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Does Re-ID Really Help in Multi-Object Tracking?
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Multi-object tracking (MOT) is a critical problem in computer vision with applications in
video surveillance, behavior analysis, and subject monitoring. In the tracking-by-detection
paradigm, detections are associated across video frames to form tracklets using cues such
as motion, position, appearance. Appearance-based association relies on re-identification
(re-ID) algorithms, which we claim to yield limited improvements in terms of MOT. This
study investigates the impact of re-ID on the tracking performance of a MOT algorithm
within a popular yet diversified MOT17 dataset. We evaluate the tracker with and with-
out re-ID modules, considering various appearance thresholds and additional constraints
aiming to improve the re-ID impact. Our findings indicate that while re-ID can provide
marginal improvements in specific scenarios, it often fails to significantly enhance overall
performance and can even degrade it under certain conditions. We conclude that re-ID,
although beneficial in specific instances, is not a universally robust solution for improving
MOT performance.
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1 Introduction

Multi-object tracking (MOT) aims to associate objects across consecutive video frames. It
plays a crucial role in applications such as video surveillance, subject monitoring, and behavior
analysis. In the tracking-by-detection paradigm, detections are obtained per frame and linked
into tracklets using cues like motion, position, and appearance. The appearance cue involves
comparing bounding boxes visually, typically via re-identification (re-ID) algorithms [5, 3].

Trackers like BoT-SORT [1] and Deep OC-SORT [10] incorporate re-ID into the association
process. As shown in Tab. 1, re-ID often yields only marginal improvements. This raises the
question of whether re-ID meaningfully enhances MOT performance or if the gains stem from
tuning and stochasticity. Intuitively, appearance-based matching seems helpful, echoing how
humans track people visually.

This work investigates the impact of re-ID on MOT performance using BoT-SORT [1] eval-
uated on all validation sequences from the MOT17 dataset [11]. We test (1) no re-ID, (2) a
re-ID fine-tuned on MOT17, and (3) a generic re-ID trained on large-scale external data. We
further vary the appearance thresholds (Sec. 3.4) and introduce constraints on re-ID usage, such
as maximal occlusion and minimum bounding box size.

To examine the effect of ideal detections, we also evaluate BoT-SORT using ground truth
bounding boxes, again comparing the three re-ID setups. Additionally, we analyze correct and
incorrect inter-frame matches based on re-ID appearance distances (Sec. 3.2), with distribution
plots to visualize the match quality.
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Table 1: Table extracts from BoT-SORT [1] and Deep OC-SORT [10] works demonstrating
performance differences with and without using a re-ID.

MOT algorithm setting HOTA IDF1

BoT-SORT, no re-ID 69.11 81.53
BoT-SORT, with re-ID 69.17 82.07

Deep OC-SORT baseline, no re-ID 68.13 79.52
Deep OC-SORT baseline, with re-ID 68.59 80.18
Deep OC-SORT baseline, with re-ID and dynamic appearance 68.65 80.45

Because MOT17 sequences vary in difficulty and scene characteristics, we report results per
sequence rather than only in aggregate. This helps assess whether re-ID brings global benefits
or only helps in specific scenarios.

In summary, our contributions are: (I) evaluating whether re-ID helps when integrated into
an MOT tracker; (II) identifying conditions under which re-ID is most beneficial.

The paper proceeds as follows: related works (Sec. 2); methodology and setup (Sec. 3);
experiments and analysis (Sec. 4); general discussion (Sec. 5); and conclusions (Sec. 6).

2 Related works

Tracking-by-detection links detection bounding boxes across video frames. A widely used algo-
rithm, ByteTrack [16], detects objects using YOLOX [4] (pre-trained on the target dataset) and
associates them using IoU-based matching between detections and Kalman Filter [6] predictions.
BoT-SORT [1] extends ByteTrack by adding camera motion compensation and a re-ID module
for appearance-based association. OC-SORT [2] modifies the Kalman Filter trajectory using
detection-informed visual motion estimation during occlusions. Deep OC-SORT [10] builds on
this by incorporating re-ID features, camera motion compensation, and adaptive weighting.

Tab. 1 shows performance gains from adding re-ID in BoT-SORT and Deep OC-SORT are
modest. In this study, we focus on BoT-SORT to explore when and how re-ID improves MOT
performance. We evaluate two re-ID systems: Fast-reid [5] and ISR [3]. Fast-reid is a general-
purpose neural re-ID framework used in BoT-SORT, where it is fine-tuned (SBS-50 model) on
datasets including MOT17. ISR is a SwinTransformer-based [8, 14] model trained on large-scale
data, designed for high generalizability.

We also briefly mention the GHOST tracker [13], which integrates re-ID with on-the-fly
domain adaptation via batch normalization over same-frame detections during training and
inference. However, the pre-trained model is unavailable, and the method is not readily trans-
ferable to other trackers, making integration difficult.

3 Methodology

Our goal is to assess whether re-ID genuinely improves association in MOT. We begin by
outlining the dataset used in our experiments. To evaluate re-ID performance independently
of other tracking components, we introduce a custom assessment script. We then describe
the re-ID architectures and detections used for tracking and evaluation on MOT. Finally, we
explain how re-ID is usedwithin the tracking process, including our modifications and applied
constraints.
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3.1 Dataset

We evaluate the MOT algorithm under various re-ID settings using the validation set of the
MOT17 dataset [11], which contains the second halves of seven distinct training sequences.
These sequences vary in pedestrian density, lighting, camera viewpoint and motion, resolution,
and frame rate, making the dataset highly diverse. As shown in Sec. 4, re-ID can improve
tracking in some scenarios but may degrade it in others.

3.2 Feature extraction and re-ID assessment

We develop an assessment script to analyze re-ID performance in a tracking context. Unlike
standard re-ID evaluation—which focuses on retrieving matching identities from a gallery—tracking
requires matching detections across consecutive frames. A common approach is to compute co-
sine distances between normalized re-ID features and associate detection pairs with the lowest
distances, provided they fall below a similarity threshold.

Our script simulates this behavior by using ground truth detections to extract bounding
boxes and compute re-ID features for each frame. For each box at frame t, we compute cosine
distances to boxes from frame t−1 and earlier unmatched boxes from t−k (k>1). Matches are
made based on minimal distance, with a maximum allowed threshold of 0.5—consistent with
most of our full tracking evaluations.

The output includes per-sequence counts and distance distributions of correct and incorrect
matches. We also generate corresponding plots for individual sequences and the overall dataset.

Note that this evaluation is not used to produce our main tracking results, but serves as an
auxiliary analysis to understand re-ID matching behavior.

3.3 Re-ID and detections considered

To evaluate the impact of re-ID on tracking performance, we use the BoT-SORT [1] algorithm.
As a baseline, we consider the variant without re-ID, equivalent to ByteTrack [16] with camera
motion compensation. We then evaluate several re-ID models.

First, we use Fast-reid [5] with the SBS S50 architecture, trained on MOT17 [11], as in
the original BoT-SORT. For comparison, we also include two Fast-reid models trained on ex-
ternal re-ID datasets: Market-1501 [17] and MSMT17 [15]. Additionally, we test ISR [3], a
SwinTransformer-based [8] model trained on a large and diverse corpus (thus not specifically
on MOT17 as Fast-reid), reaching remarkable performance on the independent re-ID problem.

All models are evaluated within BoT-SORT using the YOLOX detector provided by the
ByteTrack [16] authors, trained on MOT17. To isolate the effect of re-ID from detection quality,
we also run evaluations using ground truth detections from MOT17 [11].

3.4 The use of re-ID

We evaluate BoT-SORT [1] using its standard re-ID pipeline with added constraints. Each track-
let maintains an appearance feature vector, updated after each detection match via Exponential
Moving Average (EMA). Re-ID features are extracted per bounding box, and BoT-SORT com-
putes both IoU and cosine (appearance) distances for each tracklet-detection pair. Matches with
cosine distance above the appearance threshold or IoU distance above the proximity threshold
are discarded. The final cost matrix takes the lower of the two distances and is passed to the
Hungarian algorithm [7] for bipartite matching. For details, see [1].
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Figure 1: An example of the re-ID (Fast-reid [5]) being confused. At frame t (a), the bounding
box of the considered person (b) was associated with the bounding box of the other person (d)
at t-1 instead of the same person (c) at t-1. Match was based on the minimum re-ID cosine
distance score. Such cases might pose difficulties also to human observers. Source: MOT17 [11].

We argue that re-ID is not always beneficial in MOT: occlusions, small bounding boxes, or
poor lighting can yield misleading features. Fig. 1 shows an example where occlusion led to
incorrect matching—difficult even for a human to resolve.

To mitigate such issues, we introduce two constraints: (1) maximal occlusion and (2) minimal
bounding box size, aiming to exclude unreliable crops from re-ID matching. For occlusion, we
filter out boxes heavily covered by others (identified via lower bottom y-coordinates). We use
thresholds of 0.5 and 0.75, excluding more occluded boxes. We also apply a minimal in-frame
visibility threshold of 0.8 to ensure that most of the subject is within the image.

For bounding box size, we test four pixel area thresholds (4000, 6000, 8000, 10000), excluding
smaller boxes likely lacking detail. These filters aim to ensure only meaningful crops contribute
to re-ID features.

Lastly, we test three appearance similarity thresholds (0.1, 0.2, 0.5) for cosine distance-based
matching. The default value of 0.5 is originally used by BoT-SORT [1] with Fast-reid [5] trained
on MOT17 [11].

4 Experiments

We conduct a series of experiments to answer the central question: Does re-ID really help
in Multi-Object Tracking? Following the methodology in Sec. 3, each subsection addresses a
specific aspect:

• How effective is re-ID for matching bounding boxes across consecutive frames? (Sec. 4.1)

• Can correct vs. incorrect matches be clearly distinguished? (Sec. 4.2)

• How much can re-ID improve MOT with perfect detections? (Sec. 4.3)

• How much does a pre-trained re-ID help with real (imperfect) detections? (Sec. 4.4)

• Can a pre-trained re-ID be more effective with usage constraints? (Sec. 4.5)

• How much does a generic re-ID help with imperfect detections? (Sec. 4.6)

• Can a generic re-ID be more effective with usage constraints? (Sec. 4.7)
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Table 2: Re-ID assessment matches based on Fast-reid [5], all bounding boxes included.

All bounding boxes

Sequence Total Correct Incorrect Accuracy
matches matches matches

MOT17-02 18559 18264 295 0.9841
MOT17-04 47515 47473 42 0.9991
MOT17-05 6911 6489 422 0.9389
MOT17-09 5319 5272 47 0.9912
MOT17-10 12820 12535 285 0.9778
MOT17-11 9419 9380 39 0.9959
MOT17-13 11620 11454 166 0.9857
OVERALL 112163 110867 1296 0.9884

Table 3: Re-ID assessment matches based
on Fast-reid [5], maximum bounding box
overlap 0.75.

Max overlap=0.75

Sequence Total Correct Incorrect Accuracy
matches matches matches

MOT17-02 9330 9254 76 0.9919
MOT17-04 39398 39340 58 0.9985
MOT17-05 4738 4635 103 0.9783
MOT17-09 3721 3691 30 0.9919
MOT17-10 10507 10295 212 0.9798
MOT17-11 7490 7448 42 0.9944
MOT17-13 9955 9828 127 0.9872
OVERALL 85139 84491 648 0.9924

Table 4: Re-ID assessment matches based
on Fast-reid [5], maximum bounding box
overlap 0.5.

Max overlap=0.5

Sequence Total Correct Incorrect Accuracy
matches matches matches

MOT17-02 7211 7182 29 0.996
MOT17-04 28740 28710 30 0.999
MOT17-05 3616 3541 75 0.9793
MOT17-09 3134 3116 18 0.9943
MOT17-10 9082 8911 171 0.9812
MOT17-11 6077 6059 18 0.997
MOT17-13 7945 7861 84 0.9894
OVERALL 65805 65380 425 0.9935

Since aggregate results may mask sequence-level variation, we report performance per se-
quence to highlight when re-ID is beneficial. Due to space constraints, we include distribution
plots for all sequences combined in the main paper and present single sequence-focused plots in
the supplementary material.

To evaluate tracking performance, we report HOTA [9] and IDF1 [12], focusing on association
quality. MOTA is omitted as it primarily reflects detection quality. Due to space constraints,
IDF1 results are available in the supplementary material.

4.1 Re-ID assessment matches in numbers

We run the re-ID assessment from Sec. 3.2 using Fast-reid [5] on all MOT17 sequences, with
ground truth detections to isolate re-ID behavior. Re-ID usage constraints are applied as
described in Sec. 3.4.

Tabs. 2 to 6 report the number of correct and incorrect matches per sequence and overall,
under different constraint settings. As constraints tighten—e.g., lower maximum occlusion or
higher minimum box size—both the total number of matches and incorrect matches decrease
significantly.

Importantly, the effect varies across sequences, reflecting differences in characteristics such
as crowd density and bounding box scale. By reducing incorrect matches, re-ID can have a
more positive impact on tracking performance.
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Table 5: Re-ID assessment matches based
on Fast-reid [5], minumum bounding box
size 4000 pixels.

Min size=4000

Sequence Total Correct Incorrect Accuracy
matches matches matches

MOT17-02 7958 7896 62 0.9922
MOT17-04 47403 47362 41 0.9991
MOT17-05 4958 4801 157 0.9683
MOT17-09 5319 5272 47 0.9912
MOT17-10 7247 7166 81 0.9888
MOT17-11 8474 8450 24 0.9972
MOT17-13 4118 4073 45 0.9891
OVERALL 85477 85020 457 0.9947

Table 6: Re-ID assessment matches based
on Fast-reid [5], minumum bounding box
size 6000 pixels.

Min size=6000

Sequence Total Correct Incorrect Accuracy
matches matches matches

MOT17-02 4420 4385 35 0.9921
MOT17-04 44377 44335 42 0.9991
MOT17-05 4518 4414 104 0.977
MOT17-09 5319 5272 47 0.9912
MOT17-10 5129 5111 18 0.9965
MOT17-11 7901 7884 17 0.9978
MOT17-13 2643 2612 31 0.9883
OVERALL 74307 74013 294 0.996

4.2 Re-ID assessment matches in distribution plots

Fig. 2 presents cosine distance distributions of correct (green) and incorrect (red) matches
from our re-ID assessment across all MOT17 sequences. The effect of applying bounding box
constraints is clearly visible. Note that frequency scales vary between plots.

Selecting an appropriate cosine distance threshold is critical for re-ID-based matching. A
low threshold may reject true matches; a high one may accept false ones. The plots reveal
that setting this threshold is non-trivial: trade-offs exist between rejecting incorrect matches
and preserving correct ones. Even a small number of incorrect matches can degrade tracking
performance, while rejecting valid ones may limit re-ID’s benefit.

As shown later in Secs. 4.4 and 4.6, changes in threshold do not always align with expec-
tations compared to the unconstrained distributions in Fig. 2(a)–(b). We also include all the
distribution plots for a selected single sequence, MOT17-02 and place them in the supplementary
material.

4.3 Tracker runs with re-ID and ground truth detections

We run BoT-SORT using ground truth detections and evaluate performance with both Fast-
reid [5] and ISR [3], as shown in Tab. 7. Three cosine distance thresholds are tested for re-ID
matching: 0.1, 0.2, and 0.5—the latter corresponding to BoT-SORT’s original setting (0.25
threshold and computed re-ID distance divided by 2). For reference, we also report results
without re-ID.

As seen in Tab. 7, re-ID adds little value when detections are near-perfect and IoU with
motion compensation already performs well. In some cases, re-ID even slightly worsens perfor-
mance—both per sequence and overall.

For instance, in MOT17-05, frequent scene entry/exit makes IoU matching difficult, while
large boxes benefit re-ID. In contrast, MOT17-13 features small, overlapping boxes (e.g., crowded
bus scenes), making it harder for re-ID to extract meaningful features, leading to degraded per-
formance.

We do not apply re-ID usage constraints (e.g., max overlap or min box size) in this setup,
as ground truth boxes are assumed to be of high quality, and tracking performance is already
strong.
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Figure 2: Distribution plots of correct and incorrect matches for all considered sequences based
on the re-ID assessment with Fast-reid [5]. Note different frequency scales.
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Table 7: HOTA scores of BoT-SORT [1] runs with ground truth detections and different re-IDs.

Sequence No re-ID Fast-reid Fast-reid Fast-reid ISR ISR ISR
app th=0.1 app th=0.2 app th=0.5 app th=0.1 app th=0.2 app th=0.5

MOT17-02 99.131 99.131 99.131 99.131 99.131 99.131 99.131
MOT17-04 99.913 99.913 99.913 99.913 99.913 99.913 99.913
MOT17-05 89.734 89.873 90.89 88.619 90.842 89.528 89.56
MOT17-09 94.055 94.055 94.055 94.055 94.04 94.04 94.04
MOT17-10 98.968 98.968 98.968 96.928 98.933 98.192 98.098
MOT17-11 99.167 99.167 99.167 99.167 99.167 99.167 99.167
MOT17-13 95.897 95.897 96.953 96.953 96.377 96.793 96.953
COMBINED 98.458 98.466 98.585 98.231 98.544 98.411 98.412

Table 8: HOTA scores of BoT-SORT with YOLOX and Fast-reid variants.
Sequence No re-ID Market-1501 MSMT17 MOT17 MOT17 MOT17

app th=0.5 app th=0.5 app th=0.1 app th=0.2 app th=0.5

MOT17-02 47.131 48.158 46.491 47.11 49.304 48.919
MOT17-04 78.976 78.125 77.607 78.574 79.046 78.433
MOT17-05 60.078 59.601 61.433 60.063 61.469 61.664
MOT17-09 67.941 66.624 65.853 67.94 65.878 66.653
MOT17-10 57.204 56.464 57.519 57.207 59.565 58.506
MOT17-11 66.697 66.519 66.481 66.699 66.699 66.698
MOT17-13 69.833 68.423 69.033 69.822 69.791 68.42
COMBINED 68.428 67.878 67.588 68.231 68.951 68.466

4.4 Tracker runs with Fast-reid and YOLOX detections

We run BoT-SORT with YOLOX detections and different Fast-reid [5] variants. SBS-50 models
pre-trained on Market-1501 [17], MSMT17 [15], and MOT17 [11] are evaluated. For Market-
1501/MSMT17 models, we use the BoT-SORT default threshold of 0.5. For the MOT17-
pretrained model, we test thresholds of 0.1, 0.2, and 0.5. A no re-ID baseline is also included.
Results are shown in Tab. 8.

When using re-ID trained on external datasets (Market-1501, MSMT17), MOT performance
generally decreases, though minor gains appear on select sequences. The MOT17-pretrained
model brings slight improvements overall. Varying the cosine threshold affects results inconsis-
tently—some sequences benefit from re-ID, while others show degraded performance.

Overall, re-ID yields only modest gains compared to the no re-ID baseline. Sequence char-
acteristics (e.g., crowd density, box size as mentioned in the previous section) strongly influence
the usefulness of re-ID-based matching.

4.5 Tracker runs with Fast-reid conditioned and YOLOX detections

We run BoT-SORT with YOLOX detections and Fast-reid pre-trained on MOT17, applying our
re-ID usage constraints as variables. We include: (i) the base version without constraints, (ii)
variants with max overlap or min box size thresholds, and (iii) the no re-ID baseline. The cosine
distance threshold is fixed at 0.5, following the original BoT-SORT [1]. Results are shown in
Tab. 9.

Performance changes vary across sequences. While filtering out occluded bounding boxes
might seem beneficial, it often negates re-ID’s contribution, leading to results close to the no
re-ID baseline. Likely, too many boxes are excluded, and association defaults to IoU-based
matching.
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Table 9: HOTA scores of BoT-SORT with YOLOX and Fast-reid (threshold 0.5) under our
constraints.

Sequence No re-ID Primary Max overlap Max overlap Min size Min size Min size Min size
0.75 0.5 4000 6000 8000 10000

MOT17-02 47.131 48.919 47.066 47.114 49.953 50.134 50.189 50.142
MOT17-04 78.976 78.433 78.976 78.976 78.434 78.771 78.131 78.966
MOT17-05 60.078 61.664 60.063 60.073 61.726 61.726 61.728 61.734
MOT17-09 67.941 66.653 67.948 67.94 66.651 66.645 66.651 66.651
MOT17-10 57.204 58.506 58.688 57.185 57.575 59.557 59.561 57.158
MOT17-11 66.697 66.698 66.698 66.7 66.696 66.699 66.694 66.694
MOT17-13 69.833 68.42 69.831 69.835 68.42 68.424 69.807 69.82
COMBINED 68.428 68.466 68.559 68.423 68.513 68.9 68.668 68.852

Table 10: HOTA scores of BoT-SORT with YOLOX detections and ISR variants.
Sequence No re-ID app th=0.1 app th=0.2 app th=0.5

MOT17-02 47.131 47.767 47.29 48.101
MOT17-04 78.976 77.9 77.875 76.774
MOT17-05 60.078 60.078 60.078 60.284
MOT17-09 67.941 59.667 62.992 66.748
MOT17-10 57.204 54.614 54.665 57.117
MOT17-11 66.697 66.697 66.697 66.697
MOT17-13 69.833 69.686 69.48 68.621
COMBINED 68.428 67.322 67.403 67.345

For minimal bounding box size, some sequences benefit (e.g., MOT17-05, with frequent
scene entry/exit), while others suffer (e.g., MOT17-13, with many small boxes limiting feature
quality). Overall, the most helpful constraint is a 6000-pixel minimum box size. Still, the
performance differences remain modest.

4.6 Tracker runs with ISR and YOLOX detections

We run BoT-SORT with YOLOX detections and the generic ISR [3] re-ID model, using cosine
distance thresholds of 0.1, 0.2, and 0.5. For comparison, we also include the variant without
re-ID. Results are shown in Tab. 10.

ISR yields slight improvements in some cases (e.g., MOT17-02), but also causes visible
drops (e.g., MOT17-04). While MOT17-02 includes occlusions, it features many large bounding
boxes favorable for re-ID. MOT17-04, in contrast, presents small, occluded groups under low
lighting—conditions under which ISR struggles.

Despite strong standalone performance on re-ID benchmarks, ISR struggles in the cases
present in MOT, where occlusions, small detections, and poor lighting limit its utility.

4.7 Tracker runs with ISR conditioned and YOLOX detections

We run BoT-SORT with YOLOX detections and the generic ISR re-ID model, applying our
bounding box constraints to examine their effect on tracking. We include the primary variant
(no constraints) and the variant without re-ID, all using the cosine distance threshold of 0.5 as
in the original BoT-SORT [1]. Results are shown in Tab. 11.

The max-overlap constraint appears to fully negate the influence of ISR, suggesting IoU
matching alone was sufficient—especially given ISR’s limited effectiveness in MOT scenarios.
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Table 11: HOTA scores of BoT-SORT with YOLOX and ISR (threshold 0.5) under our con-
straints.

Sequence No re-ID Primary Max overlap Max overlap Min size Min size
0.75 0.5 4000 6000

MOT17-02 47.131 48.101 47.131 47.131 47.607 47.821
MOT17-04 78.976 76.774 78.976 78.976 76.774 76.774
MOT17-05 60.078 60.284 60.078 60.078 60.332 60.2
MOT17-09 67.941 66.748 67.941 67.941 66.748 66.748
MOT17-10 57.204 57.117 57.204 57.204 56.18 56.19
MOT17-11 66.697 66.697 66.697 66.697 66.697 66.697
MOT17-13 69.833 68.621 69.833 69.833 68.621 68.633
COMBINED 68.428 67.345 68.428 68.428 67.177 67.202

The minimal bounding box size constraint leads to mixed outcomes: slight gains (e.g., MOT17-
02), no change (MOT17-04), or drops (MOT17-13). Overall, ISR tends to degrade or match
the no re-ID baseline, even with constraints applied.

Since ISR benefits less from the bounding box size constraint than Fast-reid (Sec. 4.5), we
limit evaluation to 4000 and 6000 pixel thresholds.

5 Discussion

This section summarizes the insights from Sec. 4. As shown, re-ID is not a universally reliable
association cue for MOT. Its impact depends heavily on detection quality: when detections
are strong, re-ID may offer slight gains, but often adds little beyond what intersection over
union (IoU) can already achieve. When detections are poor, re-ID may introduce incorrect
associations and harm performance.

Performance improves slightly when re-ID is trained on the target dataset, but its benefit
remains limited compared to other cues. Moreover, success depends not only on the re-ID
model, but also on proper tuning of related MOT parameters—such as appearance thresholds,
matching thresholds, and high-confidence filters [1, 16]. Using a generic or out-of-domain re-ID
without tuning typically leads to performance drops.

The effect of re-ID also varies across sequences. In diverse datasets like MOT17, it may help
in some scenarios (e.g., people entering/exiting the scene), especially when subjects are large
enough for reliable feature extraction. In others, where bounding boxes are small or occluded,
re-ID often misleads. In cases with high-quality detections and clear visibility, re-ID becomes
redundant.

Overall, while re-ID can assist tracking in some settings, its gains are modest, and its success
depends on careful, case-specific tuning. As such, it is not a consistently robust cue for multi-
object tracking.

6 Conclusion

We evaluated the impact of integrating re-identification (re-ID) into multi-object tracking using
BoT-SORT on the MOT17 dataset. Through extensive experiments with different re-ID mod-
els, thresholds, and bounding box constraints, we found that while re-ID can help in specific
scenarios, its overall contribution to tracking performance is limited. Beneficial use requires
careful tuning and dataset-specific training. Due to variability across conditions and the risk of
performance degradation, re-ID should be applied selectively. In many cases, simpler cues like
intersection over union may prove more effective.
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Appendices

This supplementary material contains the following appendinces, skipped in the main paper
due to the space limit:

• IDF1 scores of the tracker performance in all the cases examined (5 tables).

• Re-ID assessment distribution plots of correct and incorrect matches for a single video
sequence: MOT17-02 [11] (10 plots).

Table 12: IDF1 scores of BoT-SORT with ground-truth detections and different re-ID models.

Sequence No re-ID Fast-reid Fast-reid Fast-reid ISR ISR ISR
app th=0.1 app th=0.2 app th=0.5 app th=0.1 app th=0.2 app th=0.5

MOT17-02 98.931 98.931 98.931 98.931 98.931 98.931 98.931
MOT17-04 99.957 99.957 99.957 99.957 99.957 99.957 99.957
MOT17-05 86.547 86.637 87.598 85.285 87.568 86.456 86.486
MOT17-09 92.161 92.161 92.161 92.161 92.161 92.161 92.161
MOT17-10 99.383 99.383 99.383 97.667 99.383 98.563 98.546
MOT17-11 99.456 99.456 99.456 99.456 99.456 99.456 99.456
MOT17-13 95.406 95.406 96.074 96.074 96.074 96.074 96.074
COMBINED 98.151 98.156 98.255 97.923 98.253 98.094 98.094

Table 13: IDF1 scores of BoT-SORT with YOLOX and different FastReID variants.
Sequence No re-ID Market-1501 MSMT17 MOT17 MOT17 MOT17

app th=0.5 app th=0.5 app th=0.1 app th=0.2 app th=0.5

MOT17-02 56.968 57.454 55.47 56.917 60 58.608
MOT17-04 91.021 89.996 89.152 90.527 90.864 90.299
MOT17-05 75.124 74.146 78.124 75.136 77.969 77.804
MOT17-09 79.985 79.106 78.05 79.985 78.832 79.091
MOT17-10 76.157 76.166 78.368 76.157 81.087 78.745
MOT17-11 77.326 76.967 77.057 77.326 77.326 77.326
MOT17-13 89.533 87.44 87.898 89.499 89.431 87.496
COMBINED 80.92 80.249 79.956 80.678 81.984 81.121

Table 14: IDF1 scores of BoT-SORT with YOLOX detections and FastReID (appearance thresh-
old 0.5) using our constraints.

Sequence No re-ID Primary Max overlap Max overlap Min size Min size Min size Min size
0.75 0.5 4000 6000 8000 10000

MOT17-02 56.968 58.608 56.908 56.93 60.351 60.133 60.173 60.143
MOT17-04 91.021 90.299 91.021 91.023 90.301 90.788 89.626 90.931
MOT17-05 75.124 77.804 75.136 75.136 77.856 77.913 77.913 77.913
MOT17-09 79.985 79.091 79.985 79.985 79.091 79.091 79.091 79.091
MOT17-10 76.157 78.745 78.836 76.12 76.525 79.221 79.166 76.115
MOT17-11 77.326 77.326 77.326 77.326 77.326 77.326 77.326 77.326
MOT17-13 89.533 87.496 89.499 89.499 87.496 87.496 89.499 89.499
COMBINED 80.92 81.121 81.193 80.91 81.192 81.674 81.243 81.532
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Table 15: IDF1 scores of BoT-SORT with YOLOX detections and ISR variants.
Sequence No re-ID app th=0.1 app th=0.2 app th=0.5

MOT17-02 56.968 57.264 58.558 58.993
MOT17-04 91.021 89.806 89.477 87.59
MOT17-05 75.124 75.124 75.124 75.219
MOT17-09 79.985 71.286 75.362 79.315
MOT17-10 76.157 73.311 73.311 78.081
MOT17-11 77.326 77.326 77.326 77.326
MOT17-13 89.533 89.362 89.226 87.7
COMBINED 80.92 79.633 79.898 79.723

Table 16: DF1 scores of BoT-SORT with YOLOX detections and ISR (appearance threshold
0.5, with constraints).

Sequence No re-ID Primary Max overlap Max overlap Min size Min size
0.75 0.5 4000 6000

MOT17-02 56.968 58.993 56.968 56.968 58.111 57.934
MOT17-04 91.021 87.59 91.021 91.021 87.59 87.59
MOT17-05 75.124 75.219 75.124 75.124 75.239 75.04
MOT17-09 79.985 79.315 79.985 79.985 79.315 79.315
MOT17-10 76.157 78.081 76.157 76.157 75.849 75.867
MOT17-11 77.326 77.326 77.326 77.326 77.326 77.326
MOT17-13 89.533 87.7 89.533 89.533 87.7 87.7
COMBINED 80.92 79.723 80.92 80.92 79.335 79.295
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Figure 3: Distribution plots of correct and incorrect matches for the MOT17-02 sequence based
on the re-ID assessment with Fast-reid [5]. Note different frequency scales.


