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Abstract. Temporal Action Detection (TAD), the task of localizing and
classifying actions in untrimmed video, remains challenging due to ac-
tion overlaps and variable action durations. Recent findings suggest that
TAD performance is dependent on the structural design of transformers
rather than on the self-attention mechanism. Building on this insight,
we propose a refined feature extraction process through lightweight, yet
effective operations. First, we employ a local branch that employs paral-
lel convolutions with varying window sizes to capture both fine-grained
and coarse-grained temporal features. This branch incorporates a gating
mechanism to select the most relevant features. Second, we introduce a
context branch that uses boundary frames as key-value pairs to analyze
their relationship with the central frame through cross-attention. The
proposed method captures temporal dependencies and improves contex-
tual understanding. Evaluations of the gating mechanism and context
branch on challenging datasets (THUMOS14 and EPIC-KITCHEN 100)
show a consistent improvement over the baseline and existing methods.

Keywords: Action localization · Feature Selection · Gating · Cross-
Attention

1 Introduction

Temporal Action Detection (TAD) involves localizing actions within untrimmed
video sequences. Despite significant advances in the field, several challenges re-
main unaddressed. Accurate action detection requires capturing temporal rela-
tionships between frames, a challenging task because of simultaneous actions
and varying duration of actions. Moreover, distinguishing between similar ac-
tions also requires understanding the context in which the action occurs, and
feature extraction without inducing excessive complexity remains a problem in
long, untrimmed videos.

Recent work of Shi et al. [21] has demonstrated that the performance of
TAD models is not necessarily dependent on the self-attention mechanism but
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rather on the macro architecture of the transformer. Inspired by this finding,
our study builds upon the TriDet architecture [21] and focuses on refining the
feature extraction process.

The contributions of this work are two-fold. The proposed method relies on a
local branch that employs two parallel convolutions with different window sizes
to capture both fine-grained and coarse-grained temporal features. We introduce
a gating mechanism to select the most discriminatory features based on the con-
volution output. This selective process increases the model’s ability to prioritize
relevant information in action detection. In addition, We introduce a context
branch that utilizes peripheral frames in the receptive field of the convolutional
kernel as key-value pairs and examines their relationship with the central frame
through cross-attention. This approach captures temporal dependencies, pro-
viding a more nuanced contextual understanding of action sequences. Finally,
we perform experiments and ablation studies on challenging datasets (THU-
MOS14 [12] and EPICKITCHEN 100 [9]) to assess the impact of the gating
mechanism and the context branch.

2 Related Work

This section discusses recent advancements and approaches in TAD, including
both two-stage and one-stage models, as well as the importance of feature selec-
tion and gating mechanisms in improving deep learning models’ performance.

Two stage TAD. From a high-level perspective, TAD models can be categorized
into one-stage and two-stage models. Two-stage methods [2,4,13,30], similar to
two-stage object detectors, approach the action localization problem by dividing
it into two distinct stages: proposal generation and subsequent classification of
these proposals. The main focus of these works is to generate action proposals,
either by classifying actions from specific anchor windows [4,13] or by predicting
the action boundaries [2, 30]. The main drawbacks of these methods are their
inherent complexity and their inability to be trained in an end-to-end manner.

One stage TAD. On the other hand, one-stage methods aim to identify actions
in videos in a single step, without the preliminary action proposals. These meth-
ods streamline the action detection process, making it faster and more efficient.
Based on the success of transformer models in the field of computer vision, the
majority of TAD models rely on attention mechanisms. PDAN [8] uses the Di-
lated Attention Layer (DAL) as a building block to capture the local context
through dilated convolutions and attention mechanisms. These layers are orga-
nized in a feature pyramid to handle actions with different temporal lengths.
ActionFormer [28] employs a transformer-based architecture and constructs hi-
erarchical representations of video sequences to model and capture actions oc-
curring at different temporal scales. Other works [16, 22] draw inspiration from
transformer-based object detection methods [5] and use a set of learnable in-
put queries to decode a set of action predictions. TALLFormer [7] leverages a
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long-term memory module for action understanding. A short-term transformer
module extracts features from a randomly sampled set of frames, while the other
features are obtained from long-term memory.

More recently, TriDet [21] demonstrated that the efficiency of recent TAD
models is more related to the overall architecture of the transformer models than
to the self-attention mechanism. The authors proposed the Scalable-Granularity
Perception (SGP) layer for feature extraction which uses solely convolution oper-
ations. This layer mitigates the rank loss problem across the temporal dimension
and the high computational overhead of the attention mechanism. Additionally,
the Tridet architecture models action boundaries by estimating a relative proba-
bility distribution around those boundaries. [20] extends TriDet by building two
separate feature pyramids using different backbones: the temporal-level feature
pyramid and the spatial-level feature pyramid. The temporal-level feature pyra-
mid is directly fed into the classification head. Meanwhile, both pyramids are
combined through element-wise summation at each pyramid level and fed into
the Trident localization head.

Feature selection and gating. Several works [11, 24] demonstrate the impor-
tance of feature selection in improving the performance of deep learning models.
Squeeze-and-excitation networks [11] improve the quality of features extracted
by a network by explicitly modeling the dependencies between convolutional fea-
ture channels. The proposed block initially squeezes global spatial information
into a channel descriptor and then excites the descriptor to selectively empha-
size important features while suppressing less useful ones. Convolutional Block
Attention Module (CBAM) [24] enhances feature representation by sequentially
inferring attention maps across the channel and spatial dimensions. These maps
are multiplied with the input feature map for adaptive refinement. The Feature
Selection and Enhancement architecture (FEASE) [29] relies on feature selection
and enhancement mechanisms to improve the performance of action recognition
models. The network employs multi-scale structures and attention to dynami-
cally prioritize and weigh features.

Feature selection mechanisms have also been applied in the field of large
language models. In Memorizing Transformers [25], a learned gating mechanism
is incorporated to dynamically manage the balance between short-term and long-
term memory focus by adjusting the influence of past and present information.

3 Proposed Method

Given a set of untrimmed videos V = {vi}Ni=1, vi ∈ RH×W×3 and a set of annota-
tions for the action segments Yi = {(sa, ea, ca)}Ai

a=1, where each tuple (sa, ea, ca)
specifies the start time sa, end time ea, and class ca for the ath action segment,
the goal of TAD is to identify all the action segments Yi within each input video
vi. Similar to other works in the literature, the proposed model operates on tem-
poral visual features obtained from spatio-temporal features extractors, such as
I3D [6] or TSP R(2+1)D [1]. Each video vi is divided into T segments, each
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segment consisting of ∆ frames; these segments are processed by the feature
extractor to obtain segment features xt

i ∈ RD×1, where D is the dimensionality
of the features. All the segment features are stacked across the temporal axis to
obtain a comprehensive temporal visual representation X = {xi}Ni=1, xi ∈ RD×T

for each input video vi.

3.1 Method Overview

This work introduces a one-stage TAD model, built on top of the TriDet archi-
tecture [21]. As its predecessor, the model comprises three modules: a video fea-
ture extractor, a feature pyramid extractor that progressively down-samples the
video features to effectively handle actions of different lengths, and a boundary-
oriented Trident-head [21] for action localization and classification. The overall
architecture is depicted in Fig. 1.

(a) Overview Model (b) Proposed TAG Layer

Fig. 1: Overview of the proposed method. (a): Based on TriDet, the model consists
of a video feature extractor, a feature pyramid extractor, and a boundary-oriented
head for action localization and classification. (b): Structure of the proposed Temporal
Attention Gating layer.

The contribution of this work is the design of Temporal Attention Gat-
ing (TAG) in the feature pyramid extractor, as an extension of the Scalable-
Granularity Perception (SGP) layer from the TriDet [21]. The SGP layer com-
prises two branches: instant-level and window-level. The instant level branch
focuses on distinguishing between action and non-action frames by increasing
the distance between the action frames and the average feature of the video.
The window-level branch aims to increase the model’s ability to capture fea-
tures at different temporal scales by applying parallel convolutional operations
with varying receptive fields. It combines the outputs through summation and
then applies weighting to the result.

As an improvement, our TAG layer integrates three branches: context, convo-
lution, and instant. The context branch focuses on the relationship between the
central frame and the temporal boundaries of the convolutional operation and
allows the model to better capture the temporal dependencies. The convolution
branch employs 1D convolutions to extract temporal features and dynamically
selects the most informative ones through gating. As in TriDet [21], the instant
branch focuses on increasing the feature distance between action and non-action
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frames. The proposed layer provides a more comprehensive and holistic feature
representation by combining the strengths of the three branches.

The TAG layer is defined as follows:

TAG(x) = Γ (x) + Λ(x) +Ξ(x) + x. (1)

It adds up the context branch Γ , the convolution branch Λ and the instant
branch Ξ. The instant branch Ξ(x) = ReLU(FC(AvgPool(x))) [21] uses the
temporal average pooling operation AvgPool, a Fully Connected (FC) layer, and
the Rectified Linear Unit (ReLU) activation. Context and Convolution branch
are described in detail in the next sections.

3.2 Convolution Branch

Similar to [21], the local branch applies two parallel 1-D convolutional layers
Convw and Convkw over the temporal dimension with windows sizes w and kw,
respectively. This approach allows the model to capture temporal features at
multiple scales, providing a richer visual representation. Outputs of these convo-
lutions are concatenated and passed through a Multi-Layer Perceptron (MLP)
to learn a gate β:

β(xi) = σ(MLPg(Convw(xi)||Convkw(xi))), (2)

where || is the concatenation operator, σ is the sigmoid activation function, and
k is a hyperparameter for the convolution window size. For the w and k hyper-
parameters we use the same values as in [21].

The gating mechanism balances contributions from the two temporal scales
by generating a weighting coefficient, β. A linear combination of the outputs
from different convolutional layers allows the model to compute local features.
Formally, the local branch Λ is defined as:

Λ(xi) = β · Convw(xi) + (1− β) · Convkw(xi). (3)

The final local features incorporate both fine-grained and coarse-grained tem-
poral information. By adaptively weighting the contributions from the convolu-
tional layers, the model can prioritize the most relevant temporal patterns in
video.

3.3 Context Branch

Inspired by the PDAN architecture [8], we introduce a new context branch in
the feature extractor to enhance temporal action detection by capturing the
contextual relationships between frames.

This branch begins by extracting the boundary frames located at the leftmost
and rightmost positions within the receptive field of the convolutional filter used
in the local branch. Serving as key-values in the cross-attention mechanism,
these frames encapsulate temporal limits and can provide contextual information
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Fig. 2: Convolution branch: The video features are processed by two parallel convo-
lutions, Convw and Convkw with different temporal sizes. Their responses are concate-
nated and then passed through a gating mechanism, which predicts a scalar parameter
β used to combine the features through linear interpolation.

about the action sequence. The central frame of the convolutional receptive field
is used as a query in the cross-attention operation. This frame is interpreted as
the center point of the action and serves as the focal point around which the
context information is aggregated.

The attention mechanism in this branch involves interaction between the
central frame (query) and boundary frames

Attn(Q,K, V ) = softmax

(
Q ·KT

√
D

)
· V (4)

where Q is the central frame feature representation, K and V represent the
keys and values, and D is the feature dimensionality. Through this branch, the
feature representation of the central frame is improved by incorporating rele-
vant information from the boundary frames, leading to a more context aware
representation.

Fig. 3: The context branch employs cross-attention to include context in the con-
volution’s central frame (query) representation using boundary frames (key-values), t
is the frame index.
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3.4 Prediction and Training Setup

We adopt the prediction and training framework of TriDet [21]. The prediction
head employs a statistical boundary localization method, which consists of three
parts: start head, end head, and center-offset head, respectively responsible for
detecting the start, end, and temporal center of action. Additionally, the predic-
tion head uses multiple bins to improve the accuracy of boundary predictions.
To minimize parameters, the prediction head is shared across all layers of the
feature pyramid.

Each layer l of the feature pyramid generates a temporal feature F l ∈
R(2l−1T )×D, which is used for classification and action instance detection. The
output for each instant t in layer l is ŷlt = (ĉlt, d̂

l
st, d̂

l
et), where ĉlt is the clas-

sification score, and d̂lst and d̂let denote the predicted start and end distances,
respectively.

The loss function is defined as:

L =
1

Npos

∑
l,t

1{clt>0}(σIoULcls + Lreg) +
1

Nneg

∑
l,t

1{clt=0}Lcls, (5)

Lcls and Lreg represent the classification (focal) loss [15] and the regression (IoU)
loss [19], respectively. σIoU is the temporal IoU between the predicted and ground
truth segments, and it weights the classification loss to emphasize high-quality
regression instances. Npos and Nneg are the counts of positive and negative sam-
ples. σIoU weights the classification loss to emphasize high-quality regression in-
stances. The classification loss Lcls is applied on all instances, while the regression
loss is applied only to positive samples (where clt > 0). Positive samples are se-
lected via center sampling, focusing on instances near the action center [23,28].
During inference, instances with classification scores above a threshold λ are
retained, and Soft-NMS [3] is applied for the deduplication of instances.

4 Experiments and Results

All the experiments (both training and evaluation) were performed on a sin-
gle NVIDIA A40 GPU using CUDA version 11.2 and torch version 1.11.0. We
conducted experiments on two action localization benchmarks: THUMOS14 [12]
and EPIC-KITCHENS 100 [9]. Following established practices [7, 14, 21, 27, 28],
we use the validation set and report mean average precision (mAP) at various
intersections over union (IoU) thresholds.

THUMOS14 includes YouTube videos categorized into 20 different sports ac-
tion classes. It comprises 200 training videos, which encompass 3, 007 action
instances, and 213 validation videos, containing 3, 358 action instances. We use
I3D [6] as a backbone feature extractor. The initial learning rate is set to 10−4

and it is updated using Cosine Annealing scheduler [17] for 40 epochs, of which
20 are warmup epochs.
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Tab. 1 presents the comparison of the proposed method with several state-
of-the-art approaches on the THUMOS14 dataset. The performance is evalu-
ated using mAP across IoU thresholds ranging from 0.3 to 0.7. The proposed
method achieves the best average performance (69.1) across all evaluated IoU
thresholds, indicating its effectiveness in detecting temporal actions accurately.
Notably, our method outperforms the state-of-the-art baseline TriDet [21] at
higher thresholds (0.4, 0.5, 0.6, 0.7) and shows competitive performance at the
lowest threshold (0.3). Specifically, the proposed method achieves 83.5, slightly
lower than TriDet’s 83.7. This slight drop at the lowest threshold could be ex-
plained model’s focus on higher precision detections, which can sometimes result
in minor trade-offs at lower thresholds. Only Trident was implemented and eval-
uated. The other results were reported from their respective papers.

Table 1: Results on THUMOS14 Dataset. Avg column represents the average mAP
across all thresholds. The performance is evaluated using mAP across IoU thresholds
ranging from 0.3 to 0.7.

Method 0.3 0.4 0.5 0.6 0.7 Avg

BMN [14] 56.0 47.4 38.8 29.7 20.5 38.5
G-TAD [26] 54.5 47.6 40.3 30.8 23.4 39.3
TCANet [18] 60.6 53.2 44.6 36.8 26.7 44.3
ContextLoc [30] 68.3 63.8 54.3 41.8 26.2 50.9
ReAct [22] 69.2 65.0 57.1 47.8 35.6 55.0
TadTR [16] 74.8 69.1 60.1 46.6 32.8 56.7
TALLFormer [7] 76.0 - 63.2 - 34.5 57.9
ActFormer [28] 82.1 77.8 71.0 59.4 43.9 66.8
TriDet4 [21] 83.7 79.5 72.2 61.4 45.8 68.5
Ours 83.5 79.6 72.9 61.9 47.5 69.1

EPIC-KITCHENS 100 is a large-scale first-person vision dataset focusing on two
tasks: noun localization, i.e. identifying objects like doors, and verb localization,
i.e. identifying actions. For this dataset, we use SlowFast [10] as the backbone
feature extractor. For both noun and verb subsets, the network is trained with an
initial learning rate of 10−4 updated with the Cosine Annealing scheduler [17].
For noun localization, we trained for 29 epochs, of which 5 are warmup epochs,
while for verb localization, we trained for 27 epochs, of which 5 are warmup
epochs.

Tab. 2 reports the mAP at thresholds ranging from 0.1 to 0.5 on the EPIC-
KITCHEN 100 dataset. The results illustrate the superior performance of the
proposed method across all evaluated thresholds. For verb detection, our method
achieved an mAP of 28.7% for IoU threshold 0.1, demonstrating substantial im-
provement over the next best model, TriDet, which scored 27.8%. In the noun
4 retrained method
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detection category, our method similarly outperforms existing approaches, start-
ing at 27.4% for IoU 0.1 and reaching 18.2% at IoU threshold 0.5. The average
across thresholds is 23.6% and it indicates the ability of the model to recognize
relevant objects involved in the actions.

Table 2: Results on EPIC-KITCHEN 100 dataset for the Verb and Noun sub-tasks.
Avg column represents the average mAP across all thresholds. The performance is
evaluated using mAP across IoU thresholds ranging from 0.1 to 0.5.

Verb Noun

Method 0.1 0.2 0.3 0.4 0.5 Avg 0.1 0.2 0.3 0.4 0.5 Avg

BMN [14] 10.8 8.8 8.4 7.1 5.6 8.1 10.3 8.3 6.2 4.5 3.4 6.5
G-TAD [26] 12.1 11.0 9.4 8.1 6.5 9.4 11.0 10.0 8.6 7.0 5.4 8.4
ActFormer [28] 26.6 25.4 24.2 22.3 19.1 23.5 25.2 24.1 22.7 20.5 17.0 21.9
TriDet5 [21] 27.8 26.9 25.4 23.2 19.5 24.5 25.9 24.7 22.9 20.7 17.4 22.3

Ours 28.7 27.7 26.1 23.5 20.4 25.3 27.4 26.4 24.1 22.0 18.2 23.6

5 Ablation Studies

The ablation studies are performed on the THUMOS14 dataset [12] and the per-
formance is measured using the mAP at different intersections over union (IoU)
thresholds (0.3, 0.4, 0.5, 0.6, 0.7) similar as in the experimental results section.
The Avg column represents the average mAP across all thresholds.

5.1 Layer Components

Tab. 3 presents an ablation study to evaluate the influence of the context (cross
attention) and gating mechanisms on the performance of the proposed layer.

Table 3: Local and global branch influence. The performance is evaluated on THU-
MOS14 dataset using mAP across IoU thresholds ranging from 0.3 to 0.7.

Setup 0.3 0.4 0.5 0.6 0.7 Avg

without gating, without context 83.7 79.5 72.2 61.4 45.8 68.5
with gating, without context 83.3 79.8 72.8 61.7 46.6 68.8
without gating, with context 83.6 79.2 72.7 61.6 46.7 68.8
with gating, with context 83.5 79.6 72.9 61.9 47.5 69.1

5 retrained method
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Excluding the context branch leads to a decrease in performance, particularly
at higher thresholds. The lack of cross attention likely reduces the model’s abil-
ity to capture relationships between the extreme frames and the central frame,
leading to less precise feature selection and localization. On the other hand, by
removing the gating mechanism a slightly lower average mAP is achieved than
compared to including both mechanisms. While the context branch still provides
some performance improvement, the lack of gating means that the model cannot
effectively prioritize the most relevant features, leading to a lower performance.
Finally, including both the gating mechanism and the context branch yields the
highest performance across the average mAP and on all thresholds except the
smallest one, where without gating and context is more beneficial. While the
gating mechanism is effective at selecting the most relevant features, it might
introduce some overhead or complexity that is not strictly necessary at lower
thresholds.

This experiment shows that the gating mechanism enhances feature selec-
tion by prioritizing the most relevant features, while the context branch (cross-
attention) improves the model’s ability to understand the relationships between
frames. This combination results in better localization and higher overall accu-
racy, as shown by the highest average mAP when both branches are used.

5.2 Gating Mechanism

In this section, we examine the effectiveness of the gating mechanism. The pro-
posed TAG layer utilizes two parallel convolutions (Convw and Convkw) and
employs a gating mechanism to select the most relevant features. Tab. 4 presents
a comparison between the gating mechanism and other strategies for fusing the
convolution responses. In the table, "Average" denotes the strategy of simply
averaging the feature maps from the two convolutions:

Average(x) =
Convw(x) + Convkw(x)

2
. (6)

"Maximum" involves taking the maximum value across each feature:

Maximum(x) = max(Convw(x), Convkw(x)). (7)

Finally, "Baseline" refers to the approach described in [21], where the responses
of the two convolutions are summed and then weighted by the response of another
convolution:

Baseline(x) = Convw′(x)× (Convw(x) + Convkw(x)). (8)

The proposed method surpasses all other methods on the average mAP and
across the higher thresholds, especially notable at the highest threshold (0.7)
with a score of 47.5. On the lowest threshold (0.3), the baseline method achieves
the best performance. Lower IoU thresholds allow for a more relaxed strategy in
matching predicted bounding boxes with ground truth boxes; as the threshold
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Table 4: Ablation study on the influence of the gating mechanism for the THUMOS14
dataset. The performance is evaluated using mAP across IoU thresholds ranging from
0.3 to 0.7.

Setup 0.3 0.4 0.5 0.6 0.7 Avg

Baseline [21] 83.7 79.5 72.2 61.4 45.8 68.5
Average 83.1 79.2 71.8 61.6 46.7 68.5
Maximum 83.5 79.3 72.7 60.7 46.2 68.5
Gating (Ours) 83.5 79.6 72.9 61.9 47.5 69.1

increases, the criteria for a successful match become stricter, requiring more
precise localization of predicted boxes. The Baseline method seems to favor lower
thresholds, where approximate matches are sufficient. By simply summing and
weighting the convolution responses, the Baseline method may lose detailed
spatial information that is relevant for higher IoU thresholds. This loss can
lead to inaccuracies in object localization, thereby reducing mAP at stricter
thresholds.

The results indicate that the gating mechanism effectively enhances feature
selection, leading to better overall performance compared to averaging, taking
the maximum, or the baseline approach. The gating mechanism achieves the
highest average mAP, demonstrating its ability to select relevant features and
improve model performance across different threshold levels.

6 Conclusions and Future Work

In this study, we introduced a new TAG layer in the feature pyramid extractor
of TAD models, which includes convolutional operations paired with a gating
mechanism, and a context-aware module based on cross-attention. The TAG
layer incorporates three branches: a convolution branch, a context branch, and
an instant branch. The local branch uses two convolutions with different window
sizes in parallel, to extract both fine-grained and coarse-grained temporal fea-
tures. The integration of a gating mechanism further refines the feature selection
process, ensuring that only the most relevant features are processed for action
detection. The context branch employs the outermost frames from the convolu-
tion operation as key-value pairs and the central frame as the query, allowing
the model to understand the temporal context of the action sequence.

Conducted on two TAD benchmarks, EPIC-KITCHEN 100 and THUMOS14,
our experiments confirm the efficacy of our proposed model. The results demon-
strate an improvement in detection performance compared to existing methods,
underlining the benefits of the proposed architectural design.

In future work, we aim to extend the applicability of our method across di-
verse model architectures to enhance its generalizability. Integrating multimodal
data, such as audio and text annotations, could further refine action detection
capabilities.
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