
HAL Id: hal-04391848
https://hal.science/hal-04391848

Submitted on 12 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Face Attribute Analysis from Structured Light: An
End-to-End Approach

Vikas Thamizharasan, Abhijit Das, Daniele Battaglino, Francois F Bremond,
Antitza Dantcheva

To cite this version:
Vikas Thamizharasan, Abhijit Das, Daniele Battaglino, Francois F Bremond, Antitza Dantcheva.
Face Attribute Analysis from Structured Light: An End-to-End Approach. Multimedia Tools and
Applications, 2023, 82 (7), pp.10471-10490. �10.1007/s11042-022-13224-0�. �hal-04391848�

https://hal.science/hal-04391848
https://hal.archives-ouvertes.fr


Noname manuscript No.
(will be inserted by the editor)

Face Attribute Analysis from Structured Light: An
End-to-End Approach

Vikas Thamizharasan · Abhijit Das ·
Daniele Battaglino · Francois Bremond ·
Antitza Dantcheva

Received: date / Accepted: date

Abstract In this work we explore the use of structured-light imaging for face analy-
sis. Towards this and due to lack of a publicly available structured-light face dataset,
we (a) firstly generate a synthetic structured-light face dataset constructed based on
the RGB-dataset London Face and the RGB-D dataset Bosphorus 3D Face. We then
(b) propose a conditional adversarial network for depth map estimation from gen-
erated synthetic data. Associated quantitative and qualitative results suggest the ef-
ficiency of the proposed depth estimation technique. Further, we (c) study the esti-
mation of gender and age directly from (i) structured-light, (ii) binarized structured-
light, as well as (iii) estimated depth maps from structured-light. In this context we (d)
study the impact of different subject-to-camera distances, as well as pose-variations.
Finally, we (e) validate the proposed gender and age models that we train on synthetic
data on a small set of real data, which we acquire. While these are early results, our
findings clearly indicate the suitability of structured-light based approaches in facial
analysis.

Keywords Soft biometrics, age estimation, gender estimation, depth imagery,
structured light, IRDP, C-GAN.

1 Introduction

Face analysis has witnessed significant advances in the past decades, aiming to extract
discriminative features towards determining subject’s identity, emotions, as well as
face attributes (age, gender, race, hair style). Despite recent progress in face attribute
prediction [7, 10, 11, 17, 48] such work is predominantly focused on extracting fea-
tures in the RGB-color space. More recently, depth information has been additionally
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considered (i.e., RGBD), seeking to achieve higher robustness, stemming from the
additional information on geometric relation between objects [24–27, 59]. This has
been exploited in 3D reconstruction, robotics, face analysis, pose estimation, segmen-
tation, as well as virtual reality. In the context of face analysis, RGBD has intuitively
brought to the fore an increased robustness, in particular in the presence of differ-
ent poses, illumination variations, and occlusions [10, 11, 17, 31]. We note that such
depth data has been acquired with consumer depth cameras (e.g., Kinect V1 [3], Asus
Xtion Pro) with underlining technology related to structured-light (SL); time-of-flight
(ToF) cameras, as well as passive stereo cameras. Among them, SL-based sensors
have been predominantly utilized in face analysis for associated higher resolution of
depth information, seamless operation in the presence of low illumination and noise.
Further SL-acquired data avoids multi-path errors [40] and artifacts or texture-less
regions [5], which are able to alter pertinent face characteristics and therefore might
significantly degrade the accuracy of face analysis tasks. Further benefits include the
incorporated absolute size, as well as robustness to some presentation attacks. More-
over, SL-images that have been captured in night condition allow for better analysis
and e.g., recognition accuracy than RGB-images captured in comparable conditions.

While SL-based technology incorporates named benefits, methods which com-
pute depth maps from raw sensor data still require significant computational and
memory resources. In addition, resulting depth estimation is often noisy, prone to
errors due to missing zones or occlusions [40]. Such limitations motivate the here
pursued end-to-end approach, omitting the explicit step of depth estimation. The ben-
efits of such an end-to-end approach include i) the fact that utilizing raw data without
intermediate representations allows for a single optimization of an end-to-end model
from infra-red dot pattern (IRDP) data to the target task, ii) improvement of accu-
racy brought to the fore by implicit task-tailored depth representation, iii) reduction
in computational costs, and iv) reduction/elimination of the burden of manual tuning
of the parameters to compute the depth-map.

1.1 Contributions

– Due to lack of publicly available datasets, which contain IRDP-images of human
faces, we firstly propose a synthetic data generation framework, referred to as
SynthIRDP, in which we construct 3D faces based on single RGB images, then
render the three modalities (RGB, depth, IRDP) by simulating structured light
sensor physics in the 3D rendering engine Blender1. SynthIRDP allows for simu-
lation of constrained and unconstrained settings.

– We then proceed to reconstruct depth maps from IRDP with a proposed condi-
tional generative adversarial network (C-GAN), aimed at domain mapping be-
tween distortion in the projected pattern and absolute depth. We note that pro-
posed depth estimation approach does not require additional manual tuning of
parameters, as for other standard methods as block-matching [61].

– Capitalizing on earlier mentioned benefits, we propose an end-to-end approach
for gender and age estimation based on IRDP-data. We leverage the capabili-

1 https://www.blender.org/
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ties of an end-to-end approach, i.e., by training a network targeted for age and
gender classification based on raw SL-data, omitting the classical step of depth
estimation. To the best of our knowledge, this is the first end-to-end face analysis
approach and related study.

– We then estimate gender and age based on (a) IRDP, (b) binarized IRDP, as well
as (c) reconstructed depth map.

– While in all our experiments we utilize synthetic data, due to the lack of availabil-
ity of IRDP real-life data with corresponding high quality depth maps, we finally
validate the accuracy of our proposed end-to-end approach on a real-life dataset,
comprising of 22 subjects.

The remaining paper is organized as follows. Section 2 revisits related work, Sec-
tion 3 introduces the proposed approach for synthetic IRDP generation. Section 4
presents the depth estimation method. Section 5 demonstrates our end-to-end gender
and age estimation framework. We present and discuss quantitative and qualitative
experimental results in Section 6. Section 7 concludes the paper.

2 Related Work

In this section we briefly review literature related to SL-sensors, depth estimation,
gender and age estimation, face analysis based on RGBD, 3D imagery, as well as
GANs.

2.1 SL sensors

Structured-light (SL) sensors incorporate an infrared projector and two cameras. The
projector emits a determined and fixed reference-pattern, represented by emitted in-
frared dots. While one camera captures the projected and distorted IR, the other cap-
tures visible light. In addition to one camera that captures the projected and distorted
IR, there may be another camera foreseen, that captures visible light, as illustrated
in Figure 1. The sensed pattern undergoes distortions, as well as illumination varia-
tions that are instrumental in representing the scenery. Therefore, by establishing the
correspondence between reference- and sensed-pattern, the scenery can be deduced.
Similar to depth estimation performed in stereo cameras, depth is derived for each
dot through triangulation, where the projector acts as a second camera in a typical
passive stereo camera setup.

The PrimeSense algorithm2, as utilized by Kinect, performs local stereo match-
ing, in order to estimate disparity between the difference in horizontal coordinates

of corresponding image pixels (d), from which depth (Z) is estimated via Z =
bf

d
,

where b denotes the baseline of the sensor and f refers to the focal length. We note
that this approach is computationally expensive and necessitates the projector-camera
system to be perfectly calibrated since the disparity is computed along the horizontal

2 http://www.primesense.com/
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Fig. 1 IRDP sensor. A projector emits a determined and fixed reference-pattern, represented by emitted
pseudo-random infrared dots. While one camera captures the projected and distorted IR, the other captures
visible light (Kinect V1).

lines. More recently stereo matching for disparity estimation has been tackled using
deep learning techniques, operating in a supervised and unsupervised setting on RGB
and structured light data in a monocular or stereo setup [39]. While these methods
show promising results, they rely on large datasets.

2.2 Depth Estimation

With the advancement of deep learning techniques, depth estimation has witnessed
significant improvement over the last years. In this context a vast literature has ex-
plored a monocular setting through supervised methods [19], [34, 35, 64], as well as
through unsupervised methods [20, 22] and in a stereo setting [39, 46] on RGB data.
Associated performances have been evaluated on publicly available datasets such as
NYU Depth V2 [44] and KITTI [21]. While RGB methods remain more economical,
RGB cameras and respective datasets are ubiquitous, performing poorly in texture-
less regions, being less robust to noise (illumination variance) and being ill-posed for
obtaining absolute depth as compared to techniques that use SL-data.

Towards tackling the computationally-expensive stereo matching problem faced
by traditional algorithms using structured light data, HyperDepth [55] employed a
learning-based method involving an ensemble of cascaded random forests. Despite
improvement in computation time, similar methods require, as reference ground truth
depth maps, usage of the PatchMatch algorithm [4], thus placing a limitation on
the quality of disparity estimation. In contrast, ActiveStereoNet [65] incorporated
an end-to-end network for depth estimation using active stereo systems. Due to lack
of ground truth, the authors proposed a self-supervised method to predict precise
depth using a two stage Siamese network. While one branch built a low resolution
cost volume to infer an initial disparity estimate, followed by a bilinear upsampling
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and a residual network to predict the final disparity map, the other branch, referred
to as Invalidation Network was trained end-to-end to predict a confidence map. Ac-
tiveStereoNet achieved promising results, capable of handling occlusions and reduc-
ing artefacts. Ren et al. [49] proposed face video deblurring using 3D facial priors.
Hu et al. [28] investigated face super-resolution guided by 3D facial priors.

2.3 Gender and Age estimation

Gender and age are demographic facial attributes (often referred to as soft biomet-
rics [13]), which are beneficial for the associated (a) semantic meaning to humans,
offering interpretation beyond that achieved by classical face recognition, (b) com-
plementary information they offer a biometric system, (c) omitting of enrollment,
i.e., a previously unseen face can be classified without it being present in the training
set. Recent deep learning models [1, 12, 14, 52, 53, 58, 63] have boosted estimation
accuracy significantly. Such approaches either (i) extract a generic face representa-
tion across large amounts of face data and then train shallower classifiers for attribute
prediction [37] or (ii) optimize over attributes directly [54].

2.4 Face analysis based on RGBD and 3D imagery

Face analysis based on RGBD and 3D is inherently more robust to variations in pose,
illumination, as well as occlusion [6, 10, 11, 17, 31]. Former three works have show-
cased the significant improvement of accuracy, based on deep learning models and
classical learning techniques employing shape (depth) and texture (RGB) in the con-
texts of face recognition and classification tasks such as gender and age.

2.5 Generative Adversarial Networks (GANs)

Firstly proposed by Goodfellow [23], GANs are composed of two minmax adver-
saries, a generator and discriminator, where the generator attempts to reconstruct
distribution of the training data by generating realistic images, while the discriminator
estimates the probability that a generated image stems from the training data or is
synthetic (i.e., real or fake). Conditional GANs (C-GANs) are an extension of GANs,
where the model is trained to learn a conditional distribution by having both adver-
saries conditioned on additional information. GANs have received increased interest
for various computer vision tasks such as image-image translation [66], image edit-
ing [67], representation learning [47], image inpainting [45], future prediction [41],
video [62]. Pertaining to image to image translation, a nonparametric texture model
was employed in the seminal work of Efros and Leung [18]. Long et al. [38] firstly
presented the concept of image translation based on CNNs. Isola et al. [29] proposed
flexible learning of different mappings between input and output images with a single
loss function. We here note that all aforementioned works were designed for pair-
wise image generation/synthesis. Rosales et al. [51] firstly proposed unpaired image
translation. Co-GAN [36] and cross-modal scene networks [2, 60] employed input
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and output to share certain ”content“ features. STAR-GAN [9] represented a scalable
approach for image-to-image translations for multiple domains using only a single
model. Cycle-GAN [68] dealt with image-to-image translation for domain-to-target
translation in the absence of paired examples. C-GAN [42] incorporated unpaired
image translation, based on provided conditions.

The above discussion on the state-of-the art showcases that there is no exiting
work related to IRDP to depth map estimation in the context of face analysis, which
we tackle in this work. In the following section we proceed to describe proposed
framework for generation of synthetic IRDP data based on RGB images.

3 Synthetic IRDP data generation

The size and quality of annotated data used to train deep learning models are critical
to the associated accuracy and reliability of such models, as generally thousands to
millions of parameters are trained in the process. Insufficient data can bring to the fore
generalization problems. Towards overcoming cumbersome large data acquisition,
recent works have proposed to train data-hungry deep learning models with synthetic
data [32, 43, 50] and have proceeded to validate the reliability of such models on
real-life data.

Given the lack of a face dataset based on IRDP and motivated by the above works,
we firstly propose to synthetically generate IRDP data, which we depict in Figure 2
(a), wherein we emulate the physics of the structured light hardware in the Blender 3D
rendering engine. Specifically, we load an existing 3D-image of a face into a Blender-
scene, which contains a virtual IR camera, as well as a virtual IR projector, projecting
the pseudo-random dot patterns into the scene. The rendering operator of Blender is
used to render IRDP along with depth (see Figure 2 (a)-(i)). This synthetic setup
allows for flexible rendering of objects at varying distance, pose and illumination.
The overall pipeline of our synthetic IRDP data generation for RGB and 3D face
dataset is illustrated in Figure 2 (j).

Existing 3D face datasets such as the Bosphorus [56] and the Face Warehouse [8]
datasets contain few hundreds of subjects. Given that such size is unsuitable for train-
ing deep learning algorithms, we propose to reconstruct 3D faces from existing 2D
RGB face datasets [15], as inspired by Sela et al. [57]. In particular we aim to recon-
struct geometric structure of faces from single images.

Hereby a pixel-based geometric representation i.e., a depth and correspondence
map, is learned, followed by performing geometric deformation and refinement steps
to obtain a detailed textured mesh. We illustrate results of example reconstructed
faces in Figure 2. Using the above method, we create a dataset of 10940 IRDP-face
samples based on RGB and depth images.

We then proceed to elaborate on depth estimation based on IRDP data.

4 Depth estimation from IRDP

We tackle depth estimation as a domain-to-domain translation task, from the raw IR-
domain to data-to-absolute depth-domain. To do so we train a C-GAN to learn an
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Fig. 2 Example images of SynthIRDP. Column (a) represents RGB images from a 2D face dataset,
(b) 3D faces reconstructed by [57], (c) corresponding texture mapped faces. Column (d) to (f) show the
IRDP, depth and grey to RGB depth respectively rendered using our SynthIRDP pipeline. Column (g) to (i)
contain the same faces rendered as in d) to (f) for different pose and (j) Pipeline of our synthetic IRDP data
generation for RGB and 3D face dataset. We load an existing 3D-image of a face into a Blender-scene,
which contains a virtual IR camera, as well as a virtual IR projector, projecting the pseudo-random dot
patterns into the scene. The rendering operator of Blender is used to render IRDP along with depth.

adaptation to change/distortions in shape of the projected pattern on the face con-
ditioned on the additional information of depth. The goal is to learn a conditional
generative model from an observed image x and a random noise vector z to an output
depth y. We note that deviating from previous standard methods, the network is only
provided an observed image as input, withno manual tuning.

Our primary aim is to utilize the learned adversarial loss, which bares two ben-
efits: (i) the need for a hand-crafted loss to tackle this problem is removed and (ii)
any possible structural difference between the output and target is penalized, as op-
posed to using conditional random forests (CRFs) or perceptual losses, as pointed out
by Zhu et al. [68]. In addition to generator loss, we add a traditional loss, L1, in the
GAN objective, in order to encourage depth estimation to be close to the ground-truth
depth, as well as to assure that depth relationship between pixels is independent. The
weight assigned to this L1 term depends on the λ parameter. As we are performing
a one-to-one deterministic mapping, we do not provide the random noise vector z to
our GAN-model.

Our generator consists of a U-Net architecture, representing an encoder-decoder
structure with skip connections. The skip connections are added between layer i and
layer n − i, where n is the total number of layers. The rationale is to transfer low
level information from the encoder to the decoder, which otherwise would be lost
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via the series of convolution layers up to the bottleneck layer. The discriminator is
a convolutional PatchGAN classifier [68].

Fig. 3 (a) Depth estimation. Proposed framework for depth estimation from IRDP imagery based on
C-GAN.

To optimization we train the generator G to maximize logD (x,G (x, z)) rather
than minimizing log (1−D (x,G (x, z))). The objective is divided by 2 while opti-
mizingD to slow down the learning rate ofD relative toG. The proposed framework
for depth estimation is in Figure 3(a).

5 Face Attribute Analysis

We adopt the architecture proposed by Levi and Hassner [33] for both age and gender
classification. A detailed diagram of the entire network is provided in Figure 4.

The network contains three convolutional layers, each followed by a rectified
linear operation and pooling layer. The first two layers also follow normalization
using local response normalization. The first convolutional Layer contains 96 filters
of 7 × 7 pixels, the second convolutional Layer contains 256 filters of 5 × 5 pixels,
The third and final convolutional Layer contains 384 filters of 3× 3 pixels. Then, two
fully-connected layers are added, each containing 512 neurons. Finally, the output of
the last fully connected layer is fed to a soft-max layer that assigns a probability for
each class. The prediction itself corresponds to the class with maximal probability
for the given test image.

We use the same architecture for both, gender and age classification. The network
is trained separately on three different modalities: IRDP, depth and RGB. We tackle
the binary gender classification (2 class: male and female), as well as age classifi-
cation (4 class: teen, young, adult and senior) to study the ability of the network to
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learn, when facing three different modalities (RGB, RGBD and IRDP). We note that
to the best of our knowledge, IRDP data has not been explored before in age and
gender estimation.

Fig. 4 Gender and Age estimation CNN architecture. The network is trained separately on three different
modalities: IRDP, depth and RGB.

6 Experimental Results

In this section we proceed to describe experimental results and related discussion
on (i) proposed depth estimation strategy from IRDP imagery based on C-GAN (ii)
proposed face attribute analysis based on IRDP and depth imagery, as well as (iii)
merging the performance gap between real and synthetic reconstructed depth data.

6.1 Depth estimation and IRDP image synthesis

6.1.1 Training procedure

As proposed by Zhu et al. [68], we use minibatch stochastic gradient descent (SGD)
and apply ADAM optimization [30], with a learning rate of 0.0002, and momentum
parameters β1 = 0.5, β2 = 0.999. We initialize λ = 100. Towards gasping the ability
of GANs to learn depth estimation from a single dot pattern image, we train and test
the network over a diverse dataset in pose, distance and subjects. We do so with two
modalities, (i) dot pattern image which contains both the distortion and illumination
variation information of the projected patterns and (ii) binarized dot-pattern image,
which contains only the distortion variation of the projected patterns. We do so in
order to assess the importance of each information provided to the GAN for the task
of depth estimation and analyze related robustness to unseen pose, illumination and
distance of the subject from the sensor. Loss functions pertaining to C-GAN for depth
estimation employing (a) IRDP images and (b) binarized-IRDP images, referred to
as B-IRDP, are shown in Figure 5. Specifically, we observe the loss cure of C-GAN,
while learning the depth estimation from IRDP versus binary IRDP. We conclude
from the pattern in the loss curve that while employing IRDP, the GAN model was
able to learn better.
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Fig. 5 Depth estimation. Loss curve of C-GAN in estimating depth employing (a) IRDP images and (b)
binarized-IRDP images.

The size of the training set varies from 1000 - 10,000 images and the size of the
test set ranges from 300 - 2,000 images for 500 subjects. The model is trained with
input image resolution of 512 × 512 on 4 × GTX 1080 Ti GPU for 100 epochs.

6.1.2 Qualitative results

Figure 6 demonstrates network’s ability to perform depth estimation from a single
IRDP image. While when trained on only frontal poses, surprisingly the model is
able to estimate depth of unseen poses (Figure 6 (c)), it is unable to estimate finer
depth details at high image gradients. We note that this is expected from supervised
learning techniques but can be solved by introducing random poses into the training
set (see row 3 of (c) and row 3 of (e) in Figure 6).
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Fig. 6 Qualitative results of the experiments of depth estimation and generated hallucination.
(a) E :B-IRDPtrain:DF ;test:DF , (b) E :IRDPtrain:DF ;test:DF , (c) E :B-IRDPtrain:DF ;test:DP , (d)
E :B-IRDPtrain:DPD ;test:DPD (e) E :B-IRDPtrain:DP ;test:DP . (f) Generator hallucinating facial fea-
tures during training to fool discriminator.

Towards further analysis, in Figure 6(f) we show the hallucinating or unknown
artifact generated by the model. Possible reason might be that, in order to minimize
the loss function, in some cases the generator generates depth structures of the noise
that is not in accordance with the ground truth depth. This might be due to the gen-
erator not merely learning to perform mapping of IRDP distortions to depth, but also
learning some facial features, where it has found a loophole to fool the discriminator
by hallucinating noises. This only occurs in early stages of the training.

The used metrics are enlisted hereafter.

– Average Relative Error (rel). The relative absolute error is the absolute error
divided by the magnitude of the exact value. The percent error is the relative error
expressed in terms of per 100.

rel =
1

n

n∑
i=1

∣∣∣∣G (x)i − yi
y

∣∣∣∣ ,
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where G (x)i is a pixel in the generated depth image G (x), yi is a pixel in the
ground truth depth image y, n is the total number of pixels for each depth image.

– Root Mean Square Error (RMSE) represents the standard deviation of the
residuals prediction errors. Residuals are a measure of how far data points are
from the regression line. Hence RMSE is a measure of how spread out these
residuals are.

RMSE =

√√√√ 1

n

n∑
i=1

(G (x)i − yi)
2

– Average log10 error. To introduce the percentual difference an MSE logarithm
scale is used. It makes MSE to only focus on the relative difference between the
true and the predicted value.

log10 error =
1

n

n∑
i=1

|log10 (G (x)i)− log10 (yi)|

– Threshold Accuracy (δn) captures the percentage of match in a image with re-
spect to a reference image for a given threshold following following equation.

δn = % of yi 3 max

(
yi

G (x)i
,
G (x)i
yi

)
= δn

, where δn < 1.25n for n=1,2,3

– Structural Similarity Index (SSIM) indicates the image quality based on an
initial image as reference.

SSIM =
1

N

N∑
t=1

SSIM (G (x)i , yi, ) ,

where N is the total number of images in the test set.
To explore the robustness of our model w.r.t. pose variation, orientation and dis-

tance, we test the performance in following settings.

1. Frontal IRDP [E:IRDPtrain:DF ;test:DF ]: Trained and tested on a dataset (DF ) of
IRDP containing only frontal pose of faces with a fixed distance from the camera
and projector.

2. Frontal B-IRDP [E:B-IRDPtrain:DF ;test:DF ]: Trained and tested on a dataset
(DF ) of B-IRDP containing only frontal pose of faces with a fixed distance from
the camera and projector.

3. Frontal and varied pose IRDP [E:IRDPtrain:DF ;test:DP ]: Trained on a dataset
(DF ) of IRDP containing only frontal pose of faces with a fixed distance from the
camera and projector while tested on a dataset (DP ) of IRDP containing varied
pose and orientation of faces.

4. Frontal and varied pose B-IRDP [E:B-IRDPtrain:DF ;test:DP ]: Trained on a
dataset (DF ) of B-IRDP containing only frontal pose of faces with a fixed dis-
tance from the camera and projector while tested on a dataset (DP ) of B-IRDP
containing varied pose and orientation of faces.
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5. Varied pose IRDP [E:IRDPtrain:DP ;test:DP ]: Trained and tested on a dataset
(DP ) of IRDP containing varied pose and orientation of faces with a fixed dis-
tance from the camera and projector.

6. Varied pose B-IRDP [E:B-IRDPtrain:DP ;test:DP ]: Trained and tested on a dataset
(DP ) of B-IRDP containing varied pose and orientation of faces with a fixed dis-
tance from the camera and projector.

7. Varied pose and distance IRDP [E:IRDPtrain:DPD;test:DPD ]: Trained and tested
on a dataset (DPD) of IRDP containing faces with varied pose, orientation and
distance from the camera and projector.

8. Varied pose and distance B-IRDP [E:B-IRDPtrain:DPD;test:DPD ]: Trained and
tested on a dataset (DPD) of B-IRDP containing faces with varied pose, orienta-
tion and distance from the camera and projector.
Table 1 summarizes the quantitative results of the experiments, where depth es-

timation from IRDP images using the evaluation metrics are reported. We conclude
based on all metrics that the IRDP outperforms the other modalities.

Table 1 Quantitative results of the depth estimation.

Experiment Error metrics ↓ Accuracy metrics ↑
rel rms log10 δ1 δ2 δ3 SSIM

E:IRDPtrain:DF ;test:DF 0.0827 0.0303 0.0177 0.9808 0.9846 0.9871 0.9821
E:B-IRDPtrain:DF ;test:DF 0.0844 0.0323 0.0180 0.9780 0.9824 0.9866 0.9792

E:IRDPtrain:DF ;test:DP 1.2834 0.1816 0.1683 0.8647 0.8939 0.9015 0.7961

E:B-IRDPtrain:DF ;test:DP 1.4811 0.2177 0.1884 0.7351 0.7500 0.7581 0.7705

E:IRDPtrain:DP ;test:DP 0.1311 0.03422 0.0183 0.9806 0.9870 0.9894 0.9758

E:B-IRDPtrain:DP ;test:DP 0.1403 0.03612 0.0201 0.9710 0.9789 0.9807 0.9666

E:IRDPtrain:DPD ;test:DPD 0.6314 0.0602 0.0338 0.9661 0.9765 0.9797 0.9470

E:B-IRDPtrain:DPD ;test:DPD 0.6631 0.0896 0.0492 0.9366 0.9409 0.9473 0.9157

In addition, we demonstrate the robustness of IRDP for depth estimation as op-
posed to RGB data in Table 2. With exception of the extreme lighting scenario, the
performance of IRDP is better for depth estimation as compared to RGB. The reason
for such poor performance of IRDP in extreme lighting condition has to do with the
physics underlying its working principal, where the heavy exposition to light affects
the projected pattern sensing. Further we proceed to illustrate the result with vary-
ing pose and height. Cross pose i.e., training with frontal pose and testing with other
poses results in a decrease for most evaluation metrics. However, the result is signif-
icantly better, when trained and tested with varying poses. In addition, performance
decreases for varying distance. One possible reason might be that the synthetic sim-
ulations, which do not mimic exactly the behaviour of real conditions. More work
should be done in future to fill the gap between simulation and real sensors.

6.2 Face attribute analysis

6.2.1 Experimental details

We train the above network on our synthetic dataset created using SynthIRDP; train
set of size 7440, validation set of size 1500 and test set of size 2000 images for each
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Table 2 RGB and IRDP for depth estimation in varying illumination condition. These experiments involve
altering the external environment lighting in the scene to test the robustness of each modality. Results
indicate that IRDP is more robust as opposed to RGB.

Experiment Error metrics ↓ Accuracy metrics ↑
rel rms log10 δ1 δ2 δ3 SSIM

Ideal Conditions : IRDP 0.0827 0.0303 0.0177 0.9808 0.9846 0.9871 0.9821
Ideal Conditions : RGB 0.2030 0.04317 0.0238 0.9754 0.9840 0.9855 0.9772

Poor lighting : IRDP 0.4284 0.1818 0.1044 0.9613 0.9775 0.9840 0.9698
Poor lighting : RGB 5.0828 1.525 1.118 0.8100 0.8266 0.8437 0.8588

Extreme lighting : IRDP 6.0844 2.1323 1.5180 0.8080 0.8124 0.8166 0.8098
Extreme lighting : RGB 5.1403 1.7612 1.1201 0.8310 0.8389 0.8407 0.8366

modality: IRDP, RGB, depth. The train, validation and test set includes 870 subjects,
450 of whom are female and 420 male across four age groups: teen, young, adult
and senior. We have utilized same splits employed for age and gender classification,
in train, validation and test set pertaining to different poses and illuminations for all
three modalities. Pose and illumination distributions are random with no duplicates
present in either train, validation or test set. We also train the model on a binarized
IRDP, which we refer to as B-IRDP, in order to visualize how the network learns,
when provided with only distortion variation in structured light dot pattern. We note
that B-IRDP only contains shape variations unlike IRDP, which also contains illumi-
nation variations.

Input images are firstly re-scaled and aligned to 256 × 256 and then fed to the
network, as illustrated in Figure 4. We set eta as 0.001, batch size as 32 and dropout
as 0.5 and train the network for 20,000 iterations. The same models are used later to
evaluate the captured real-life images.

6.2.2 Evaluation on synthetic dataset

We estimate the performance of proposed gender and age estimation approaches with
respect to precision p, recall r, and F1 score. We note that for each class (male,
female; age-categories), precision is defined as the number of correctly predicted
cases divided by the number of all predictions of this class. Recall denotes the number
of correctly predicted cases divided by the number of all cases of this class. F1 is the
harmonic mean of precision and recall

F1 =
2pr

p+ r
.

Table 3 reports the F1 scores of gender and age classification on all modalities.
The network tends to perform similary on depth data and IRDP for both, age and
gender classification with and without pre-training. One possible reason to why using
a pre-trained network, trained on ImageNet [16] does not favour an improvement
in IRDP as opposed to depth, is due to the structural (dis-)similarity present in the
imagery. In comparison to RGB the network tends to perform similar on depth data
and on IRDP for gender classification with and without pre-training. Whereas, while
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the network is trained on ImageNet [16], the result is better for RGB for gender
classification. A possible reason is due to the pre-training network being trained on
RGB images. For age classification the network tends to perform better for RGB in
comparison to depth data and on IRDP with and without pre-training. B-IRDP is not
as effective in this scenarios, as expected.

Table 3 Results on synthetic dataset SynthIRDP. * indicates that the network was initialized with a pre-
trained inception v3 checkpoint trained on ImageNet [16].

Input F1 Score F1 Score
(Gender) (Age)

RGB 0.956 0.875
reconstructed depth 0.957 0.822

IRDP 0.954 0.804
B-IRDP 0.912 0.761
RGB∗ 0.986 0.880

reconstructeddepth∗ 0.961 0.848
IRDP ∗ 0.936 0.834

B − IRDP ∗ 0.919 0.780

Figure 7 portrays the loss on training the network on our synthetic dataset gener-
ated using our SynthIRDP pipeline for age and gender classification. We can observe
that the objective function converges slower for IRDP than for depth i.e., the net-
work takes more iterations and thus longer training time. For these reasons, as well
as the better performance on depth than IRDP stated in Table 3, we conclude that the
network proposed in Figure 4 learns better with depth data than IRDP.

6.2.3 Evaluation on real-life dataset

To evaluate the model performance on a real-life dataset, we acquire around 1500
images of 22 subjects, 8 female and 14 male, capturing a number of poses and dis-
tances between subject and sensor. The sensor used was the Asus Xtion Pro Live,
which shares the same pseudo-random dot pattern structure as Kinect V1. Figure 8
shows example images acquired from the sensor. While the sensors also provide an
estimated depth map, such maps are of low resolution and lack subpixel precision.
Thus they fail to capture detailed structures like faces.

We note that in all our experiments, where we test with real data, we train the
models on only synthetic data due to the lack of availability of real-life data with
high quality depth maps. Related results are summarized in Table 4.

These are preliminary results, which would need validation on a larger real-life
dataset containing both depth and IRDP and using other deep learning architectures
like the ones proposed by Cui et al. [11]. A deeper analysis suggests that IRDP has
promising properties, especially for embedded sensors (such as Internet-of-Things
devices or smartphones), where computational cost of reconstructing explicitly the
depth-map is not negligible.
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Fig. 7 Gender and age estimation. Loss curve of the network on the synthetic dataset for the task of
gender and age classification.

Fig. 8 Real-life data. Example images of the real-life IRDP-dataset, which we acquired using Asus Xtion
Pro Live sensor.

7 Conclusions and future work

In this work we explored the use of structured light in face attribute analysis. To-
wards this, we firstly generated a synthetic face dataset based on RGB and RGB-D
datasets. We then proposed a C-GAN for depth map reconstruction architecture. We
then compared facial images pertaining to RGB, reconstructed depth maps, infra-red
dot pattern (IRDP), as well as binarized IRDP-imagery in estimating gender and age.
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Table 4 Results pertaining to the real-life dataset, * indicates that the network was initialized with a pre-
trained inception v3 checkpoint trained on ImageNet [16].

Input F1 Score F1 Score
(Gender) (Age)

RGB 0.831 0.712
Depth 0.855 0.731
IRDP 0.847 0.713

B-IRDP 0.814 0.691
RGB∗ 0.870 0.761
Depth∗ 0.863 0.741
IRDP ∗ 0.851 0.723

B − IRDP ∗ 0.822 0.715

Presented experimental results revealed the ability of gender and age to be gleaned
directly from IRDP-images, as well as from reconstructed depth maps.

We note that these are early results, however our findings clearly indicate the
feasibility of IRDP-based approaches for facial analysis tasks.

Future works involve mitigating the gap between synthetic and real data, to better
generalize in unseen realistic conditions. In addition, an end-to-end approach has the
potential to temper the impact of the calibration, which can be learned during training.
Other possible future work directions include the analysis of proposed methods under
computational and memory constraints.
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12. Dantcheva, A., Brémond, F.: Gender estimation based on smile-dynamics. IEEE Transactions on
Information Forensics and Security 12(3), 719–729 (2017)

13. Dantcheva, A., Elia, P., Ross, A.: What else does your biometric data reveal? a survey on soft biomet-
rics. IEEE Transactions on Information Forensics and Security 11(3), 441–467 (2016)

14. Das, A., Dantcheva, A., Bremond, F.: Mitigating bias in gender, age and ethnicity classification: a
multi-task convolution neural network approach. In: ECCVW 2018-European Conference of Com-
puter Vision Workshops (2018)

15. DeBruine, L., Jones, B.: Face Research Lab London Set (2017). DOI 10.6084/m9.figshare.5047666.
v3. URL https://figshare.com/articles/Face_Research_Lab_London_Set/
5047666

16. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: A Large-Scale Hierarchical
Image Database. In: CVPR09 (2009)

17. Drira, H., Amor, B.B., Srivastava, A., Daoudi, M., Slama, R.: 3D face recognition under expressions,
occlusions, and pose variations. IEEE Transactions on Pattern Analysis and Machine Intelligence 35,
2270–2283 (2013)

18. Efros, A.A., Leung, T.K.: Texture synthesis by non-parametric sampling. In: Computer Vision, 1999.
The Proceedings of the Seventh IEEE International Conference on, vol. 2, pp. 1033–1038. IEEE
(1999)

19. Eigen, D., Puhrsch, C., Fergus, R.: Depth map prediction from a single image using a multi-scale deep
network. In: NIPS (2014)

20. Garg, R., Kumar, B.V., Carneiro, G., Reid, I.: Unsupervised cnn for single view depth estimation:
Geometry to the rescue. In: European Conference on Computer Vision, pp. 740–756. Springer (2016)

21. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? the kitti vision benchmark
suite. 2012 IEEE Conference on Computer Vision and Pattern Recognition pp. 3354–3361 (2012)

22. Godard, C., Mac Aodha, O., Brostow, G.J.: Unsupervised monocular depth estimation with left-right
consistency. In: CVPR (2017)

23. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Ben-
gio, Y.: Generative adversarial nets. In: Advances in neural information processing systems, pp.
2672–2680 (2014)
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