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Abstract

Challenges in cross-learning involve inhomogeneous or
even inadequate amount of training data and lack of re-
sources for retraining large pretrained models. Inspired
by transfer learning techniques in NLP, adapters and pre-
fix tuning, this paper presents a new model-agnostic plu-
gin architecture for cross-learning, called CM3T, that
adapts transformer-based models to new or missing infor-
mation. We introduce two adapter blocks: multi-head vision
adapters for transfer learning and cross-attention adapters
for multimodal learning. Training becomes substantially ef-
ficient as the backbone and other plugins do not need to
be finetuned along with these additions. Comparative and
ablation studies on three datasets Epic-Kitchens-100, MPI-
IGroupInteraction and UDIVA v0.5 show efficacy of this
framework on different recording settings and tasks. With
only 12.8% trainable parameters compared to the backbone
to process video input and only 22.3% trainable parameters
for two additional modalities, we achieve comparable and
even better results than the state-of-the-art. CM3T has no
specific requirements for training or pretraining and is a
step towards bridging the gap between a general model and
specific practical applications of video classification.

1. Introduction

Video classification is a big field in computer vision with
various sub-tasks and datasets for each of these tasks. Re-
cently, there has been an increase in tasks, datasets, and
recorded modalities. Most work is specific to a task with
corresponding datasets or a subset of these modalities, and
their modification for a new input protocol is tedious. Meth-
ods including late and early fusion and cross-attention are
generally used for combining them, but they are not the
most efficient way to treat this wide variety of data. Thus,
there is a need for a method that can handle this increase
in data having high variability in structure and which learns
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Figure 1. This is a representation of the main problem CM3T aims
to solve. Backbones pretrained using self-supervised learning pro-
vide good general features, thus all methods of finetuning work
well. In the case of supervised pretraining, adapters fail to per-
form well (in red) and CM3T is introduced to solve this (in green).

robust relations that are shareable among tasks and datasets.
The field of parameter efficient transfer learning (PETL) is
increasing in popularity to answer this problem. The ba-
sic idea consists in adding adapters1 (i.e., plugin architec-
tures of very few trainable parameters) to a backbone and
only train these while keeping the backbone frozen. With
increasing model and dataset sizes, PETL techniques facil-
itate finetuning only adapters with less resources and time
compared to full-finetuning (i.e., backbones + adapters).

The video backbones used as a starting point for PETL
can be pretrained using either i) the traditional supervised
method on big datasets or using ii) more sophisticated self-
supervised methods which result in better general features,
such as VideoMAE [36] or contrastive learning such as
CLIP [29]. Existing PETL techniques only work well af-
ter using the latter (i.e., self-supervised pretrained back-
bones). But, self-supervised pretrained backbones are not
widely available for use off the shelf and their training is
resource intensive. For example, dual-path adapters [28]
and ST-adapters [27] require a backbone pretrained with
CLIP. However, most works on self-supervised pretraining
methods only use Vit/ViViT. Swin/Video-Swin transform-

1In this paper, we refer to adapters including a mix of multiple tech-
niques as in the M&M adapters.



ers have not been pretrained using these self-supervised
methods despite their superior performance. The main mo-
tivation behind this work is to propose new adapters to work
well with traditional supervised pretrained backbones. Fig-
ure 1 summarizes this, the red arrow signifies the problem
we are trying to solve and the solution is in green.

We introduce CM3T (Cross Multimodal Multi-dataset
Multitask Transformer), a novel PETL technique, which
can leverage these new adapters. CM3T takes a frozen
backbone, for example, the Video Swin Transformer [22]
pretrained (i.e., fully fine-tuned) on Kinetics-400 or
Something-Something v2, and adds plugins (i.e., adapters)
in parallel without changing the backbone architecture.
Only these plugins need to be trained for downstream
tasks and different datasets. Inspired by the Mix-and-
Match (M&M) adapters [38], we combine prefix tuning
with a newly introduced plugin, multi-head vision adapters.
These adapters (shown in blue in Figure 2.) improve upon
existing scaled parallel adapters by separating the process-
ing for different spatial chunks into different heads of the
input. This greatly increases performance as interaction
datasets generally have almost fixed cameras and various
objects and parts of the body always occur in particular spa-
tial locations which generally remain the same. In addition,
an approximation for prefix tuning, which has been proven
to work well, is used as done by [10], but with some modi-
fications. This is shown in red in Figure 2. The details are
discussed in Section 3.

Furthermore, the above idea can be further extended to
cross-modal learning where the weights of the pretrained
model do not have to be changed to incorporate new modal-
ities, just as the backbone doesn’t have to be changed to
adapt to new datasets. This facilitates the use of existing
work to build more complex systems. For this, we intro-
duce the third and final module in Figure 2, called cross-
attention adapters (in green) for multimodal learning. Since
cross-attention has been established as an effective man-
ner for multimodal learning, we show how to incorporate
it in place of linear layers in adapters, allowing their use
for multimodal learning as well. It allows CM3T to learn
the relationships between vision and other modalities while
retaining its other advantages. This is a challenging task
to execute in a resource efficient manner as increasing the
number of input modalities generally increases the number
of branches, hence the resources used. But, the theory of
adapters allow us to overcome this. Thus, this contribution
is significant as shown by the results in Section 4. Chal-
lenges in processing multimodal data include heterogene-
ity of the present modalities, lack of correlation between
modalities (for example different pitches in the audio could
correspond to the same text), and the need for many train-
ing samples for convergence. Building upon each challenge
above in order, CM3T addresses these challenges with the

following additions. Adding a new modality is cumber-
some as it requires retraining parts of the backbone along
with the new branches for the modality itself, but with this
framework, it would just be a new plugin which is train-
able by itself. To capture the relationship between differ-
ent modalities, we add an additional module to capture the
relationships between all modalities other than vision (the
backbone), when available. To make training faster and
convergence easier as compared to using the generic em-
bedding from large transformer models, the downsampling
layer in adapters provides a good embedding to use for
cross-attention. Additionally, training cross-modal adapters
across datasets improves performance and provides a good
pretrained feature extractor for small datasets.

To show that CM3T is suitable for multimodal, multi-
dataset and multitask learning, we experiment on three dif-
ferent datasets with different recording scenarios and tasks:
Epic-Kitchens-100 (EK-100) with first-person human-
object interaction videos, MPIIGroupInteraction (MPIIGI)
and UDIVA v0.5 (UDIVA) with human-human interactions
in group settings while talking or doing different tasks re-
spectively. We choose a mix of small and large multimodal
interaction datasets to show the efficacy of our work in dif-
ferent settings. We show that we achieve comparable accu-
racy to state-of-the-art for all the datasets using only 12.8%
trainable parameters as compared to the backbone to pro-
cess video input and only 22.3% trainable parameters to
process two additional modalities. We perform additional
experiments to study how CM3T works in different scenar-
ios and explore the reasons for the results obtained.

In summary, our contributions are:

• We introduce multi-head vision adapters which per-
form well with traditional supervised pretraining, in
contrast to existing PETL techniques.

• We introduce cross-attention adapters which are easier
to modify than traditional multimodal methods. They
also benefit from weight sharing, similarly to tradi-
tional adapters, by storing the relations between vision
and other modalities and reusing them later.

• We provide a framework, CM3T, for combining these
techniques along with an approximation of prefix tun-
ing to achieve state-of-the-art performance.

2. Related Work
2.1. Parameter Efficient Task Adaptation

Transformer-based backbones, such as Video Swin
Transformer [22] or ViVit [4], are state-of-the-art feature
extractors which are carefully trained on big datasets using
either supervised or the better performing self-supervised
methods. But finetuning these models is resource-intensive



and does not converge for small datasets. The main theory
behind all PETL work for computer vision is that finetuning
any general feature extractor involves learning the environ-
ment in which the new data is recorded and the intricacies of
the new task. The basic spatial understanding of the video
remains the same. Thus, we can use this basic understand-
ing by these pretrained models and employ only a few ad-
ditional parameters to learn the new information.

The field of NLP has seen a lot of work following the
above idea, such as adapters [11], LoRA [12], and prefix
tuning [21]. These methods get similar results while adding
less than 10% parameters to existing models which are
trained to learn the new task while the pretrained weights
are frozen. These have also been extended to computer vi-
sion [6, 15, 25, 34].

There are three recent PETL methods which show good
results: (1) only updating new parameters added to the
model or the input [11, 17, 20, 21]; (2) updating some of
the parameters of the model in a sparse manner [35,40,41];
and (3) low-rank factorization of weight matrices to re-
duce the number of parameters to be updated while keep-
ing the weight matrix approximately the same [13]. Com-
bining these approaches, [10,24] propose a unified parame-
ter efficient training framework. Among these approaches,
adapters, which belong to the first category, have been used
in computer vision [30, 31] and natural language process-
ing [11, 16, 23]. While adapters add more parameters into
models, prompt-based approaches instead add trainable pa-
rameters to inputs [9, 20, 21], and experiments have shown
their value in language and vision tasks. We use both tech-
niques in [10] as an inspiration for CM3T. VL Adapters [34]
compare various adapter techniques [11, 16, 17] applied to
question answering tasks, but not to pure vision tasks. Their
work aims to use adapters to project vision and language
pretrained model embeddings into the language model’s
space whereas we show that it is possible to do it across
vision datasets and also be used to add new modalities.

AdaptFormer [6] uses adapters with only the linear lay-
ers of a transformer and achieves better results than full fine-
tuning. But it uses VideoMAE [37] for pretraining ViT [18]
which is not feasible if resources are limited and cannot be
used to make a generalized framework. Their method fails
with models not carefully pretrained using self-supervised
methods. Similarly, ST-adapters [27] use ViT pretrained us-
ing CLIP. They convert image models to video models using
convolutions for time aggregation in addition to the upsam-
pling and downsampling linear layers in an adapter and it
works well, except for the case when traditional supervised
pretraining is employed. Visual prompt tuning (VPT) [15]
uses prompt tuning for images, but prompts alone do not
work well for videos which is also mentioned by [6].

The paper [25] shows that adapters only work for vision
if the bottleneck dimension is large. They introduce a prun-

ing technique to reduce the size of these adapters. We intro-
duce multi-head vision adapters as an alternative that works
well even with a small bottleneck dimension and without
any specific pretraining method. Dual-path adaptation from
image to video transformers [28] show better results com-
pared to others using supervised training methods, but it is
still not comparable to full finetuning. They also have a spe-
cific input method that limits the maximum temporal size of
input that can be provide which makes their model less scal-
able and not suitable for all datasets and downstream tasks.

2.2. Multimodal Learning

There is an inherent difference between videos and other
modalities, such as audio or text, and thus it is challenging
to combine them into one model. VATT [3] uses early fu-
sion, where they concatenate all input modalities. Although
the earlier the fusion, the better the results, there is a trade-
off with the amount of data required for training as it is
harder for models with early stage fusion to converge which
leads to tedious self-supervised learning.

Some works design a specialized architecture for fusion
at feature level [1, 26]. These work better but there are lim-
itations as the fusion is done after downsampling the in-
put features which leads to loss of information and poor
cross-modality relations. [8,19,33] have feature level fusion
with minimal downsampling, but lack in handling specific
modalities differently. So, there is a need for a model which
can benefit from cross-modality learning at different levels.
To answer this and so make the model flexible, we propose
using cross-attention added to each block of a transformer
architecture. State-of-the-art methods M&M Mix [38] and
MuMu [14] are either modality specific or have a rigid ar-
chitecture making it hard to add and remove modalities.
This work addresses these drawbacks by having a flexible
architecture that can accommodate any type of input.

3. CM3T Framework
We define an easy way to use existing multimodal data

and pretrained models when approaching a video classifica-
tion or video understanding task. This will assist in bridging
the gap between research and practical applications. This
section discusses some of the technical details of the back-
ground and then the methodology of our work.

3.1. Choosing a Pretrained Model

Our method is focused on transformer-based backbones
which have produced state-of-the-art results for various vi-
sion tasks. We use the Video Swin Transformer (Video
Swin-B) [22], but the following steps of the framework are
model invariant and the backbone can be chosen according
to the need. The reason for choosing Video Swin-B is that
different blocks process the input at different spatial res-
olutions. Depending on the side input (other modalities),
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Figure 2. Detailed architecture of CM3T. Colored parts are the ones that are finetuned and the rest are frozen. It has three separate blocks
added to it which are shown in three different colors. Prefix tuning is complicated to show in detail, so only a schematic is shown. The rest
of the details are described in Section 3.

cross-attention performs well with different blocks, that is,
different spatial resolutions.

3.2. Finetuning or Using Adapters

Once we have a pretrained vision model, the next step
is to finetune and adapt it to the target dataset. If compu-
tational resources or time are a constraint, adding adapters
and prefix tuning and training them in place of full fine-
tuning produces comparable results with significantly fewer
parameters to train. There is also the possibility of combin-
ing this step with the following steps (in this section and the
next one) for end-to-end learning, but we perform each step
separately to compare their performance with correspond-
ing state-of-the-art. The results for end-to-end training are
also shown in the next section.

3.2.1 Background

We take inspiration from scaled parallel adapters and pre-
fix tuning (PT) as used by [10]. Figure 2 shows all the
additions to the pretrained model along with our modifica-
tions. Multi-head vision adapters (MHVA) (in blue) and
prefix tuning (in red) are discussed in this subsection and
cross-attention adapters (CAA) (in green) are discussed in
Section 3.3.

Mathematically, adapters from [11] are defined as

y = s ·∆ha (1)

∆ha = ReLU(haWdown) ·Wup (2)

where ha = x is the input of size d, Wdown ∈ Rd×r is
the weight matrix for the down-projection layer with bottle-
neck dimension r, Wup ∈ Rr×d is the up-projection layer,



and s is the scaling factor. We use this in parallel instead
of sequential, similar to [10]. We also use their definition
for prefix tuning (for simplification, Figure 2 does not show
recurrent connection for prefix tuning),

hp ← (1− λ) · hp + λ ·∆hp (3)

∆hp = softmax
(
hpW

′

down

)
·W

′

up (4)

W
′

down = WqP
T
k W

′

up = Pv (5)

where Wq is the weight matrix for getting query vector from
the input hp, Pk = C ·Wk and Pv = C ·Wv are prefix tuning
vectors which are learned using Wk and Wv (key and query
weight matrices of the transformer backbone). Here, C is
a learned embedding which is randomly initialized and λ is
the factor used for gated addition. The red part of Figure 2
shows prefix tuning added to transformers, it is added in
parallel to each head of multi-head attention.

3.2.2 Incorporating Multi-Head Vision Adapter and
Prefix Tuning into CM3T

Using adapters for vision tasks is more challenging than
NLP as language understanding does not change with the
task or dataset, but video datasets have a wide variety of
settings, such as indoor or outdoor recording scene, differ-
ent views and camera angles, lighting changes, and more.
Finetuning allows the networks to overcome these changes,
but it is hard for adapters owing to less capability to change
the original model’s activations. But with a few changes,
adapters can show performance comparable to fully fine-
tuned models. Blue parts of Figure 2 mark the adapters.

AdaptFormer [6] adds scaled parallel adapters to linear
layers only and achieves better results than finetuning ow-
ing to a sophisticated pretrained ViT model using Video-
MAE [37]. We achieve very poor performance with the
same method without this specific pretraining, even when
coupled with prefix tuning. So, this leads to our first change,
inspired by multi-head attention, we introduce Multi-Head
Vision Adapter (MHVA). This is different from multi-head
attention as the input is divided along the window dimen-
sion of Video Swin transformers (or spatial patch dimen-
sion in ViViT) and not the channel dimension. Essentially,
there are different linear layers for different sets of win-
dows/patches. We saw that increasing the bottleneck di-
mension in adapters only increased the performance slightly
(as shown by [25]), but adding the above change allowed
the network to learn better even with a smaller bottleneck
dimension. Overall, the parameters do not increase by a
big margin as compared to traditional adapters as we use a
smaller bottleneck dimension. To define the change math-
ematically, the input h is divided along the window di-
mension to get {h1, h2, h3, . . .}. Each has its own parallel

adapter and the output is concatenated along the same di-
mension before scaling and addition. Extending Equation 3,

{ha1, ha2, . . .} ← {ha1, ha2, . . .}+ s ·∆{ha1, ha2, . . .}
(6)

where each operation is performed element-wise.
Our second change is that we make the scaling factor

for adapters (s in Equation 1) added to linear layers learn-
able, allowing greater change to activations. Attention in
pretrained models might focus on features that are not rele-
vant to the new downstream task or dataset, but this change
allows adapters to overcome this. For EK-100, when the
value is fixed at 4.0, we achieve 1.1% lower performance.

Without the two changes mentioned above, adapters
have very poor performance for the domain of computer vi-
sion with traditionally available pretrained models. These
adapters are named multi-head vision adapters. These are
specific to Video Swin transformers, but the same concept
can be applied to modify adapters for any model using dif-
ferent linear layers in adapters for different sets of windows
to which attention is applied. Section 4 shows results for
ViViT-B as a backbone model too. The reason for good per-
formance with this addition is that it gives the adapters the
ability to learn different representations for different chunks
of the input.

The third change is more specific as compared to the
first two. We use ReLU activation in place of tanH with
a lower dropout for Prefix Tuning (PT) and that provides
a smoother training curve and easier convergence. It also
allows for 0.7% gain in accuracy on EK-100 dataset.

3.3. Adding Other Modalities (CAA)

Cross-attention adapters are used for adding modali-
ties to the model received from the previous step. Cross-
attention adapters are simply obtained by replacing the two
linear layers in the adapters with a cross-attention module.
Each added modality has its own adapter. The query and
value inputs to this adapter are taken from the concatena-
tion of hidden states from the bottleneck hidden state in
the multi-head vision adapter Q = V = ReLU (xWdown),
where h is the input to the Video Swin-B block and Wdown

is the same as that in Equation 2. The key is taken as the
feature embedding from the new modality.

To merge all the adapters trained for different modalities,
in place of simple addition, AdapterFusion [32] is used
which captures the interaction between different side inputs
i.e, modalities other than vision. It is an attention block
where each head has the same query as that of attention in
cross-attention adapter for each modality, described above,
let’s say h. The key and value for each head are taken from
the output zn of each cross-attention adapter with n signi-
fying the n-th modality. The module is expressed as

s′ = softmax
(
hTWQ

⊗
zTnWK

)
, n ∈ {1, . . . , N} (7)



z′n = znWV , n ∈ {1, . . . , N} (8)

Z ′
n = [z′0, . . . , z

′
N ] (9)

o = s′TZ ′ (10)

where o is the output and WQ,WK and WV are weight
matrices for query, key and value respectively, and N is the
number of side modalities.

To incorporate a new modality into the model, there are
two additions, a new cross-attention adapter and a new con-
catenation to s and Z ′

n vectors above. One disadvantage of
this is that model size keeps increasing with more modali-
ties. To alleviate this, the cross-attention module proposed
by [2] is used in place of the traditional one and results are
shown in Section 4. It makes adding new modalities hard,
but it is a trade-off between flexibility and optimizing the
usage of resources.

4. Experiments
4.1. Datasets

To show robustness, we experiment using three datasets
with different tasks and modalities. First, an egocentric
Epic-Kitchens-100 [7] consisting of three modalities RGB,
optical-flow, and audio for actions related to human-object-
interactions. Second, MPIIGroupInteraction [5] which is
a body language dataset aiming at understanding human be-
havior in human-to-human interactions. For this dataset,
we use the following modalities, RGB and audio. Finally,
we have UDIVA v0.5 [26] which tackles the task of human
personality analysis, using also different modalities such as
RGB, transcript, and audio. Our approach shows effective-
ness on all three tasks, proving our approach of bringing
adapters mechanisms into vision problems to tackle all the
challenges mentioned in the previous parts.

Epic-Kitchens-100 (EK-100) is a first-view and human-
object interaction dataset. It contains 89,977 segments
of fine-grained actions annotated from 700 long videos.
Footage length amounts to 100 hours. It consists of a to-
tal of 97 verbs and 300 nouns, each action is a combination
of a verb + noun and has a total of 3806 action classes.

MPIIGroupInteraction dataset (MPIIGI) is 26 hours
of spontaneous human behavior with 15 distinct body lan-
guage classes. This dataset presents a novel set of ac-
tions which are challenging in computer vision and human-
behavior understanding. It consists of body language be-
haviors such as gesturing, grooming, or fumbling.

UDIVA v0.5 dataset (UDIVA) is 90.5 hours of dyadic
interactions among 147 participants distributed in 188 ses-
sions, recorded using multiple audiovisual and physiolog-
ical sensors. But only half of the data has been released.
UDIVA’s main task is personality recognition. It has 5
main classes: Openness, Conscientiousness, Extroversion,
Agreeableness, and Neuroticism (OCEAN).

4.2. SOTA Comparison

In this section we compare our results to the existing
SOTA methods for each dataset and related PETL methods.
The aim is to achieve similar performance to the methods
we compare against while having considerably less train-
able parameters.

4.2.1 SOTA Comparison on EK-100 dataset

1) Multimodal methods: Table 1 shows the highest accu-
racy of M&M Mix [38] on EK-100 dataset [7]. M&M
Mix [38] processes each of the three modalities using three
branches of ViViT at different spatial resolutions using dif-
ferent sizes of input tubelets and different variants of ViViT.
They use additional modules to share information across
views and models for different modalities. One branch
has more parameters than Video Swin-B, so the total num-
ber of parameters is more than three times the number of
parameters of Video Swin-B. When taking Video Swin-B
trained on Kinetics-400 as the backbone, we achieve per-
formance comparable to the state-of-the-art (SOTA) (only
1.4% worse) with a minuscule number of trained param-
eters (more than 13 times less). Using a self-supervised
trained backbone, CLIP, we achieve SOTA results (with the
base variant of the backbone).

2) PETL methods: Table 1 shows the comparison against
SOTA PETL techniques, Dual-path adapters [28] and ST-
Adapters [27]. They do not provide these results and the re-
sults stated are from our own experiments using their code.
We achieve considerably better performance when the pre-
training protocol is the same. The results shows that it is
hard to overcome the gap created by better pretraining as
PETL techniques add minimal processing capacity. But,
our plugins allow better performance when self-supervised
pretrained backbones are not available.

To show the robustness of our proposed adapters de-
sign, we compare the proposed MHVA against the typical
adapters from AdaptFormer [6]. We compare the results of
CM3T and adapters without additional modalities. Scaled
parallel adapters (used in AdaptFormer) with PT achieve
28.7% whereas MHVA achieves 39.8%. This shows that
our design of adapters is more robust. The motivation for
the change discussed in the methodology section is thus jus-
tified from these results.

4.2.2 SOTA Comparison on UDIVA and MPIIGI

For UDIVA and MPIIGI, we compare to FAt transform-
ers [2], the SOTA for these datasets. FAt transformers have
a lot of additions, specifically for UDIVA, which is the rea-
son for their good performance. They have additional input
branches with face crops and contextual videos and a com-
plex method for preprocessing too. Tables 2 and 3 show a



Table 1. SOTA comparison on EK-100. Acronyms- MHVA:
Multi-head vision adapter, PT: Prefix Tuning, CAA: Cross Atten-
tion Adapters, CM3T: MHVA + PT + CAA, K400: Kinetics-400.
Epochs presented are the number of epochs taken for convergence.
All backbones other than CLIP-B are pretrained on Kinetics-400.

Method Backbone Top-1 accuracy (%) Epochs GFPLOs
Multimodal methods

M&M Mix [38] ViViT 49.6 50 >4790
CM3T Video Swin-B 48.2 22 616
CM3T CLIP-B 50.1 18 754

PETL Methods
Dual-Path Adapters [28] ViT-B 35.8 21 642
ST-Adapters [27] ViT-B 34.3 18 911
Dual-Path Adapters [28] CLIP-B 44.8 24 642
ST-Adapters [27] CLIP-B 44.1 18 911
Adaptformer [6] + PT Video Swin-B 28.7 6 357
MHVA + PT Video Swin-B 39.8 14 449
MHVA + PT CLIP-B 45.5 13 589

comparison against the published results. As for MPIIGI,
we achieve better results with transfer learning techniques
than FAt transformers which are fully finetuned. There are
two reasons for this. One is that MPIIGI is a small dataset
and it is easier for these PETL techniques to converge. The
second reason is that Kinetics-400 is very close to MPI-
IGI and the CM3T backbone networks are initialized very
well. This enables adapters to work better. In summary,
CM3T achieves results equivalent to the SOTA for these
two datasets with around 5 times less trainable parameters
as compared to the previous SOTA. Using CLIP backbone,
we achieve SOTA results.

We also show that our findings are consistent in the do-
main of PETL methods as we outperform ST-Adapters us-
ing our plugins.

Table 2. SOTA comparison on UDIVA. Acronyms from Table 1.

Method Backbone Mean MSE Epochs
Multimodal methods

FAt transformers [2] - 0.72 30
CM3T Video Swin-B 0.69 27
CM3T CLIP 0.65 22

PETL Methods
ST-Adapters [27] CLIP 0.91 14
MHVA + PT CLIP-B 0.8 14

Table 3. SOTA comparison on MPIIGI. Acronyms from Table 1.

Method Backbone mAP Epochs
Multimodal methods

FAt transformers [2] - 0.899 18
CM3T Video Swin-B 0.901 9
CM3T CLIP 0.918 11

PETL Methods
ST-Adapters [27] CLIP 0.886 14
MHVA + PT CLIP-B 0.894 9

4.2.3 Baseline Comparison

Video Swin is one of the SOTA transformers trained on
many datasets and tasks, hence it is chosen as the backbone.

In Table 4 we compare to full-finetuning the backbone vs.
frozen backbone and only our plugins trained. For each
dataset, we compare for multimodal input and only RGB
input.

For only RGB input, we achieve slightly lower results
than full-finetuning. This is in tune with what we expect
as traditionally pretrained backbones do not provide good
generalizable features that can extend to other datasets and
adapters have a limited capacity to take into account the
distribution shift of the input. But as shown for EK-100,
our plugins perform better than SOTA PETL methods when
the same pretraining is applied.

Looking at multimodal input, for EK-100 dataset, CM3T
achieves an accuracy of only 0.7% lower than the fully fine-
tuned model. Our method achieves comparable results with
only 22.3% parameters whereas Video Swin-B combining
CAA goes up to 109.5% parameters (compared to Video
Swin-B). Top-1 accuracy is the metric used here.

Moreover, for UDIVA [26] and MPIIGI [5], we achieve
the same results with CM3T as with full-finetuning and
again with only 22.3% of the total number of parameters
in Video Swin-B. Mean MSE and mAP are used as metrics
for them respectively.

Table 4. Baseline comparison. Acronyms from Table 1. Top-1 ac-
curacy for EK-100, MSE for UDIVA and mAP for MPIIGI. Num-
ber of trained parameters are reported on a relative scale, 100% is
equivalent to 88M.

Method Backbone Eval. metric Epochs Trained params
RGB input (EK-100)

Full finetuning Video Swin-B 41.7% 49 100.0%
MHVA + PT Video Swin-B 39.8% 14 12.8%

Multimodal input (EK-100)
Full finetuning + CAA Video Swin-B 48.9% 56 109.5%
CM3T Video Swin-B 48.2% 22 22.3%

RGB input (UDIVA)
Full finetuning Video Swin-B 0.82 51 100.0%
MHVA + PT Video Swin-B 0.85 35 12.8%

Multimodal input (UDIVA)
Full finetuning + CAA Video Swin-B 0.69 32 116.1%
CM3T Video Swin-B 0.69 27 28.9%

RGB input (MPIIGI)
Full finetuning Video Swin-B 0.887 17 100.0%
MHVA + PT Video Swin-B 0.882 8 12.8%

Multimodal input (MPIIGI)
Full finetuning + CAA Video Swin-B 0.901 18 116.1%
CM3T Video Swin-B 0.901 9 28.9%

4.2.4 Cross-Attention Module

An interesting thing to note is that MTV-B which is the
base model for M&M Mix and uses only RGB videos as
input, achieves 46.7% accuracy and there is only a 2.9%
accuracy increase when optical flow and audio are added
to it. We achieve a higher increase of 8.4% with CM3T
when the two modalities are added. This might be because
MTV-B is a better backbone as compared to Video Swin-
B and captures most of the information present in optical



flow already as optical flow is also a visual feature. Thus
adding optical flow does not increase performance for them
as much as us. This proves the efficacy of cross-attention
adapters as we achieve similar performance to M&M Mix,
even when we are comparatively farther as compared to
MTV-B. Moreover, we compare two methods for cross-
attention: MMCA [2] and our proposed CAA and we ob-
serve that with our proposed solution we can achieve 0.5%
higher accuracy, showcasing robustness and efficacy of the
proposed CAA. All results are in Table 5.

Table 5. Experiments for efficacy of CAA. Acronyms from Ta-
ble 1. MMCA: multimodality cross-attention [2]

Method Backbone Accuracy (%) Epochs Trained params
RGB input

MTV-B [39] - 46.7 80 >100.0%
MHVA + PT Video Swin-B 39.8 14 12.8%

Multimodal input
M&M Mix [38] - 49.6 50 >300.0%
CM3T: MHVA + PT + CAA Video Swin-B 48.2 22 22.3%
MHVA + PT + (MMCA [2]) Video Swin-B 47.7% 24 22.7%

4.3. MHVA / PT

MHVA and PT work well, as shown above. But, PT
alone does not work very well as it tries to find learnable
fixed inputs to be added to the actual input to provide con-
text, but since supervised pretrained models do not give
good relevant features for a different dataset, these inputs
are not very useful unless combined with MHVA which pro-
vides a way for the model to learn the distribution shift in
the input associated with the new dataset.

4.4. Different Backbones

This experiment supports our claim of CM3T be-
ing model-agnostic. Our plugins trained along with
frozen ViViT-B achieve even better performance than full-
finetuning. Table 6 shows CM3T achieving better results
with Video Swin as it is a better backbone, but this compari-
son does not say anything about out modules and is included
here just for completeness.

Table 6. Results using different backbones. Experiments were
done on EK-100 dataset. Acronyms from Table 1.

Method Backbone Accuracy (%)
Backbone with supervised pretraining using K400
Full finetuning ViViT-B 37.4%
MHVA + PT ViViT-B 38.1%
CM3T ViViT-B 44.3%

4.4.1 Computational Resources

We state that CM3T saves computational resources and we
have already discussed a reduction in trainable parameters.

Table 1 shows that fewer epochs are required for the conver-
gence of models with our plugins and also low FLOPs. For
just finetuning RGB models, multi-head vision adapters and
prefix tuning require a third of the time as compared to full
finetuning. For adding a new modality, given an embedding
corresponding to features of the new modality, only 5.8M
additional parameters are required (with Video Swin-B as
the backbone).

5. Conclusion

In this work, we presented CM3T (Cross Multimodal
Multi-dataset Multitask Transformer), a framework for us-
ing common pretrained video classification models with
a transformer-based architecture. The framework consists
of three modules, two introduced by us, multi-head vision
adapters and cross-attention adapters, and one already exist-
ing, prefix tuning. We show that in contrast to previous re-
lated works, these work well without specific pretraining or
training methods (self-supervised methods) and study dif-
ferent variants. This work helps bridge the gap between
research and practical applications of video classification
models by making it easier to adapt existing work to new
datasets and tasks, and also to utilize additional available
modalities. Also, the framework benefits from weight shar-
ing across different datasets for the same modalities.

The limitation of this approach is that if the dataset used
for pretraining is very dissimilar to the target one, the results
will not be good. The frozen pretrained model needs to have
the relevant information for the target task or dataset. Using
various data augmentation, self-learning methods, or fully
finetuned smaller models might give better results. For fu-
ture work, combining adapters with selective finetuning of
the model might resolve the above issue while keeping a
low number of trainable parameters.
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