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Gender estimation based on smile-dynamics
Antitza Dantcheva, and François Brémond

Abstract—Automated gender estimation has numerous applica-
tions including video surveillance, human computer-interaction,
anonymous customized advertisement and image retrieval. Most
commonly, the underlying algorithms analyze the facial appear-
ance for clues of gender. In this work we propose a novel method
for gender estimation, namely the use of dynamic features gleaned
from smiles and proceed to show that (a) facial dynamics can
be used to improve appearance-based gender estimation, (b)
that while for adult individuals appearance features are more
accurate than dynamic features, for subjects under 18 years old
facial dynamics can outperform appearance features. In addi-
tion, we fuse proposed dynamics-based approach with state-of-
the-art appearance based algorithms, predominantly improving
appearance-based gender estimation performance. Results show
that smile-dynamics include pertinent and complementary to
appearance gender information.

Keywords—soft biometrics, gender estimation, facial dynamics.

I. INTRODUCTION

Human facial analysis has engaged researchers in multiple
fields including computer vision, biometrics, forensics, cogni-
tive psychology and medicine. Interest in this topic has been
fueled by scientific advances that provide insight into a persons
identity, intent, attitude, aesthetics as well as health, solely
based on their face images.

Besides establishing an individuals identity, ancillary in-
formation may also be gleaned from face images related to
personal attributes such as gender, age and ethnicity. Gen-
der and specifically automated gender estimation has been
of specific interest for its broad application range, be it
in surveillance [67], human computer-interaction, anonymous
customized advertisement systems1 or image retrieval sys-
tems [6], leading to numerous commercial applications234.
Also, gender has been a prominent soft-biometric trait [21],
[23], which can be employed (a) in fusion with other bio-
metric traits to improve the matching accuracy of a biometric
system [45], (b) in fusion with other soft biometrics for person
authentication [19], [20], or (c) as a filter for search space
reduction [22].

Automated gender estimation remains a challenging re-
search area, due to large intra-class variation [52], and also
due to challenges concerning illumination, as well as pose,
age and ethnicity of a person. Further, facial expressions
have a negative affect on the accuracy of automated gender
estimation systems. This is why the majority of previous works
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have extracted and studied appearance-based features under
the simplifying assumption of neutral face expressions with
reasonably good results.

A. Gender and emotional expression
Deviating from such works, we here introduce the usage

of a set of dynamic facial features for gender estimation.
Specifically, we focus on extracting dynamic features from
a common facial expression, namely the smile, and study
how smile-dynamics encrypt gender evidence. The hypothesis
is that male and female smile-dynamics differ in parameters
such as intensity and duration. This hypothesis is supported in
part by a number of cognitive-psychological studies, showing
evidence for gender-dimorphism in the human expression [14],
[74], [41], [1], [51], [25]. A main observation of such studies
has been that females express emotions more frequently than
males, and in the context of smile, females tend to smile
more often than men in a variety of social contexts [25]. Such
observations follow the theorem of men exhibiting restrictive
emotionality and thus being unwilling to self-disclose intimate
feelings. It is interesting to note, that a gender-based difference
in emotional expression is observed as early as in 3 months
old, shaped by how caregivers interact to male and female
infants [33]; and also observed in toddlers, which appears to be
further trained in social interactions [16], [56], [57]. Moreover,
females are more accurate expressers of emotion, when posing
deliberately and when observed unobtrusively, which is consis-
tent across cultures [11]. The same work assigns happiness and
fear as female-gender-stereotypical expressions. On the other
hand, faces showing anger are considered more masculine [41],
[40], [42], [43], [4], [5], [83] in the context of human gender
recognition.

B. Contributions
Motivated from the above, we propose the use of an au-

tomated framework for facial dynamics extraction based on
signal displacement of facial distances between key facial land-
marks. We analyze the properties of 27 such facial distances
in smile-video-sequences with emphasis on spontaneous, as
well as posed smiles. The proposed dynamic features are
fully complementary to appearance based features, and when
combined with appearance, can pose an increased difficulty for
spoof-attacks. We have adopted the approach from Dibeklioğlu
et al. [27], [28], where it has been used for age estimation, as
well as spontaneous vs. posed smile detection based on facial
dynamics, see also [29], [26].

The use of the framework is instrumental in answering
following questions:
• Do facial dynamics provide information about gender

in (a) spontaneous smile- and (b) posed smile video
sequences?
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• Can facial smile dynamics improve the accuracy of
appearance based gender estimation systems?

• Which gender can pose smiles more genuinely?
Related work of a holistic smile-based gender estimation

algorithm can be found in Biliński et al. [9].

C. Structure of paper

This work is organized as follows: Section I-D revisits
existing works on gender estimation. Section II proceeds to
describe the proposed method, elaborating on individual steps
(face detection, landmark location, selected features, statistics
of dynamic features, feature selection, classification and used
appearance features). Section III presents the employed dataset
and the subsequent Section IV depicts and discusses related
experimental results. Finally Section V concludes the paper.

D. Related work

Gender estimation Existing introductory overviews for
algorithms related to gender estimation include the works
of Ng et al. [61], Bekios-Calfa et al. [7], Ramanathan et
al. [65], Mäkinen and Raisamo [54] and Dantcheva et al. [21].
Based on these works we can conclude that gender estimation
remains a challenging task, which is inherently associated with
different biometric modalities including fingerprint, face, iris,
voice, body shape, gait, signature, DNA, as well as clothing,
hair, jewelery and even body temperature. The forensic litera-
ture [52] suggests that the skull, and specifically the chin and
the jawbone, as well as the pelvis, are the most significant
indicators of the gender of a person; in juveniles, these shape-
based features have been recorded to provide classification
accuracy of 91%− 99%.

Humans are generally quite good at gender recognition from
early in life (e.g., [62], [64]), probably reflecting evolutive
adaptation. As pointed out by Edelman et al. [30], humans
perform facial image based gender classification with an error
rate of about 11%, which is commensurate to that of a neural
network algorithm performing the same task.

Dynamics have been used in the context of body-based
classification of gender. Related cues include body sway,
waist-hip ratio, and shoulder-hip ratio (see [59]); for example,
females have a distinct waist-to-hip ratio and swing their hips
more, whereas males have broader shoulders and swing their
shoulders more.

Despite these recent successes, automated gender recogni-
tion from biometric data remains a challenge and is impacted
by other soft biometrics, for example, age and ethnicity; gender
dimorphism is accentuated only in adults, and varies across
different ethnicities.

Automated Image-based Gender Estimation from Face
In gender estimation from face, feature-based approaches ex-
tract and analyze a specific set of discriminative facial features
(patches) in order to identify the gender of a person. This is
a particularly challenging problem, as is implied from the fact
that female and male average facial shapes are generally found
to be very similar [50].

Another challenge comes to the fore in unconstrained
settings with different covariates, such as illumination, ex-
pressions and ethnicity. While in more constrained settings,
face-based gender estimation has been reported to achieve
classification rates of up to 99.3% (see Table I), this per-
formance though significantly decreases in more realistic and
unconstrained settings.

The majority of gender classification methods contain two
steps preceding face detection, namely feature extraction and
pattern classification.

Feature extraction: Notable efforts include the use of
SIFT [75], LBP [54], semi-supervised discriminant analysis
(SDA) [8] or combinations of different features [36], [79].

Classification: A number of classification methods have
been used for gender estimation, and a useful comparative
guide of these classification methods can be found in Mäkinen
and Raisamo [55]. One interesting conclusion of their work
was that image size did not greatly influence the classification
rates. This same work also revealed that manual alignment
affected the classification rates positively, and that the best
classification rates were achieved by SVM.

The area of gender estimation has also received some other
contributions such as those that go beyond using static 2D
visible spectrum face-images. Interesting related work include
the work of Han et al. [39], exploring 3D images, Gonzalez–
Sosa et al. [35], studying jointly body and face, and Chen and
Ross [18], [69], using near-infrared (NIR) and thermal images
for gender classification.

Expression Recognition Automated expression recognition
has received increased attention in the past decade, since it is
particularly useful in a variety of applications, such as human
computer interaction, surveillance and crowd analytics. The
majority of methods aim to classify 7 universal expressions
namely neutral, happy, surprised, fearful, angry, sad, and
disgusted [82] based on the extracted features used. Classi-
cal approaches follow Ekman’s facial action coding system
(FACS) [31], assigning each facial unit to represent movement
of a specific facial muscle. In this context, intensity and
number of facial units have been studied, as well as of action
unit combinations, towards expression recognition. Interesting
work can be found in related survey papers [84], [58], [71] and
in a related recent expression-recognition-challenge-study [76].
Latest advances involve deep learning [85], [47].

Inspired by cognitive, psychological and neuroscientific
findings, facial dynamics have been used previously towards
improving face recognition [38], gender estimation [24], age
estimation [27], as well as kinship recognition reported in a
review article by Hadid et al. [37].

II. DYNAMIC FEATURE EXTRACTION IN
SMILE-VIDEO-SEQUENCES

Deviating from the above works on gender estimation, we
propose to extract dynamic features in smile-video-sequences.
The general scheme is shown in Fig. 1. Specifically we focus
on signal displacement of facial landmarks, as we aim to study
among others the pertinence of different facial landmarks, as
well as the pertinence of different statistical properties of facial
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TABLE I. OVERVIEW OF FACE-BASED GENDER CLASSIFICATION ALGORITHMS. ABBREVIATIONS USED: PRINCIPAL COMPONENT ANALYSIS (PCA),
INDEPENDENT COMPONENT ANALYSIS (ICA), SUPPORT VECTOR MACHINES (SVM), GAUSSIAN PROCESS CLASSIFIERS (GPC), ACTIVE APPEARANCE

MODEL (AAM), LOCAL BINARY PATTERN (LBP), ACTIVE SHAPE MODEL (ASM), DISCRETE COSINE TRANSFORM (DCT), SEMI-SUPERVISED
DISCRIMINANT ANALYSIS (SDA).

Work Features Classifier Datasets used Performance
for evaluation numbers

Bekios-Calfa et al. (2007) [7] SVM UCN (nonpublic), 10,700 images 93.46%± 1.65%

PCA LDA FERET, 994 images 93.57%± 1.39%

LCA LDA PAL, 576 images 93.57%± 1.39%

Xia et al. (2008) [80] LBP, Gabor SVM CAS-PEAL, 10,784 images 93.74%

Mäkinen and Raisamo (2008) [55] LBP SVM FERET, 411 images 86.54%

Baluja and Rowley (2008) [3] Raw pixels Adaboost FERET, 2,409 images 93%

Gao and Ai (2009) [34] ASM Adaboost Private, 1,300 images 92.89%

Toews and Arbel (2009) [75] SIFT Bayesian FERET, 994 images 83.7%

Shan (2010) [72] LBP Adaboost LFW, 7,443 images 94.44%

Guo et al. (2009) [36] LBP, HOG, BIF SVM YGA, 8,000 images 89.28%

Wang et al. (2010) [79] SIFT, context Adaboost FERET, 2,409 images 95.0%

Nazhir et al. (2010) [60] DCT KNN SUMS, 400 images 99.3%

Ross and Chen (2011) [69] LBP SVM CBSR NIR, 3,200 images 93.59%

Cao et al. (2011) [12] Metrology SVM MUCT, 276 images 86.83%

Hu et al. (2011) [44] Filter banks SVM Flickr, 26,700 images 90.1%

Bekios-Calfa et al. (2011) [8] SDA PCA Multi-PIE, 337 images 88.04%

Shan (2012) [73] Boosted LBP SVM LFW, 7,443 94.81%

Ramón-Balmaseda (2012) [66] LBP SVM MORPH, LFW, Images of Groups, 17,814 75.10%

Jia and Cristianini (2015) [46] Multi-scale LBP C-Pegasos Private, 4 million images 96.86%

Fig. 1. Proposed framework for automatic gender estimation.

dynamics (e.g. intensity and duration) in the effort of gender
estimation.

Towards extraction of such dynamic features, we assume
a near frontal pose of the subject and an initial near-neutral
expression of the subject (given in the used dataset).

A. Face Detection and Extraction of Facial Landmarks
Firstly we detect the face using the well established Viola

and Jones algorithm [78]. We here note that the faces were
robustly detected in all video sequences and frames. Within the
detected face we identify facial feature points corresponding to
points in the regions of the eye brows, eyes, nose and lips (see
Fig. 5). Specifically we employ the facial landmark detection
algorithm proposed in the work of Asthana et al. [2]. The
algorithm is an incremental formulation for the discriminative
deformable face alignment framework [81], using a discrimi-
native 3D facial deformable shape model fitted to a 2D image

by a cascade of linear regressors. The detector was trained
on the 300W -dataset (a dataset introduced in the context of
the 300 faces in-the-wild challenge [70]) and detects 49 facial
landmarks (see Fig. 5). For the UvA Nemo-dataset the facial
landmarks were detected robustly in all video sequences and
frames. We use these points to initialize a sparse optical flow
tracking algorithm, based on the Kanade-Lucas-Tomasi (KLT)
algorithm [53] in the first frame of each video-sequence. For
the here proposed framework we select a subset of facial-points
in three different face regions: (a) eye brow region, (b) eye
region, (c) mouth region (see Fig. 2) and proceed to extract
dynamic features thereof.

B. Extraction of Dynamic Features
We extract dynamic features corresponding to the signal-

displacement in facial-distances depicted in Table II. We have
selected 27 such facial-distances based on findings on facial
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TABLE II. EXTRACTED SIGNAL-DISPLACEMENT-FUNCTIONS CONTRIBUTING TO DYNAMIC FEATURES. ρ DENOTES THE DISTANCE BETWEEN FACIAL
LANDMARKS, li DENOTES THE ith LANDMARK POINT, AS ILLUSTRATED IN FIG. 2.

Facial Distance Description Description by facial landmarks
D1 Width of right eye ρ(

l14+l15
2 ,

l17+l18
2 )

D2 Width of left eye ρ(
l8+l9

2 ,
l11+l12

2 )

D3 Length of right eye ρ(l13, l16)

D4 Length of left eye ρ(l7, l10)

D5 Length of mouth ρ(l19, l24)

D6 Width of mouth ρ(l22, l25)

D7 Center of mouth to left side of upper lip ρ(
l22+l25

2 , l21)

D8 Center of mouth to right side of upper lip ρ(
l22+l25

2 , l23)

D9 Center of mouth to left mouth corner ρ(
l22+l25

2 , l19)

D10 Center of mouth to right mouth corner ρ(
l22+l25

2 , l24)

D11 Center of mouth to upper lip ρ(
l22+l25

2 , l27)

D12 Center of mouth to average distance of two mouth corners ρ(
l22+l25

2 ,
l19+l24

2 )

D13 Left side of right eyebrow to nose ρ(l4, l26)

D14 Right side of left eyebrow to nose ρ(l3, l26)

D15 Center of right eyebrow to right side of the right eyebrow ρ(l5, l6)

D16 Center of right eyebrow to left side of the right eyebrow ρ(l5, l4)

D17 Center of left eyebrow to right side of the left eyebrow ρ(l2, l3)

D18 Center of left eyebrow to left side of the left eyebrow ρ(l2, l1)

D19 Distance between eyebrows ρ(l3, l4)

D20 Left corner of left eye to left mouth corner ρ(l7, l19)

D21 Right corner of left eye to center of mouth ρ(l10,
l22+l25

2 )

D22 Left corner of right eye to center of mouth ρ(l13,
l22+l25

2 )

D23 Right corner of right eye to right mouth corner ρ(l16, l24)

D24 Upper side of left eye to right corner of left eyebrow ρ(
l8+l9

2 , l3)

D25 Upper side of right eye to left corner of right eyebrow ρ(
l14+l15

2 , l4)

D26 Upper side of left eye to left corner of left eyebrow ρ(
l8+l9

2 , l1)

D27 Upper side of right eye to right corner of right eyebrow ρ(
l14+l15

2 , l6)

Fig. 2. Subset of landmarks extracted by the Asthana et al. algorithm [2]
used in the proposed algorithm.

movements during smile-expressions [68].
1) Temporal smile-segmentation: Generally, the human

smile is caused by the contraction of the zygomatic major
muscle, which raises the corners of the lips [32], corresponding
to “Action Unit Nr. 12” in Ekman’s facial action coding
system [31]. Temporally segmented, the human smile contains
three phases: (a) onset: contraction of the zygomatic major
muscle and alteration from neutral to expressive state, (b) apex:
peak period of the expressive state, and (c) offset: relaxation
of the zygomatic major muscle and change from expressive
to neutral state. We here note that there are dozens of smile-

classes, differing in appearance and meaning.
The next step in our method is to temporally segment

the signal-displacement functions as: (a) onset: duration of
monotonous increase, (b) apex: phase between onset and offset,
(c) offset: duration of monotonous decrease. Fig. 3 illustrates
two examples of signal-displacement in the mouth-region
(D5, mouth length), leading to a smile-curve with differently
pronounced onset, apex and offset phases.

We smoothen each of the 27 signal displacement functions
by the 4253H-twice smoothing algorithm [77] to flatten minor
tracking-flaws.

2) Statistics of Dynamic Features: We proceed to extract
statistics from each dynamic function with respect to the
particular smile-phases, denoted by the superindices (+) for
onset, (a) for apex, and (−) for offset, which we summarize
in Table III. We compute the speed as V (t) = dD

dt and the
acceleration as A = d2D

dt2 = dV
dt . We denote the number of

frames by η, frame rate of the video sequence by ω. Each of
the defined 27 signal-displacement-functions are represented
by a set of 24 features, resulting in a 648-dimensional feature
vector.

C. Feature Selection

We use the Min-Redundancy Max-Relevance (mRMR) al-
gorithm [63] for selecting the permanent dynamic proposed
features. mRMR minimizes the redundancy, while selecting
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TABLE III. EXTRACTED DYNAMIC FEATURE STATISTICS. η DENOTES THE NUMBER OF FRAMES, D DENOTES THE RESPECTIVE DYNAMIC FEATURE,
V (t) = dD

dt
DENOTES THE SPEED, A = d2D

dt2
= dV

dt
DENOTES THE ACCELERATION, ω DENOTES THE FRAME RATE OF THE VIDEO SEQUENCE. THE

SUPERSCRIPT + DENOTES THE ONSET, SUPERSCRIPT a DENOTES THE APEX, SUPERSCRIPT − DENOTES THE OFFSET.

Feature Definition

General Onset Apex Offset

Duration η(D+)
ω

η(Da)
ω

η(D−)
ω

Duration Ratio η(D+)
η(D)

η(D−)
η(D)

Maximal Amplitude max(D)

STD of Amplitude std(D)

Mean Amplitude mean(D+) mean(Da) mean(D−)

Total Amplitude
∑

(D+)
∑

(|D−|)

Net Amplitude
∑

(D+)−
∑

(|D−|)

Amplitude Ratio
∑

(D+)∑
(D+)+

∑
(D−)

∑
(D−)∑

(D+)+
∑

(D−)

Maximal Speed max(V +) max(V −)

Mean Speed mean(V +) mean(V −)

Maximum Acceleration max(A+) max(A−)

Mean Acceleration mean(A+) mean(A−)

Net Ampl., Duration Ratio (
∑

(D+)−
∑

(|D−|))ω
η(D)

the most relevant information:

max
fj∈F−Sm−1

I(fj , c)− 1

m− 1

∑
fi∈Sm−1

I(fj , fi)

 , (1)

with I being the mutual information function, c the target
class, F the feature set, and Sm−1 set of m− 1 features. The
mutual information I of a feature fj and the target class c is
computed based on the related probability density functions
p(fj), p(c) and p(fj , c) as follows

I(fj ; c) =

∫ ∫
p(fj , c) log

p(fj , c)

p(fj)p(c)
dfjdc. (2)

D. Classification
A pattern classifier, trained on labeled data, is used to

classify the feature vector into one of two classes: male or
female.

We utilized linear Support Vector Machines (SVM) [15],
AdaBoost [6] and Bagged Trees [10] in this work. For SVM
the Gaussian RBF kernel is used. The optimum values for C
and the kernel parameter γ are obtained by a grid-search of
the parameter space based on the training set.

E. Extracted Appearance Features
OpenBR [49] is a publicly available open source soft-

ware for biometric recognition and evaluation. We utilize the
gender estimation algorithm, based on the work of Klare et
al. [48]. Specifically, a face image is represented by extracting
histograms of local binary pattern (LBP) and scale-invariant
feature transform (SIFT) features computed on a dense grid of
patches. Subsequently, the histograms from each patch are pro-
jected onto a subspace generated using Principal Component

Analysis (PCA) in order to obtain a feature vector. Support
Vector Machine (SVM) is used for the final gender estimation.
The OpenBR gender classification algorithm has been vali-
dated on a FERET5 subset, attaining accuracies of 96.91% and
82.98% for male and female classification, respectively and an
overall true classification rate of 90.57% [17], outperforming
other algorithms (Neural Network, Support Vector Machine,
etc.) on the same dataset [54].

how-old.net is a website (http://how-old.net/) launched by
Microsoft for online age and gender recognition. Images can be
uploaded and as an output age and gender labels are provided.
The underlying algorithm and training dataset are not publicly
disclosed.

Commercial Off-the-Shelf (COTS) is a commercial face
detection and recognition software, which includes a gender
classification routine. The underlying algorithm and the train-
ing dataset that were used are not publicly disclosed. The
system does not provide a mechanism to re-train the algorithm
based on an external dataset; instead it is a black box that
outputs a label (i.e., male or female) along with a confidence
value.

Since the video-sequences of the UvA-NEMO dataset start
with the neutral expression of the portrayed subject, the first
frame is utilized to extract appearance features.

F. Fusion of Dynamic and Appearance Features

We concatenate score-levels obtained from the appearance
based-algorithms with features obtained from the feature se-
lection step of the dynamics-framework. We utilize PCA to
reduce the dimension and obtain a fused feature vector.

5http://www.nist.gov/itl/iad/ig/colorferet.cfm
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(a)

(b)

Fig. 3. Signal displacement in mouth-region (D5, mouth length) for (a)
female and (b) male subject from the UvA-NEMO dataset [28]. Example
(a) shows the three profound smile phases: onset as the monotonic increasing
phase, apex the (relatively) flat peak phase and offset the monotonic decreasing
phase, example (b) on the other hand has a less pronounced apex-phase.

III. UVA-NEMO SMILE-DATASET

The UvA-NEMO Smile Dataset6, introduced by Dibeklioğlu
et al. [28], consists of multiple video sequences of 400 subjects
(185 females, 215 male). The age of the subjects ranges
from 8 to 76 years, see Fig. 4 for the age-distribution. For
the most of the subjects there are two videos per subject
displaying: (a) spontaneous smile and (b) posed smile. To
elicit spontaneous smiles, each subject was displayed a short
funny video segment. Each video starts and ends with neutral
or a near-neutral expression of the subject (see Fig. 5). The
pose of the subjects is frontal and the illumination condition
is reasonably constant across subjects. The resolution of the
videos is 1920 x 1080 pixels at a framerate of 50 frames per
second. This dataset has been used for the analysis of smiles
for different ages [28] and for smile-based age analysis [27].

We note that the ethnicity of subjects in the UvA-NEMO
dataset is predominantly Caucasian, hence the current study
does not reflect on covariates such as ethnicity, as well as
social and cultural background.

6http://www.uva-nemo.org

Fig. 4. Age and gender distributions of the subjects in the UvA-Nemo
database, part ’spontaneous smile’ containing 357 subjects.

(a) (b) (c)

(d) (e) (f)

Fig. 5. Example male and female subjects from the UvA-NEMO dataset
expressing spontaneous smiles. Detected face and facial landmarks of (a),(d)
the first frame, (b),(e) in a peak-apex-frame, (c),(f) last frame of the video
sequence.

A. Effect of Age
The UvA-NEMO dataset consists of images of subjects in

the age-range of 8 to 76 years. The ability of dynamics to
predict age, and thus the impact of age on a small set of
facial dynamics has been previously assessed in the work
of Dibeklioğlu et al. [27], where results suggest that facial-
dynamics change significantly with age. Consequently we
present our results based on age-categories.

IV. RESULTS

In order to evaluate the performance of the proposed gender
estimation algorithm, we employ a 15-fold cross-validation
scheme. Here, the UvA-NEMO dataset is divided into 15 folds
with approximately 24 subjects in each fold. 14 folds are used
for training the dynamic gender-estimation algorithm, and the
remaining fold is used for testing it. This is repeated 15 times
and reported results are the average thereof. Note that the
subjects in the training set are not present in the test set.
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A. Dynamics versus Appearance
Table IV firstly depicts the discriminative power of the two

complementary characteristics individually for spontaneous
smiles. As mentioned above, we report age-based gender
recognition accuracy. Since training is required for the dy-
namics based gender estimation (and hence larger amount of
subjects per group), we merge age-groups to two main groups:
< 20 years and > 19 years and provide the associated results
in Table IV. We observe that the appearance based gender
algorithms perform significantly better for the age category
> 19 years and rather poorly in the age category < 20 years.
This can be due to age-unbalanced training sets or merely due
to poor feature performance for toddlers and adolescents, due
to low sexual dimorphism. The related confusion matrices for
the age category > 19 years are shown in Table V.

Dynamics based gender estimation: Interestingly, dynamic
features (True Gender Classification Rate TGCR = 59.44%)
outperform two of the three appearance based features
(TGCROpenBR = 52.45% and TGCRhow−old.net =
51.05%) in the first age-category. While, appearance-based
features are more reliable for the age category > 19 years with
TGCROpenBR = 78.04%, TGCRhow−old.net = 93.46%,
TGCRCOTS = 92.52%; dynamics-based features obtain a
noticeable accuracy of 67.81%. The latter suggests that facial
smile-dynamics carry substantial cues related to gender of
the subject. The confusion matrix is rather balanced in the
dynamics-based gender estimation (Table V (d)).

We note that fusion of appearance and smile-dynamic-
based gender estimation either increases the performance of
appearance based algorithms (e.g., for OpenBR in both age
classes, for how-old.net in the younger age-class and for COTS
in the older age-class) or does not impact it negatively. Related
confusion matrices are shown in Table V.

In our related work [9], we have presented a holistic ap-
proach for smile-based gender estimation, that extracts spatio-
temporal features based on dense trajectories, represented by
a set of descriptors encoded by Fisher Vectors. The associated
true gender classification rates account for 86.3% for adoles-
cents, and 91.01% for adults.

B. Spontaneous versus posed smile
We also provide results on the posed-smile subset of the

UvA-NEMO dataset presented in Table VI. Interestingly, the
associated dynamics-based gender-estimation accuracy resem-
bles strongly the spontaneous-smile-case. The difference in
performance origins in the slightly larger posed-smile subset-
size, that contributes to larger trainings-sets in the case of
dynamics-based gender classification, as well as in the fusion
of appearance and dynamics-based features. Nevertheless, the
results suggest that dynamics of posed smiles carry significant
cues on gender, similarly to spontaneous smiles. The related
confusion matrices are shown in Table VII.

This result is in agreement with psychological findings,
that show that females are more accurate expressers of emo-
tion, when posing deliberately and when observed unobtru-
sively [11], hinting that posing a smile carries gender-specific
cues.

TABLE VI. POSED SMILE. TRUE GENDER CLASSIFICATION RATES.
AGE GIVEN IN YEARS.

Combined Age-Groups < 20 > 19

Subj. amount 143 225

Dynamics (SVM) 59.44% 66.22%

OpenBR + Dynamics (Bagged Trees) 60.8% 80%

how-old.net 51.05% 93.78%

how-old.net + Dynamics (SVM) 60.8% 92.89%

COTS 76.92% 92%

COTS + Dynamics (Bagged Trees, PCA) 76.92% 92.89%

C. Gender divergence in spontaneous and posed smiles

We seek to answer the question, whether males or females
pose smiles more genuinely and whether there is a significant
divergence. Towards this, we combine features in all possible
sets and compute Euclidean distances between sets in the
spontaneous and the associated sets in the posed-smile-case.
Fig. 6 illustrates the related results for the most diverging
case between males and females. Females have slightly lower
distances, suggesting that females pose smiles more realisti-
cally; however, the disparity is not significant. This tendency
conforms with previous psychological findings [11].

Fig. 6. Distributions of Euclidean distances between posed and spontaneous
feature vectors for male and female subjects in the UvA-NEMO dataset.

D. Discriminative Features

We here analyze the individual discriminability of the se-
lected dynamic-features for the 27 distances. Towards this, we
estimate gender based on each feature individually. Hence, we
train and test an SVM-classifier with each feature individually
for the two age groups, < 20 and > 19 years. We report for
each age group the most discriminative features respectively
(see Table VIII and Table IX). The most striking outcome is
that the majority of discriminative features are in the mouth
region. It is also interesting to note that while for the younger
group D10 (Center of mouth to right mouth corner) and D7

(Center of mouth to left side of upper lip) and the onset-phase
are predominant, for the older group D5 (Length of mouth)
and mainly the offset-phase is more profound. This hints that
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TABLE IV. SPONTANEOUS SMILE. TRUE GENDER CLASSIFICATION RATES. AGE GIVEN IN YEARS.

Age < 10 10− 19 20− 29 30− 39 40− 49 > 49

Subj. amount 48 95 60 49 72 33

OpenBR 58.33% 50.53% 81.67% 75.51% 75% 81.82%

how-old.net 39.58% 56.84% 95% 87.76% 98.61% 87.88%

COTS 77.08% 76.84% 93.33% 89.8% 94.44% 90.91%

Merged Age-Groups < 20 > 19

Subj. amount 143 214

Dynamics (PCA, SVM) 59.44% 67.81%

OpenBR 52.45% 78.04%

OpenBR + Dynamics (Bagged Trees) 60.1% 78.97%

how-old.net 51.05% 93.46%

how-old.net + Dynamics (Tree) 60.8% 93.46%

COTS 76.92% 92.52%

COTS + Dynamics (Tree) 76.92% 93%

TABLE V. SPONTANEOUS SMILE IN AGE CATEGORY > 19: CONFUSION MATRIX FOR MALES AND FEMALES FOR (A) APPEARANCE FEATURES #1
(OPENBR) (DENOTED AS APP. 1), (B) APPEARANCE FEATURES #2 (how-old.net) (DENOTED AS APP. 2) , (C) APPEARANCE FEATURES #3 (COTS)

(DENOTED AS APP. 3), (D) DYNAMIC FEATURES (DENOTED AS DYN.), (E) DYNAMIC AND APPEARANCE FEATURES #1 (DENOTED AS DYN. + APP. 1), (F)
DYNAMIC AND APPEARANCE FEATURES #2 (DENOTED AS DYN. + APP. 2), (G) DYNAMIC AND APPEARANCE FEATURES #3 (DENOTED AS DYN. + APP. 3).

(a) App. 1 (b) App. 2 (c) App. 3 (d) Dynamics (e) Dyn. + App. 1 (f) Dyn. + App. 2 (g) Dyn. + App. 3

Male Female Male Female Male Female Male Female Male Female Male Female Male Female

Male 61.8% 38.2% 94.5% 5.5% 99.1% 0.9% 70.0% 30.0% 78.18% 21.82% 94.5% 5.5% 99.1% 0.9%

Female 4.8% 95.2% 7.7% 92.3% 14.4% 85.6% 34.62% 65.38% 20.19% 79.81% 7.7% 92.3% 12.5% 86.54%

TABLE VII. POSED SMILE IN AGE CATEGORY > 19:CONFUSION MATRIX FOR MALES AND FEMALES FOR (A) APPEARANCE FEATURES #1 (OPENBR)
(DENOTED AS APP. 1), (B) APPEARANCE FEATURES #2 (how-old.net) (DENOTED AS APP. 2) , (C) APPEARANCE FEATURES #3 (COTS) (DENOTED AS APP.

3), (D) DYNAMIC FEATURES (DENOTED AS DYN.), (E) DYNAMIC AND APPEARANCE FEATURES #1 (DENOTED AS DYN. + APP. 1), (F) DYNAMIC AND
APPEARANCE FEATURES #2 (DENOTED AS DYN. + APP. 2), (G) DYNAMIC AND APPEARANCE FEATURES #3 (DENOTED AS DYN. + APP. 3).

(a) App. 1 (b) App. 2 (c) App. 3 (d) Dynamics (e) Dyn. + App. 1 (f) Dyn. + App. 2 (g) Dyn. + App. 3

Male Female Male Female Male Female Male Female Male Female Male Female Male Female

Male 62.34% 37.66% 94.81% 5.19% 98.7% 1.3% 68.1% 31.9% 75% 25% 93.97% 6.03% 99.14% 0.86%

Female 1.52% 98.48% 7.58% 92.42% 15.15% 84.85% 35.78% 64.22% 14.68% 85.32% 8.26% 91.74% 13.76% 86.24%

sexual dimorphism can be gleaned from the asymmetrical-
onset in adolescents. On a related note, a recent psychological
study [13] has found that expressions shown on the left
hemi-face (LHF) were rated as more intense, and furthermore
that spontaneous expressions start earlier in the LHF. Hence
expressions in both hemi-faces are not fully redundant.

Description of most discriminative features In adoles-
cents, females tended to show longer Duration Ratio – Offset
and longer Duration – Onset on the right side of the mouth
and higher Amplitude Ratio – Onset on the left side of the
mouth, than males. In adults, females tended to show higher
Mean Amplitude – Apex of mouth opening, higher Maximum
Amplitude on the right side of the mouth, as well as faster
Mean Speed – Offset on the left side of the mouth, than males.
Figure 7 illustrates the boxplots for the five most discriminative
features in the age category > 19 years for spontaneous smile.

We here note, that the selected features for the proposed al-

gorithm in previous sections do not correspond to the presented
features in this section, since a mutual information function
prunes out correlated features in the selection process, which
we do not consider here.

V. CONCLUSIONS

In this work we introduced smile-based dynamic facial fea-
ture extraction for gender estimation. The proposed dynamics-
based gender estimation algorithm predominantly improves
the performance of three state-of-the-art appearance-based
gender estimation algorithms. We observe that dynamics can
outperform appearance-based features for subjects younger
than 20 years old; while facial appearance features are more
discriminative for older subjects. We show that appearance and
dynamics-based features are complementary and the combina-
tion thereof beneficial. Our results further suggest that gender
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(a) D11 Mean Amplitude Apex (b) D8 Maximum Amplitude (c) D9 Mean Speed Offset (d) D5 Mean Acceleration Offset

Fig. 7. Boxplots of most discriminative features in age category > 19 years. Females tended to show longer Mean Amplitude Apex of mouth opening, a
higher Maximum Amplitude on the right side of the mouth, as well as a shorter Mean Speed Offset on the left side of the mouth, than males. Further the Mean
Acceleration Offset of the mouth length is shorter for females than for males.

TABLE VIII. MOST DISCRIMINATE DYNAMIC FEATURES FOR AGE
< 20. TGCR...TRUE GENDER CLASSIFICATION RATE.

Distance Feature TGCR

D10 Duration Ratio Offset 65.73%

D7 Amplitude Ratio Onset 63.64%

D10 Duration Onset 62.94%

D10 Total Amplitude Onset 62.24%

D9 Maximum Amplitude 62.24%

D10 Mean Amplitude Onset 62.24%

D7 Amplitude Ratio Offset 62.24%

D10 Maximum Amplitude 61.54%

TABLE IX. MOST DISCRIMINATE DYNAMIC FEATURES FOR AGE > 19.
TGCR...TRUE GENDER CLASSIFICATION RATE.

Distance Feature TGCR

D11 Mean Amplitude Apex 62.15%

D8 Maximum Amplitude 61.68%

D9 Mean Speed Offset 61.54%

D5 Mean Acceleration Offset 60.28%

D5 Amplitude Ratio Offset 60.28%

D5 Duration Offset 60.28%

D5 Maximum Acceleration Offset 60.14%

D1 Duration Apex 59.81%

is mainly exhibited in dynamics in the mouth-region among
the studied facial dynamic-features. Finally, we analyzed the
gender-dimorphism of both, spontaneous and posed smiles and
observe that both carry substantial cues for gender.
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