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Abstract

Multi-object tracking (MOT) is essential for sports ana-
lytics, enabling performance evaluation and tactical in-
sights. However, tracking in sports is challenging due
to fast movements, occlusions, and camera shifts. Tradi-
tional tracking-by-detection methods require extensive tun-
ing, while segmentation-based approaches struggle with
track processing. We propose McByte, a tracking-by-
detection framework that integrates temporally propagated
segmentation mask as an association cue to improve ro-
bustness without per-video tuning. Unlike many exist-
ing methods, McByte does not require training, relying
solely on pre-trained models and object detectors com-
monly used in the community. Evaluated on SportsMOT,
DanceTrack, SoccerNet-tracking 2022 and MOT17, McByte
demonstrates strong performance across sports and gen-
eral pedestrian tracking. Our results highlight the bene-
fits of mask propagation for a more adaptable and gener-
alizable MOT approach. Code will be made available at
https://github.com/tstanczyk95/McByte.

1. Introduction

Multi-object tracking (MOT) is to involve tracking objects
across video frames while maintaining consistent object
IDs. It gets initiated to detect objects in each frame and
associate them across consecutive frames. MOT can be ap-
plied to tracking players and performers in various sport
settings to facilitate both team and individual performance
analysis and statistics. Nevertheless, these sport settings
are still challenging due to dynamic movement of the tar-
gets, blurry objects and occlusions, posing strong demands
to tracking solutions.

Tracking-by-detection [4, 13, 25, 33, 34, 38], one of the
intuitive approaches, firstly detects the target objects with
bounding boxes in each frame and associates them with
those from previous frames, based on cues such as posi-
tion, appearance, and motion. Then, the resulting matches

Figure 1. Mask propagation module can be helpful in cases of
severe occlusion. The person with the red mask is tracked only by
its limited visible parts (pointed by white arrows), particularly in
the middle image. Input image data from [10].

form ”tracklets” over consecutive frames. However, these
methods often require extensive hyper-parameter tuning for
each dataset or even per single sequence, reducing their gen-
eralizability and limiting their application across different
datasets and various sport scenarios.

Segmentation mask-based methods [7, 28], on the other
hand, generate masks to cover objects and track them across
video frames. Trained on large datasets, these methods aim
to capture the semantics of image patches, making them
more generic. However, they are not designed for MOT,
lacking robust management for tracking multiple entities
and struggling to detect new objects entering the scene, es-
pecially team sport players with dynamically moving cam-
era. Additionally, these methods rely entirely on mask pre-
dictions for object positioning, which can be problematic
when the predictions are noisy or inaccurate.

In this paper, we explore applying temporal mask prop-
agation method as an association cue to assess its effec-
tiveness in MOT of challenging scenarios in sport media.
We propose a novel tracking-by-detection method that com-
bines mask propagation module and detections to improve
the association. Since the applied temporal mask propa-
gation model has been trained on a large dataset, it makes
the entire tracking process more generic. Unlike existing
tracking-by-detection methods, our approach does not re-
quire sensitive tuning of hyper-parameters for each dataset
or video sequence, i.e. it is not parametric.

A combination of a linear motion prediction model such
as Kalman filter [18] and detection matching based on in-
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tersection over union (IoU), which is a baseline for most of
the tracking-by-detection methods [4, 13, 25, 33, 34], is not
suitable on its own for settings with highly dynamic motion
and blurry objects, in tracking the sport players or perform-
ers. We believe that the temporally propagated mask might
be able to handle this. However, providing segmentation
mask ground truths for each video frame, also for blurry
objects, is a huge burden. In our approach, we do not per-
form any costly training of the mask segmentation or tem-
poral propagator. Instead, we apply well-studied models
pre-trained on a huge corpus of data without specifically
tuning them on MOT datasets, but with carefully incorpo-
rating them in our method.

Tracking multiple objects at once often involves han-
dling challenging occlusions. To be specific, when many
players try to take over the ball, where only a small part of
the subject might be visible. Temporally propagated mask
can be especially helpful in such cases, when the visible
shape can considerably differ from the subject. A visual
example is presented in Fig. 1, where person with ID 4 is
severely occluded, but the mask (in red) still identifies their
shoe and helps to maintain tracking the person.

We note explicitly that incorporating temporally propa-
gated mask, which also involves temporal coherency, is dif-
ferent than using a static mask coming directly from an im-
age segmentation model [19] independently per each frame.
Using the mask temporal propagation as an association cue
within the problem of MOT has not been done before.

We evaluate our incorporation of the temporally propa-
gated mask as an association cue against a baseline tracker.
We show clear benefits for MOT, including (but not limited
to) sport settings, by handling challenging situations such
as ambiguous occlusions and blurry tracked objects. Our
tracker is tested on four MOT datasets, while for a fair com-
parison, we use the same, pre-trained object detectors used
in the community. Our method outperforms tracking-by-
detection algorithms on SportsMOT [10], DanceTrack [31],
SoccerNet-tracking 2022 [9] and MOT17 [26]. These re-
sults highlight the advantages of using mask propagation,
eliminating the need for per-sequence hyper-parameter tun-
ing. Solely with Kalman filter, provided detection, mask
segmentation and propagation models, we obtain meaning-
ful results and performance on four different datasets.

Our contribution in this work is summarized as follows:
(i) We design a tracking-by-detection algorithm, based on
Kalman filter and a pre-trained mask propagation model,
which does not require any expensive training (no train, yet
gain). (ii) We propose a practical idea adapting a temporally
propagated object segmentation mask as an effective asso-
ciation cue incorporated into an MOT tracking algorithm.
The tracker overcomes the limitations of mask-based ap-
proaches by performing proper tracklet management and in-
cluding other important association cues as well as the limi-

tations of the baseline tracking-by-detection approaches, by
making the tracking process more robust and generic. (iii)
We propose practical policies enforcing regulated usage of
the propagated mask in a controlled manner, which help
handle common situations in sport settings, such as occlu-
sions and blurry objects.

2. Related Work
Multi-object tracking approaches. Transformer-based
approaches [14, 15, 36, 39] use attention mechanisms for
end-to-end learning of tracking trajectories and object as-
sociations but require extensive training data. Other MOT
methods include global optimization (offline tracking) [5]
and joint detection-tracking approaches [35, 37].

Tracking-by-detection methods detect objects in each
frame and associate them into tracklets. ByteTrack [38], a
strong baseline, uses the YOLOX [16] detector and Kalman
Filter [18] to associate tracklets via intersection over union
(IoU). Several methods extend ByteTrack: OC-SORT [4]
improves state estimation with virtual trajectories during
occlusion, StrongSORT [13] incorporates re-identification
(re-ID) features, camera motion compensation, and NSA
Kalman filter [12], C-BIoU [33] enlarges bounding boxes
for better association, and HybridSORT [34] adds confi-
dence modeling and height-modulated IoU.

Although effective on MOT datasets like MOT17 [26],
these algorithms are highly sensitive to parameters. Byte-
Track, for example, performs per-sequence tuning of de-
tection thresholds in its practical implementation, and its
extensions [4, 13, 25, 34] also rely on extensive parame-
ter adjustments. This process is costly and impractical for
large datasets like SportsMOT [10], DanceTrack [31], and
SoccerNet-tracking [9], as well as for generalizing across
different sports. In contrast, our method leverages tempo-
rally propagated segmentation masks as an association cue,
eliminating the need for per-sequence tuning and improving
robustness across diverse settings.
Mask Temporal Propagation. XMem [6], based on the
Atkinson-Shiffrin Memory Model [1], enables long-term
segmentation mask tracking in video object segmentation
(VOS). Its successor, Cutie [8], enhances segmentation by
incorporating object encoding from mask memory for bet-
ter background differentiation. While image segmentation
models like SAM [19] generate initial masks at specific
frames, mask temporal propagation models infer and update
masks across subsequent frames.

Although effective in their domains, XMem and Cutie
are not directly suited for MOT as they do not involve
bounding boxes and can produce inaccurate mask predic-
tions [6, 8]. To address this, we propose a novel MOT al-
gorithm that integrates temporally propagated masks with
bounding boxes, enhancing tracking performance.
Mask-Based Tracking Systems. Segmentation mask mod-
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Figure 2. The overview of our proposed tracking pipeline. Top: Existing tracklet bounding box positions are considered as the tracker
state from the previous frame, t-1. Using Kalman filter, candidate tracklet positions are generated and considered as a predicted next state.
Middle: Current frame t is passed to object detector. Then, initial association cost matrix is computed based on IoU between the bounding
boxes of tracklet candidate positions and detections. Bottom: Mask temporal propagator takes the current frame t as an input and produces
the masks, which are then considered as additional observation. The cost matrix is enriched with the information based on the matching
between masks and detections. Finally, the cost matrix is passed to the Hungarian matching algorithm minimizing the association cost and
the tracklets at frame t are updated with the matched detections.

els have been applied to tracking. DEVA [7], an extension
of XMem [6], introduces decoupled video segmentation and
bi-directional propagation, involving masks and bounding
boxes. Grounded SAM 2 combines Grounding Dino [22]
and SAM 2 [28] for bounding box tracking and object ID
maintenance. MASA [21], a SAM-based [19] mask fea-
ture adapter [3, 17], supports video segmentation and object
tracking by matching detections across frames. However,
these mask-based approaches lack robust tracklet manage-
ment and struggle with occlusions, new object entries, and
missed detections.

3. Proposed method
3.1. Preliminaries
In tracking-by-detection methods [4, 13, 25, 33, 34, 38],
detection bounding boxes of the same objects are joined
over the frames and form so called tracklets. In the cur-
rent frame, new detections are associated with the existing
tracklets from the previous frames. This process uses asso-
ciation cues such as object position, motion and displace-
ment information to build a cost matrix reflecting a cost of
potential match for each tracklet-detection pair. The asso-
ciation problem is then considered as the bipartite match-
ing problem and solved with the Hungarian matching al-
gorithm [20] to minimize the overall matching cost. Pairs
with costs above the pre-defined matching threshold are ex-
cluded. Matched detections extend the existing tracklets.

In our baseline, ByteTrack [38], new detections are split

into high and low confidence groups, handled separately
in the association process. The baseline uses intersection
over union (IoU) as the primary association metric. Tracklet
next state position bounding boxes are predicted using a lin-
ear motion model, Kalman Filter [18], and compared to the
newly observed detection bounding boxes using IoU scores.
Cost matrix entries are filled with 1-IoU for each tracklet-
detection pair. Tracklet bounding boxes are updated with
the matched detection bounding boxes. Unmatched detec-
tions are used to initiate new tracklets, while tracklets un-
matched for too long are terminated. For more details, we
refer the reader to the baseline paper [38].

In our work, we study a temporally propagated segmen-
tation mask as a powerful association cue for MOT. We
combine the mask and bounding box information to create
our novel masked-cued algorithm, which we call McByte.
Fig. 2 shows the overview of our tracking pipeline with in-
clusion of the propagated mask as an association cue.

3.2. Mask creation and handling
We design the following approach of mask handling to
synchronise it with the processed tracklets. Each track-
let gets its own mask, which is then propagated across
frames to keep it up-to-date. We use an image segmenta-
tion model [19] to create a mask for each new tracklet. It is
performed only for a newly appeared object and to initialize
a new mask.

Separately, during the next frames, a mask propagator
model [8] is used to update the object masks. The masks
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Figure 3. (a) Cases showing the differences in mc and mf values
of a temporally propagated mask (in blue) within a bounding box.
The most optimal case for the mask to provide a good guidance
is the last one, where both mc and mf are as close to 1 as possi-
ble. (b) Ambiguity and isolation handling with the mask as a cue.
Ambiguity occurs when the IoU-based costs are low and similar
for more than one entry in a row (or column) of the cost matrix.
Isolation occurs when relevant cost matrix entries contain too high
values, not allowing for the association, and at the same time there
is no ambiguity.

are used in the tracklet-detection association process, as de-
tailed in Sec. 3.3. We process the propagated masks in sync
with the tracklet lifespan, creating new masks for new track-
lets and removing them when a tracklet is terminated.

3.3. Regulated use of the mask

Mask propagator might sometimes return erroneous masks,
as seen in related works [6, 8]. Therefore, it is essential to
regulate the mask use as a guiding association cue.

In the association process, we update the cost matrix en-
tries using the temporally propagated (TP) mask in two par-
ticular, separate cases, for which we refer to as ambiguity
and isolation. In cases of ambiguity, a tracklet could match
multiple detections or vice versa. Ambiguity often arises
from IoU-based matches when tracked objects are close,
causing significant overlap in bounding boxes and thus sim-
ilar IoU. If IoU-based cost is below the matching threshold
for more than one tracklet-detection pair, we treat it as am-
biguity.

In cases of isolation, a detection could potentially match

a tracklet without any ambiguity, but their bounding boxes
are too far from each other and the overlap is too small. The
IoU-based cost is too high (above the matching threshold)
to be considered for a match. Isolation might happen when
the tracked objects are blurred or when camera movement
is abrupt and the next state tracklet bounding boxes cannot
be matched with observed detection bounding boxes.

For each potential ambiguous or isolated tracklet-
detection match, we apply a strategy consisting of the fol-
lowing conditions. (1) We check if the considered tracklet’s
TP mask is actually visible on the scene. Subjects can be en-
tirely occluded resulting in no mask prediction at the current
frame. (2) We check if the mask returned by the propagator
is confident enough. We average the confidence probability
of all pixels of the mask assigned to a tracklet and check if
it is above the set mask confidence threshold. Further, we
compute two key ratios between the TP mask and a detec-
tion bounding box, measured with the number of pixels:
• the bounding box coverage of the mask, denoted as mc:

mci,j =
|mask(trackleti) ∩ bboxj |

|mask(trackleti)|
(1)

• the mask fill ratio of the bounding box, denoted as mf :

mf i,j =
|mask(trackleti) ∩ bboxj |

|bboxj |
(2)

where mask(·) denotes the TP mask assigned to the
tracklet and | · | denotes the cardinality of the set. Note
that all mc,mf ∈ [0, 1]. In Fig. 3(a), we show how mc and
mf can vary depending on TP mask and detection bound-
ing box position. After that, we consider two more condi-
tions. (3) We check if the mask fill ratio of the bounding box
mf is sufficiently high. Very low values can indicate TP
masks which are noisy or come from another, wrong track-
let. However, we allow low values reflecting only the visi-
ble parts of a tracked object. (4) We check if the bounding
box coverage of the mask mc is sufficiently high. Bounding
boxes can sometimes be inaccurate, so we allow this value
to be slightly below 1.0. Only if all the four conditions hold,
we update the corresponding tracklet-detection pair entry in
the IoU-based cost matrix:

costsi,j =

{
costsi,jIoU −mf i,j , if cond. (1)-(4) satisfied.

costsi,jIoU , otherwise.
(3)

where costsi,j denotes the final association cost between
the pair of tracklet i and detection j, and costsi,jIoU denotes
the original IoU-based cost for this pair. We apply this pro-
cess to each entry of the cost matrix, representing each pos-
sible tracklet-detection match pair. In Fig. 3(b), we show
how TP mask as an association cue influences the cost ma-
trix and guides the association. With this fusion of the avail-
able information, we consider both modalities, TP masks



and bounding boxes to enhance the association process.
In cases of ambiguity or isolation, TP mask assigned to a
tracklet can guide the association with a new and suitable
detection. The updated cost matrix, enriched by the mask
cue, is passed to the Hungarian matching algorithm to find
optimal tracklet-detection pairs.

Following conditions (1)-(4) ensures that the TP mask
cue is controlled, and the cost matrix is updated only when
the mask is reliable. Further, using mc directly to influence
the cost matrix could be misleading, as multiple TP masks
could fully fit within the same bounding box, all resulting in
mc = 1.0. Therefore, we use mc only as a gating condition
and mf to influence the cost matrix.

Our baseline is optimized for bounding boxes, so we re-
tain the use of the Hungarian matching algorithm over the
cost matrix, but we carefully incorporate the TP mask cue
to enhance the association process.

3.4. Handling camera motion issues
When the camera moves, tracklet and detection bounding
boxes may become less accurate. To address this, we also
integrate camera motion compensation (CMC) into our pro-
cess to enhance the accuracy of bounding box estimates.
Our approach follows the existing methods [13, 25]. Specif-
ically, we compute a warp (transformation) matrix that ac-
counts for camera movement, based on extracted image fea-
tures, and apply this matrix to the next state predicted track-
let bounding boxes. This helps adjust for the camera mo-
tion, making the tracklet predictions from the Kalman Fil-
ter [18] and the associations with detections more accurate,
improving the overall tracking performance. For key-point
extraction, we use the ORB (Oriented FAST and Rotated
BRIEF) approach [30].

4. Experiments and discussion
4.1. Implementation details
For object detections, we follow the baseline [38] and
use the YOLOX [16] detector pre-trained on the relevant
dataset, unless stated otherwise. Detections are split into
high and low confidence sets based on a threshold. Unlike
the baseline, which adjusts this per sequence, we use a fixed
0.6 threshold across all sequences, matching the baseline’s
default when no per-sequence tuning is applied.

For the thresholds of mask confidence, mc and mf
(Sec. 3.3) we set the values of 0.6, 0.9 and 0.05 respec-
tively. We set these values considered that they must be
high enough depending on their definition. We fix the same
values for all sequences and all datasets. Changing these
parameters around these values does not affect much perfor-
mance of McByte making them not sensitive and generic.

For mask creation, we use SAM[19] (ViT b model,
original weights) for fair comparison with related works.

Method HOTA IDF1 MOTA

basline [38]: no mask 47.1 51.9 88.2
a1: either mask or no assoc. 48.6 44.4 80.8
a2: either mask or IoU for assoc. 45.3 41.5 82.2
a3: IoU and mask if ambig. or isol. 56.6 57.0 89.5
a4: a3 + mask confidence 57.3 57.7 89.6
a5: a4 + mf 58.8 60.1 89.6
a6: a5 + mc 62.1 63.4 89.7
McByte: a6 + cmc 62.3 64.0 89.8

Table 1. Ablation study on DanceTrack [31] validation set list-
ing the effects of the imposed constraints on using the temporally
propagated mask as an association cue.

Method HOTA IDF1 MOTA

Baseline, SportsMOT val 69.0 77.9 97.5
McByte, SportsMOT val 83.9 83.6 98.9

Baseline, DanceTrack val 47.1 51.9 88.2
McByte, DanceTrack val 62.3 64.0 89.8

Baseline, SoccerNet-tracking 2022 test 72.1 75.3 94.5
McByte, SoccerNet-tracking 2022 test 85.0 79.9 96.8

Baseline, MOT17 val 68.4 80.2 78.2
McByte, MOT17 val 69.9 82.8 78.5

Table 2. Ablation study comparing McByte with the baseline [38]
on four different datasets. As SoccerNet-tracking 2022 [9] does
not contain validation set split, we report the results on the test set.

Cutie[8] (Cutie base mega weights) is used as the mask tem-
poral propagator.

4.2. Datasets and evaluation metrics
We evaluate McByte on four person tracking datasets, pri-
marily in sports settings, while also testing on an additional
dataset to assess generalizability. Results are presented
on SportsMOT[10], DanceTrack[31], SoccerNet-tracking
2022[9], and MOT17[26], using dataset-specific detection
sources per community standards for fair comparison.

SportsMOT [10] features basketball, volleyball, and
football scenes with diverse indoor and outdoor court views.
It includes fast camera movement and variable player
speeds. We use YOLOX pre-trained on SportsMOT for de-
tections.

DanceTrack [31] includes dancers with highly non-linear
motion and subtle camera movements, while the number of
individuals remains mostly constant. We use YOLOX pre-
trained on DanceTrack for detections.

SoccerNet-tracking 2022 [9] features soccer match
videos with fast-moving players who appear similar within
teams. Camera movement is constant, and oracle detections
are provided.

MOT17 [26] involves tracking pedestrians in public
spaces under varying lighting, density, and camera stability.
We use YOLOX pre-trained on MOT17 and report results
as it is a widely used benchmark in the MOT community.
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Figure 4. Example comparison with baseline [38] in a challenging
volleyball setting. McByte can handle the association of ambigu-
ous sets of bounding boxes. Players IDs 7 and 8 are well main-
tained despite the temporary jam. ID 9 is also well kept. In case of
baseline, the corresponding player IDs are not maintained: After
the jam, the player with ID 1 changes their ID to 10 and the player
who previously had ID 10, now gets a new ID 41. ID 1 is lost.

We report three standard MOT metrics: HOTA[23],
IDF1[29], and MOTA [2], focusing on HOTA (association,
detection, and localization) and IDF1 (tracking quality and
identity preservation). MOTA, which primarily evaluates
detection quality, is included for completeness. Higher val-
ues indicate better performance.

We remark that we do not train object detectors, and for
all datasets we use the same detections as baseline and other
compared methods.

4.3. Ablation studies

We perform an ablation study to demonstrate the impact
of incorporating the temporally propagated (TP) mask as
an association cue along with the conditions discussed in
Sec. 3.3. We evaluate the following variants:
• a1: Uses only the TP mask signal for association if the

mask is visible for the given tracklet, without ambigu-
ity/isolation checks. The value of 1 − mf i,j is directly
assigned to costsi,j in Eq. (3). No association occurs if
there is no mask.

• a2: Similar to a1, but if the TP mask is unavailable, inter-
section over union (IoU) scores are used for association.

• a3: Adds an ambiguity/isolation check. If the TP mask

Baseline

McByte

Figure 5. Example comparison with baseline [38] in a challenging
football setting. McByte can maintain the tracklets of the blurry
players (pointed by yellow arrows) caused by the abrupt camera
movement.

is visible, mask and bounding box information are fused
as shown in Eq. (3). If no mask is available, initial IoU
scores are used.

• a4: Builds on a3, incorporating the mask confidence
check (condition (2)).

• a5: Extends a4 by adding the mf value check from con-
dition (3).

• a6: Further extends a5 with the mc value check from con-
dition (4).
The results of each variant are listed in Tab. 1. In variant

a1, where only the TP mask signal is used for association,
we can see that despite HOTA increase, IDF1 decreases
with respect to the baseline. It is caused by the fact that the
mask use is uncontrolled and chaotic. With TP mask possi-
bly providing incorrect results, the association cues can be
misleading. If we perform the association either based only
on TP mask or only on IoU (depending on the availability
of the mask), as in variant a2, we might face an inconsis-
tency of the cues between tracklets and detections from the
same frame and the next frames. This might lead to perfor-
mance degradation. However, when we use properly both
cues fusing the available information (variant a3), we can
observe significant performance gain. We explain it as the
algorithm is initially designed to work on bounding boxes
while TP mask is a valuable guiding cue which can improve
existing association mechanisms. When the mask signal is
the only cue or not properly fused with the IoU cue, a lower
performance might be obtained (as in a1 and a2).

Adding the conditional check based on TP mask confi-



Method HOTA IDF1 MOTA

ByteTrack [38] 64.1 71.4 95.9
MixSort-Byte [10] 65.7 74.1 96.2
OC-SORT [4] 73.7 74.0 96.5
MixSort-OC [10] 74.1 74.4 96.5
GeneralTrack [27] 74.1 76.4 69.8
DiffMOT [24] 76.2 76.1 97.1
McByte (ours) 76.9 77.5 97.2

Table 3. Comparing McByte with state-of-the-art tracking-by-
detection algorithms on SportsMOT test set [10].

Method HOTA IDF1 MOTA

ByteTrack [38] 47.7 53.9 89.6
MixSort-Byte [10] 46.7 53.0 85.5
OC-SORT [4] 55.1 54.9 92.2
Deep OC-SORT [25] 61.3 61.5 92.3
StrongSORT++ [13] 55.6 55.2 91.1
Hybrid-SORT [34] 65.7 67.4 91.8
GeneralTrack[27] 59.2 59.7 91.8
DiffMOT [24] 63.4 64.0 92.7
McByte (ours) 67.1 68.1 92.9

Table 4. Comparing McByte with state-of-the-art tracking-by-
detection algorithms on DanceTrack test set [31].

Method HOTA IDF1 MOTA

ByteTrack [38] 72.1 75.3 94.5
OC-SORT [4] 82.0 76.3 98.3
McByte (ours) 85.0 79.9 96.8

Table 5. Comparing McByte with state-of-the-art tracking-by-
detection algorithms on SoccerNet-tracking 2022 test set [9].

Method HOTA IDF1 MOTA

With parameter tuning per sequence

ByteTrack [38] 63.1 77.3 80.3
MixSort-Byte [10] 64.0 78.7 79.3
StrongSORT++ [13] 64.4 79.5 79.6
OC-SORT [4] 63.2 77.5 78.0
MixSort-OC [10] 63.4 77.8 78.9
Deep OC-SORT [25] 64.9 80.6 79.4
Hybrid-SORT [34] 64.0 78.7 79.9

Without parameter tuning per sequence

ByteTrack [5] 62.8 77.1 78.9
GeneralTrack [27] 64.0 78.3 80.6
DiffMOT [24] 64.2 79.3 79.8
McByte (ours) 64.2 79.4 80.2

Table 6. Comparing McByte with state-of-the-art tracking-by-
detection algorithms on MOT17 test set [26].

dence (variant a4) further improves the performance, be-
cause sometimes mask might be uncertain or incorrect pro-
viding misleading association guidance. Adding the mini-
mal mf value check (variant a5) also provides performance
gain, because this check filters out the tracklet TP masks

which could be considered as a noise or tiny parts of peo-
ple almost entirely occluded. Another performance gain can
be observed with the minimal mc value check (variant a6).
This check determines if the TP mask of the tracked per-
son is actually within the bounding box and not too much
outside it. Since the detection box might not be perfect,
we allow small parts of the tracklet mask to be outside the
bounding box, but its major part must be within the bound-
ing box, so that the TP mask can be used for guiding the
association between the considered tracklet-detection pair.
As it is shown, it further helps. Finally, we add the camera
motion compensation (CMC), denoted as McByte in Tab. 1,
which also provides some performance gain.

We compare our McByte tracking algorithm to the base-
line [38] across the four datasets, as shown in Tab. 2. Perfor-
mance gain is significant as a whole since improvement is
always present, in all cases examined. DanceTrack [31] fea-
tures mostly continuous non-linear motion and many sub-
stantial occlussions, where the TP mask signal is particu-
larly helpful in tracking the subjects, whereas IoU might
struggle. SportsMOT [10] and SoccerNet-tracking 2022 [9]
feature similar outfits among the players, more abrupt mo-
tion, blurry objects, e.g. due to fast camera movement after
the ball, and occlusions caused by the nature of the team
sports. TP mask can handle these situations very well as
shown in Figs. 4 and 5, and further improves the perfor-
mance. Full frame images of Fig. 4 and more visual exam-
ples are available in Appendix C due to the space limits.

Although MOT17 [26] is not sports-specific, it is widely
used in the MOT community, so we evaluate McByte on it.
As shown in Tab. 2, McByte achieves competitive perfor-
mance and consistently improves tracking scores, demon-
strating its robustness and general applicability.

4.4. Comparison with state of the art tracking-by-
detection methods

We compare McByte with state-of-the-art tracking-by-
detection algorithms across the test sets of the four di-
verse datasets. The results in Tabs. 3 to 6 show that
McByte outperforms the other methods on HOTA, IDF1
and MOTA on SportsMOT [10] (Tab. 3) and Dance-
Track [31] (Tab. 4). In case of SoccerNet-tracking 2022 [9]
(Tab. 5) and MOT17 [26] (Tab. 6), McByte outperforms
the other methods on HOTA and IDF1, and achieves the
second best MOTA score. We note that MOTA metrics
mostly reflect the detection quality of the tracklets. Our
proposed method works very well on datasets including set-
tings with different sports, i.e. basketball, volleyball, foot-
ball and dance. Further, it also achieves satisfactory results
on another dataset involving pedestrians with less dynamic
and more linear movement which, we believe, demonstrates
its generalizability and wide applicability. While we do
not perform any costly training or tuning on the evalu-



SoccerNet-tracking 2022 MOT17 DanceTrack SportsMOT

Method HOTA IDF1 MOTA HOTA IDF1 MOTA HOTA IDF1 MOTA HOTA IDF1 MOTA

McByte (ours) 85.0 79.9 96.8 64.2 79.4 80.2 67.1 68.1 92.9 76.9 77.5 97.2
OC-SORT [4] 82.0 76.3 98.3 63.2 77.5 78.0 55.1 54.9 92.9 73.7 74.0 96.5
C-BIoU [33] 89.2 86.1 99.4 64.1 79.7 81.1 60.6 61.6 91.6 - - -
C-BIoU impl. 72.2 76.4 95.4 62.4 77.1 79.5 45.8 52.0 88.4 - - -

Table 7. Comparison with the tracking-by-detection methods which do not require training and use the same detections (Sec. 4.5). Com-
paring with C-BIoU is not direct as it involves manual tuning of important hyper-parameters. Since C-BIoU does not provide the code, we
implement it following all the information in the paper (”C-BIoU impl.”).

ated datasets, our method still reaches surpassing results on
HOTA and IDF1 and competitve results on MOTA.

On MOT17 [26], unlike the baseline [38] and its exten-
sions [4, 13, 25, 34], we do not tune parameters per se-
quence, aiming for a generalizable tracker. Among non-
tuned trackers, McByte achieves the best scores. We also
include the result of ByteTrack [38] not being tuned per se-
quence as reported in [5] (”ByteTrack [5]”). Compared to
tuned methods, McByte improves over the baseline [38] and
remains competitive with other approaches.

The other types of tracking methods, such as
transformer-based [14, 15, 36, 39], global optimization [5]
and joint detection and tracking [35, 37] require a lot of
training data and might use other detections, which is not
the focus of this work. For reference, we list their results
together with other approaches and ours in Appendix B.

4.5. Comparison with non-trainable methods
In Tab. 7, we compare McByte with other non-trainable
tracking-by-detection algorithms using the same detec-
tions. McByte, OC-SORT [4], and C-BIoU [33] achieve
strong performance. McByte outperforms OC-SORT on all
datasets, though OC-SORT achieves higher MOTA (reflect-
ing the tracklet detection accuracy) on SoccerNet-tracking
2022, where oracle detections are provided.

C-BIoU [33] is not directly comparable, as it requires
human-dependent tuning of buffer scales, critical hyper-
parameters for each dataset. Values are provided for Dance-
Track [31], while a separate technical report [32] lists dif-
ferent settings for SoccerNet-tracking [9]. Unfortunately,
C-BIoU’s code is not provided. However, the authors
kindly share technical details, allowing us to implement it
with fixed hyper-parameters across all datasets (”C-BIoU
impl.”). Differences in the performance reflect the sensitiv-
ity to the hyper-parameter tuning.

4.6. Comparison with other methods using mask
We evaluate mask-based tracking methods DEVA [7],
Grounded SAM 2 [22, 28], and MASA [21] on the
SportsMOT validation set. Each method is tested with
its original settings and with YOLOX [16] trained on
SportsMOT, as used in our baseline [38] and McByte for
fair comparison. Results in Tab. 8 show that McByte out-
performs all other mask-based methods.

Method HOTA IDF1 MOTA

DEVA, original settings 39.3 37.3 -109.6
DEVA, with YOLOX 42.4 42.1 -57.0

Grounded SAM 2, original settings 45.9 44.7 -13.9
Grounded SAM 2, with YOLOX 66.1 70.2 91.4

MASA, original settings 39.4 35.7 -27.2
MASA, with YOLOX 73.6 71.2 97.0

McByte (ours) 83.9 83.6 98.9

Table 8. Comparison with the other tracking methods using seg-
mentation mask: DEVA [7], Grounded SAM 2 [19, 22] and
MASA [21] on SportsMOT validation set [10]. We compare the
variants with original settings and with the same object detector
(YOLOX) as in McByte.

DEVA[7] lacks a tracklet management system, lead-
ing to negative MOTA scores when errors exceed object
counts[11]. Adding YOLOX improves performance by re-
fining object selection but remains limited. Grounded SAM
2[22, 28] uses segment-based tracking, though merging seg-
ments into tracklets can be inconsistent. MASA[21] has
difficulty handling longer occlusions, occasionally missing
detections, which affects MOT performance.

These results highlight that existing mask-based meth-
ods are unsuitable for MOT, particularly in sports. In con-
trast, McByte effectively combines temporally propagated
mask-based association with bounding box processing and
tracklet management, making it better suited for MOT tasks
in sports and beyond.

More results and details on DEVA, Grounded SAM 2,
and MASA experiments, also on other datasets (Dance-
Track [31], MOT17 [26]), are available in Appendix A.

5. Conclusion

We introduce a temporally propagated segmentation mask
as an association cue for MOT, focusing on sports tracking.
Our approach incorporates mask propagation into tracking-
by-detection by fusing mask and bounding box information
while following our practical policies to enhance the perfor-
mance. McByte requires no training or tuning, relying only
on pre-trained models and object detectors for fair compar-
ison. Results across four datasets highlight its effectiveness
in sports and its generalizability to other scenarios.
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