
and YOLO, anchors are processed in a similar way to
the first stage of Faster-RCNN. The process is however
carried out individually for several feature maps of the
base network. In our work the spatial attention module
is used to obtain a set of candidate locations at which
all anchors are processed. This reduces the number of
anchors to be processed which leads to a reduction in
the number of operations during the forward pass.

2. Observation 2
Faster-RCNN pools features from proposal boxes (in
the second stage), while SSD slides a convolutional
kernel over a feature map for final classification and
regression. Hence, final classifier and regressor in
Faster-RCNN have access to box-specific features cov-
ering the whole extent of a proposal object. SSD
accesses features in a fixed window at each location
of the feature map and hence never accesses the full
extent of features of an object (unless an anchor is
smaller than the kernel size).

On a flipside of the argument, Faster-RCNN never
accesses the surrounding information of the proposal
box, while SSD does access the surrounding informa-

tion due to its sliding kernel.
Contribution 2
We propose utilizing deformable convolutional lay-
ers [6] along with feature pooling from anchor boxes
to access the surrounding information of an object as
well as utilizing the anchor-specific features. The de-
formable convolutional layer feeds the input to our
spatial attention. The offsets computed for the de-
formable layer [6], ensure that features are pooled
from non-uniform locations (determined by the off-
sets) in the input feature map. Thus the output features
map (input to the spatial attention mechanism) con-
tains features which are adapted to the overall scene
structure. Our usage of deformable convolution is ex-
plained in section 2.4

3. Observation 3
Use of feature maps from multiple layers of a CNN
captures a richer feature diversity than one specific
layer. Lower CNN layers are better at detecting small-
scale and occluded pedestrians while latter layers bet-
ter capture large-scale unoccluded instances[3]. While
works such as MS-CNN [3], SSD [13] and FPN [12]
utilize multiple layers, their approach counts as a late-
fusion approach. Objects are detected separately for
each selected CNN layer. This causes repetition of de-
tection heads and an increase in training parameters.
Contribution 3
We favor an early-fusion approach, where feature
maps are combined prior to processing by a single de-
tection head. Owing to pooling operations in CNN
architectures, feature maps from multiple layers usu-
ally have different sizes. We use àtrous convolution



Figure 2. Block diagram of the proposed approach. At the fine stage of classification and regression, we take as input the selected anchors
and the regression outputs from the coarse stage. We perform regression on the selected anchors and subsequently pool features from those
regressions.

[5] within CNN layers to ensure that feature maps are
of the same dimension and concatenate them. This en-
capsulates a rich feature diversity for processing by a
detection head. Our early fusion approach is discussed
in section 2.3.

4. Observation 4
A single classification-regression head performs worse
than multiple such heads [4]. Anchor boxes have a pre-
defined configuration while pedestrians may appear at
arbitrary locations. It is thus possible that an anchor
may have only a small overlap with a pedestrian. This
corresponds to a partial view of a pedestrian. Multi-
ple heads for classification and regression such as in
a cascaded setting as proposed in cascade-RCNN [4],
successively refine the bounding box and thus build up
a better understanding of a pedestrian from its partial
view.
Contribution 4
In cascade-RCNN [4], 4 cascade steps are used; each
optimized for a different intersection-over-union (IoU)
of a detection with the groundtruth. We utilize only
2 cascade steps and our approach does not need a
hyper-parameter specification of the target IoU as in
[4]. More precisely, we do not model these steps for

detections with successively increasing IoU of detec-
tions as in [4].

We demonstrate the performance of our proposed single-
stage detector over two public datasets – a) caltech reason-
able [8] and, b) citypersons [18] dataset.

2. Proposed Approach

Notations We denote àtrous rate as r. Unless otherwise
stated, r = 1 (standard convolution). Padding of a feature
map is denoted by P . Unless otherwise stated, P = 0.
All paddings are zero-paddings. A convolutional layer’s
configuration is denoted in the form filter_height ×
filter_width×num_filters. All filter strides in our work
are 1. Input image and feature map dimensions are denoted
in the form height×width×num_channels. It is implic-
itly assumed that in implementations an additional leading
dimension of batchsize is used.

2.1. Outline

The overall block diagram of our proposed approach is
shown in figure 2. We now describe the individual compo-
nents of our system in the subsequent subsections.



2.2. Input

Our input (I) is a batch of RGB images (512× 512× 3).

2.3. Base Network

We use a ResNet-152 [9] network pretrained on the ima-
genet dataset [7] as the base network for feature extraction.
We employ àt̃rous convolution with rate=2 at the last con-
volutional layer of blocks 2, 3 and 4 of the ResNet-152, to
ensure that the output feature maps from these layers are of
the same dimensions; each with an output stride of 8. These
feature maps are concatenated depthwise to obtain a feature
map for further processing. We call itObObOb (64× 64× 3584).

2.4. Deformable convolution

Deformable convolution [6] has been shown to sample
features from non-uniform locations in a feature map. Com-
pared to standard convolution, it is able to better learn an
object’s structure. Following this, we use a deformable con-
volutional layer (3× 3× 1024;P = 1) withObObOb as the input.
We denote its output asOdOdOd (64× 64× 1024).

2.5. Spatial Attention

Our spatial attention module is aimed at being a
lightweight but robust alternative to RPN. Unlike RPN,
our module does not perform classification or bound-
ing box regression to generate proposals. We describe the
components of our proposed spatial attention module below

Semantic fully convolutional layer
We utilize a simple semantic segmentation approach to
focus on the most probable pedestrian locations. 3 parallel
branches of convolutional layers (3× 3× 256;P = 1) with
r = 1,2 and 3 respectively; process OdOdOd. The outputs of the
3 branches are depthwise concatenated to obtain a feature
mapOaOaOa. Another convolutional layer (3× 3× 256;P = 1)
processesOaOaOa to obtainOsOsOs. OsOsOs is in turn is fed to a 1×1×2
kernel which performs per-pixel prediction over 2 classes –
pedestrians and background; resulting inOcOcOc (64× 64× 2).
In the lack of accurate segmentation masks in datasets like
caltech − reasonable, we utilize the bounding box as an
pseudo segmentation mask [2]. This mask provides the
groundtruth for per-pixel prediction. We take the channel
of OcOcOc, corresponding to pedestrian prediction and refer to
it asOcpOcpOcp. Some examples ofOcpOcpOcp are shows in figure 3.

Anchor Center Location Inference
We infer a set of locations (C) on the feature map OdOdOd as
described below. OcpOcpOcp andOdOdOd are concatenated in the depth
dimension. The resulting feature map is processed by a con-
volutional layer (3× 3× 1;P = 1) to obtainOACOACOAC . We then

select C as follows :

C = argmax|C|(σ(OACOACOAC)) (1)

where σ(.) is the sigmoid function and argmax|C|(OACOACOAC)
is a function representing top |C| locations in OACOACOAC . The
parameter |C| is a hyperparameter in our system. To facili-
tate backpropagation, we define the gradient of argmax(.)
as the identity function, which passes the gradients coming
from the top layers to the bottom layers without modifica-
tion. Anchors centered at C, are known as the candidate
anchors in our work.

All the proposal anchors centered at locations defined by
C, are subsequently used for classification and bounding
box regression.

2.6. Classification and Bounding Box Regression

In our work we perform classification and bounding box
regression in two steps – coarse and fine-grained. For both
steps, features pooled from the anchors located at C are
used for classification and regression.

Coarse-Step
We pool features from the proposal anchors inOdOdOd. For pool-
ing we crop the features inside the anchors and resize them
to a fixed size followed by max-pooling by a 2 × 2 kernel
with stride of 2. In our implementation the fixed size is
14 × 14. These features are fed to two sibling fully con-
nected layers for classification and regression respectively.

Our regression function predicts – sx (horizontal scale
factor), sy (vertical scale factor), tx (horizontal translation)
and ty (vertical translation). Given an anchor with center
(xc, yc), width as w and height as h, it is transformed as
follows:

xnewc = xc + tx

ynewc = yc + ty

wnew = w × sx
hnew = h× sy

(2)

In equation 2, variables on the left hand side are the
transformed variables after regression.

Fine-grained Step All the anchors classified as pedes-
trians by the coarse-step classification, are transformed ac-
cording to equation 2. The process of coarse-step classifi-
cation and regression is then repeated using a different set
of classification and regression layers, resulting in the final
set of bounding boxes detected as pedestrians on the image.

In our work, since the fine-step of classification and re-
gression, pools features from the regressed anchors of the
coarse-step, it extracts features from an improved location.



Figure 3. (Top: Original images, middle : groundtruth pseudo segmentation mask and bottom: OcpOcpOcp from spatial attention. OcpOcpOcp has been
resized to original image size with bicubic interpolation.

This helps in an improved prediction of bounding box coor-
dinates. It is possible to cascade multiple such steps. How-
ever, in our implementation use of 2 steps was found suf-
ficient for good results. Addition of subsequent steps in-
creases the number of feature pooling operations – thereby
decreasing inference speed.

3. Training

3.1. Loss Function

During training, all anchors overlapping with an IoU >
0.5 are selected as positive anchors, the remaining being
negative anchors. In our proposed approach there are a total
of 5 loss terms as enumerated below :

1. Spatial Attention loss (Latt) : This refers to the pix-
elwise cross-entropy between OcOcOc and the groundtruth
pseudo segmentation mask, averaged across all pixels.
This cross-entropy is computed for 2 classes – pedes-
trian and background.

2. Coarse-step classification loss Lcoarse
cls : The coarse

stage classification loss is also a cross-entropy loss for
the classification of a proposal anchor as pedestrian or
background.

3. Coarse-step regression loss Lcoarse
reg : For regression

we use the smooth-L1 loss as used in [14]. Regres-
sion is performed only for proposal anchors classified
as pedestrians. The regression loss is Lsmooth

1 (pi, p
∗
i ),

where pi denotes the transformation of the anchor box
variables (sx, sy , tx, ty), while p∗i denotes the same
for the groundtruth box. These transformations are de-

scribed in equation 3.

ptx = log(
tx − xc
wa

)

pty = log(
ty − yc
ha

)

psx = log(sx)

psy = log(sy)

(3)

wa and ha are the width and height of the anchor re-
spectively. The scaling is done assuming the scale of
the anchor box as 1. Faster-RCNN during the RCNN
stage, starts with proposal boxes which are already re-
gressed. In our approach, there is a bigger difference
between anchor and groundtruth bounding box dimen-
sion. We found that regression using sx and sy instead
of width and height as in [14] lead to more stable train-
ing.

4. Fine-grained step classification loss Lfine
cls : Same as

the formulation of Lcoarse
cls .

5. Fine-grained step regression loss Lfine
reg : Same as the

formulation of Lcoarse
reg

6. Regularization losses LR : We use l2 regularization in
all our convolutional layers. LR is the sum of all the
regularization terms in our detector.

The total loss function for training our detector is

Ltotal =
αLatt

N
+
Lcoarse
cls + Lcoarse

reg + Lfine
cls + Lfine

reg

Na
+λLR

(4)
In equation 4, α is a constant scaling factor, while Na is
the minibatch size (total number of anchors) and N is the



Test Set LAMR
Caltech1x (trained on caltech10x) 4.83

Caltech1x (trained on citypersons + caltech10x) 3.79
Citypersons-val (trained on citypersons train) 11.58

Table 1. Performance of the proposed approach on caltech1x and
citypersons-validation set. (|C| = 350).

Method Caltech1x Citypersons-val
RPN-BF[16] 9.6 N/A
MSCNN[3] 10 N/A

SDS-RCNN[2] 7.6 N/A
GDFL[11] 8 N/A

SSD (Resnet-152)[13] 11 N/A
Rep-Loss[15] 4 13.1

Ours 3.79 11.58
Table 2. Comparative performance of the proposed approach with
other pedestrian detectors.

batchsize of images. λ is the regularization factors (set
to 0.00005 in all our experiments). Pedestrian bounding
boxes in training data contain several background elements
as well. Our experiments with α = 1, suggest that it causes
small-scale pedestrians to be missed, especially with large-
scale pedestrians around. Since Latt is obtained by aver-
aging over all the pixels, large-scale pedestrians contribute
more to it. Scaling Latt by small value of α is found by us
to be a better approach for improved detections. In all our
experiments, α = 0.8.

3.2. Implementation Details

In our implementation, we obtain the best results with
|C| = 350. We use anchors with two aspect ratios
(0.41, 2.41) and 6 scales (0.25, 0.5, 0.75, 1, 2, 4) resulting
in 12 anchors at each location. All anchors have been
generated with a base anchor size of 64 × 64. Thereby,
12 × 60 = 720 anchor features are the input to our coarse-
stage classification.

For training, we utilized the stochastic gradient descent
algorithm. We did a warm-up phase where the learning rate
(lr = 0.003) for first 10K steps, after which lr was reduced
by a factor of 0.5 after every 10K steps. Data augmenta-
tion was used in our training experiments with random hor-
izontal flip and random brightness and contrast adjustments.
The batchsize used in our experiments was 2. Our proposed
system was implemented in TensorFlow [1] and was run on
a single NVidia V100 GPU with 32 GB of GPU memory.

4. Experiments and Results
4.1. Datasets

We experimented with the caltech-reasonable [8] and
citypersons [18] datasets. For caltech-reasonable, we uti-

Two-step
(cls+reg)

Deformable
Convolution

Early
Fusion LAMR

X X X 4.83
X X – 6.22
X – X 5.81
– X X 5.67
– – – 7.19

Table 3. Summary of ablation studies on caltech-1x dataset. These
ablations were performed for |C| = 350 and directly training the
system on caltech10x-train.

Method Inference Speed (fps)
RPN-BF[16] 7
MSCNN[3] 8

SDS-RCNN[2] 5
SSD (VGG16)[13] 48

Rep-Loss[15] N/A
Ours 11

Table 4. Comparative performance of the inference speed of vari-
ous detectors. For our proposed detector, the inference speed cor-
responds to |C| = 350.

lized the improved annotations provided by [17] for the
10x training set (42782 images) and for the 1x testing set
(4024 images). For the citypersons dataset we used the orig-
inal annotations from the authors [18]. For citypersons we
trained on the training set (2975 images) and tested on the
validation set (1525 images).

For both the datasets, we utilized only the reasonable
subset annotations (height≥ 50 pixels, occlusion≤ 0.35)
for training. We use log-averaged miss-rate (LAMR) [8]
as the evaluation metric.

4.2. Results

4.2.1 Detection Accuracy

Our best results were obtained with |C| = 350, by training
our system first on caltech10x training set followed by fine-
tuning on the citypersons training set. Table 1 summarizes
the results on caltech-reasonable and citypersons (valida-
ton) datasets for different choices of training set. In table 2,
we provide a comparison of our best numbers with several
other pedestrian detectors. Table 2 shows that our system
outperforms the other methods on both caltech-reasonable
and citypersons validation sets. Methods such as [3, 15, 2]
perform upscaling of input images prior to feeding them
to their systems. Upscaling has been shown in [3, 15] to
improve performance by around 0.4 − 1.7 LAMR points.
Upscaling input images to higher sizes is likely to further
improve the performance of our system.



Figure 4. Some detections (Left) on the validation set of caltech-1x dataset compared with corresponding groundtruth (Right).

|C| LAMR
Caltech-1x Citypersons-val

30 8.59 15.3
50 8.41 14.73
60 8.05 14.21

100 6.69 13.95
350 3.79 11.58

Table 5. Effect of varying the hyper-parameter |C|. The miss-
rate for caltech-1x is based on model pre-trained on citypersons-
train followed by fine-tuning on caltech-1x. The miss-rate for
citypersons-val is based on model trained on citypersons-train.

|C| Detection
Speed (fps)

30 60
60 36
90 24

100 20
350 11

Table 6. Impact of varying the hyper-parameter |C| on inference
speed.

4.2.2 Detection Speed

Our system operates at an inference speed of ∼ 11fps un-
der a batchsize of 2 images, for |C| = 350. This speed
is comparable with the performance of most Faster-RCNN
based systems. As table 6 shows, the inference speed de-
creases with an increase in the value of |C|. This is expected
since the number of feature pooling operations is propor-
tional to the value of |C|. Table 6 in conjunction with table
5 details the relative loss in detection accuracy for an in-
crease in inference speed by decreasing the value of |C|.
Even at |C| = 100, the performance obtained is quite com-
petitive with the detection speed being at 20 fps. This shows

that the proposed system offers considerable flexibility in
terms of detection speed while maintaining competitive de-
tection performance. We also observe from table 6 that, for
lower values of |C|, the inference speed can be as high as
60 fps, which is higher than the speed of SSD [13] (with
VGG16 as base network) (table 5). Feature pooling is a
slower operation and is avoided by SSD for that purpose.
However, for lower values of |C|, even with intra-anchor
feature pooling, our proposed system performs fewer oper-
ations compared to SSD. This is on account of the fact that,
SSD performs multi-scale computations which effectively
increase its computations compared to our approach. How-
ever, for higher values of |C|, there are significantly more
pooling operations which results in inference speeds more
similar to other faster-rcnn based approaches.

4.3. Ablation Studies

In table 3 we summarize the ablation studies in our ex-
periments. The use of deformable convolution assists in im-
proved OcpOcpOcp and provides a boost of ∼ 0.9 LAMR points.
The early fusion of multiple layers is responsible for a gain
of ∼ 1.4% in LAMR, thereby verifying the effectiveness of
using multiple layers. To study the role of two-stage classi-
fication and regression, we switched to single-step classifi-
cation and regression, which lowered our LAMR by 1.04%.
Most of this loss in LAMR was observed for pedestrians
with occlusion close to 0.35% (upper limit of occlusion in
caltech-reasonable), and was owing to insufficient bounding
box overlap. This is expected, as an anchor may not over-
lap fully with a pedestrian under high occlusion conditions.
Hence, it is difficult to estimate the full bounding box by the
partial view of a pedestrian.

In table 5 we show the effect of varying the hyper-
parameter |C| which decides the number of anchors to be



selected. Higher values of |C| lead to improved perfor-
mance, but at the cost of inference speed as it leads to more
number of feature pooling operations.

4.4. Spatial Attention : Comparison with RPN

It is not straightforward to quantitatively compare spatial
attention with RPN. Spatial attention module does not per-
form any bounding box regression and does not select all
anchors at any specified location. Thus, although RPN and
spatial attention in our work – both aim to reduce the search
space for pedestrians, the underlying mechanisms are differ-
ent. Traditionally RPN is evaluated by measuring the IoU
of its proposal outputs with the groundtruth to compute the
LAMR. In our work since no regression is performed on
the anchors by the spatial attention, comparison using IoU
is not fair.

For a fairer comparison, we trained Faster-RCNN with
ResNet-152 on caltech10x and compared its performance
on caltech1x with our approach for the configuration in the
last row of table 3. In this case, the only difference between
Faster-RCNN and our approach remains in our use of spa-
tial attention. We gain 0.42% of performance over stan-

Faster-RCNN Ours
12.02 11.6

Table 7. Comparison between spatial attention and RPN on the
basis of LAMR

dard faster-RCNN (table 7). This basic comparison serves
to show that the performance of the proposed spatial atten-
tion module is comparable to the RPN performance.

5. Conclusions
We propose utilizing spatial attention for pedestrian de-

tection. We show that spatial attention can be a potential
alternative to RPN. It allows selecting a sparse set of an-
chor proposals, which limit the computations performed
during detection, leading to higher inference speeds. Pro-
cessing a small set of anchors allows feature pooling from
anchors to be performed without the expense of process-
ing time. In nutshell, our proposed system combines the
characteristic traits of two-stage (e.g:- Faster-RCNN) and
single-stage (e.g:- SSD, YOLO) detectors. Our proposed
system achieves state-of-art performance across two major
pedestrian detection benchmark datasets. In future, we aim
to extend similar ideas to general category object detection
problems.
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