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Abstract

Temporal Action Detection (TAD) is essential for ana-
lyzing long-form videos by identifying and segmenting ac-
tions within untrimmed sequences. While recent innova-
tions like Temporal Informative Adapters (TIA) have im-
proved resolution, memory constraints still limit large video
processing. To address this, we introduce AdaTAD++, an
enhanced framework that decouples temporal and spatial
processing within adapters, organizing them into indepen-
dently trainable modules. Our novel two-step training strat-
egy first optimizes for high temporal and low spatial resolu-
tion, then vice versa, allowing the model to utilize both high
spatial and temporal resolutions during inference, while
maintaining training efficiency. Additionally, we incorpo-
rate a more sophisticated temporal module capable of cap-
turing long-range dependencies more effectively than previ-
ous methods. Experiments on benchmark datasets, includ-
ing ActivityNet-1.3, THUMOS14, and EPIC-Kitchens 100,
demonstrate that AdaTAD++ achieves state-of-the-art per-
formance. We also explore various adapter configurations,
discussing their trade-offs regarding resource constraints
and performance, providing valuable insights into their op-
timal application.

1. Introduction

Temporal Action Detection (TAD) is crucial in interpret-
ing long-form videos by detecting specific actions and de-
termining their start and end times within untrimmed se-
quences. Recent advancements, such as the introduction
of Temporal Informative Adapters (TIA) in AdaTAD [16],
have significantly improved model scalability and input
capacity. This method has enabled an approximately 60
times increase in input frames as compared to previous ap-
proaches [21, 23, 30]. Our work further extends this ca-
pability to nearly 120 times the previous scale. For in-
stance, our approach allows the processing of 6144 frames
with high spatial resolution and a large backbone using
the same computational resource constraints (same GPUs

and CPUs). This remarkable scaling is made possible by
parameter-efficient transfer learning (PETL) methods, such
as adapters and our customisation of their use. Address-
ing this challenge of temporal processing is crucial, as real-
world videos contain continuous context, and understand-
ing the relationships between action occurrences enhances
overall model performance. This is particularly evident in
one of the more challenging TAD datasets, Epic-Kitchen
100, a cooking dataset. While segmenting videos into
smaller parts has proven effective for identifying individ-
ual recipe steps, processing multiple steps within the same
input allows the model to capture their relationships better,
ultimately leading to improved performance.

We introduce AdaTAD++, a framework with efficient
memory utilization and improved long-range temporal de-
pendency modelling. Our primary contributions are: (1) the
decoupling of spatial and temporal adapters, allowing in-
dependent optimization to maximize resolution utilisation,
and (2) introducing a new temporal adapter architecture to
improve temporal reasoning over previous approaches. Our
approach combines a two-phase training strategy — first
optimizing with low spatial and high temporal resolution,
then refining with high spatial and low temporal resolution
— to achieve high-resolution processing for both dimen-
sions during inference. Interestingly, it also works well as
a single-phase, end-to-end trainable model when one of the
above training phases is skipped, and pretrained weights are
utilised for the corresponding adapter (spatial or temporal),
depending on the task or dataset. If spatial distributions are
similar, only the temporal part (yellow box) needs training
for (c); the blue part from (b) can be reused in figure 1.

Currently, SoOTA methods efficiently aggregate spatio-
temporal information but employ a unified framework for
both dimensions, which can limit scalability when process-
ing long video inputs. Thus, the first enhancement is to
separate the trainable components for temporal and spatial
dimensions within the adapters. This separation allows for
more granular and adaptive handling of long-form videos,
where temporal context varies significantly across action
segments. While one may intuitively think that space-time
separation could lead to a performance drop due to subop-



timal joint feature learning, we observe that performance
significantly increases across challenging datasets. This is
due to the unlocking of larger input dimensions during in-
ference. More importantly, training is not entirely sepa-
rate for each dimension—only the resolution of one com-
ponent is reduced at each step to accommodate the other.
Thus, the gains achieved through higher input resolution
outweigh any potential performance drop from this sepa-
ration, as shown by our improved performance. We show in
section 4 that there is a drop of 0.5 mAP for the Thumos-14
dataset when this separation is introduced but a gain of 4.1
mAP using a larger input size.

Expanding on the new temporal module, this work en-
hances the temporal modelling process by introducing an
aggregation module, which allows replacing the 1D tempo-
ral convolutional layers in previous work [16] with a trans-
former encoder. This replacement was impossible earlier
due to resource constraints, highlighting the need for this
work. While 1D convolutions are adequate for local tem-
poral aggregation, they struggle to capture long-range de-
pendencies as effectively as transformers, which excel in
modelling global relationships. Although local processing
via CNNss is effective in some instances, videos often con-
tain large segments of redundant content, making the global
modelling capability of transformers particularly useful in
distinguishing meaningful action cues.

Our proposed approach is evaluated on several standard
TAD datasets. By decoupling the training of temporal and
spatial adapters and leveraging the power of our temporal
adapters for temporal reasoning, we achieve state-of-the-art
performance while also addressing memory efficiency. We
also compare adapter arrangements. The pros and cons of
each are discussed, and highlights are given on which ar-
rangement should be used based on use cases or the need
for resource efficiency or performance.

2. Related Work

The task of TAD has seen substantial progress in recent
years, driven by advances in deep learning architectures,
transformer-based modelling, and PETL techniques. Ex-
isting methods primarily fall into three categories: (1)
one-stage and two-stage approaches, (2) query-based and
transformer-based architectures, and (3) parameter-efficient
learning techniques. We review these paradigms and posi-
tion our work within the broader landscape.

2.1. Two-Stage and One-Stage Approaches

Two-stage approaches, such as BMN [14] and VSGN [31],
first generate action proposals and then refine them using
additional context-aware modules [1, 11,27, 31, 33]. While
these methods achieve good boundary localisation, they suf-
fer from higher latency and memory overhead, making them
impractical for long-form videos.

One-stage methods such as ActionFormer [30] and
TriDet [2 1] simultaneously localize and classify actions in a
single pass, leveraging dense feature extraction and anchor-
free regression techniques. These methods emphasise end-
to-end efficiency, reducing the computational burden typ-
ically associated with proposal generation [12, 14, 26] and
perform well. However, they often struggle with long-range
dependencies due to a small temporal window as input,
leading to suboptimal action boundary localisation.

Our work builds upon these ideas by balancing efficiency
and accuracy through adapter-based backbone feature re-
finement. We take inspiration from two-stage approaches
and allow adapters to modify the backbone to attend to
salient temporal parts (similar to action proposals) while us-
ing end-to-end training as in one-stage approaches.

2.2. Query-Based and Pure Transformer-Based Ar-
chitectures

Recent advances in TAD have seen a growing inter-
est in query-based and transformer-based architectures.
Query-based approaches, such as TadTR [17] and DAB-
DETR [15], employ learnable queries to predict action seg-
ments directly. These methods leverage transformer mod-
ules to model global context and improve localisation pre-
cision by replacing hand-designed anchors with adaptive
query formulations. However, such systems often require
high computational resources and memory, mainly when
processing high-resolution or long-duration videos.

In parallel, pure transformer-based architectures in TAD,
as demonstrated in works like TallFormer [5] and Intern-
Video [25], exploit self-attention to find action segments
along with classification. While these methods achieve im-
pressive performance, they have increased complexity and
higher resource demands compared to the abovementioned
methods. Most recent works like [7, 18, 22, 29] have ad-
dressed different limitations and have processed different
datasets compared to us. For e.g., while we focus on the
challenges highlighted in the previous section, [ 18] focuses
on occlusions. [22] relies on pre-extracted features without
finetuning the backbone, thus performing worse. Addition-
ally, these works process video sequences with a maximum
of 100 frames. In contrast, our method can handle up to
6144 frames with high spatial resolution, and even more
with lower spatial resolution, which is critical for address-
ing long-duration videos, as demonstrated by our improved
performance on a challenging dataset like EK-100.

Our approach draws inspiration from both paradigms
while addressing their common limitations. Instead of
using queries, we integrate transformer encoders within
lightweight adapter modules attached to a frozen backbone
to identify salient parts of the video. This strategy enables
us to capture temporal relationships through self-attention.
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Figure 1. Architecture of (a) standard adapter, (b) temporal informative adapters (TIA) and our (c) TIA++ (ours). Different background
colours for the respective parts represent the spatio-temporal separation. We improve upon the temporal part of TIA to support greater

variation in the time domain of the input.

2.3. Parameter-Efficient Transfer Learning in
Video Models

PETL techniques have become increasingly popular for
adapting large-scale vision models to downstream tasks,
e.g. TAD, video segmentation and visual grounding. Meth-
ods such as LoRA [10], AdaptFormer [3], and Conv-
Adapter [2] demonstrate that finetuning only a small set
of additional parameters can yield performance comparable
to full finetuning while drastically reducing computational
costs. In video action detection, AdaTAD [16] introduced
TIA as a means to extend frozen vision backbones to in-
put longer sequences. While TIA enables scalable TAD by
reducing memory usage, it has two key limitations. First,
it does not differentiate between spatial and temporal pro-
cessing, leading to potential inefficiencies in handling high-
resolution data. Second, it relies on simple temporal fea-
ture extraction, which restricts the model’s ability to capture
complex temporal dependencies.

Our proposed AdaTAD++ framework builds upon these
insights by separating spatial and temporal adapters, al-
lowing for independent optimisation and enabling higher-
resolution processing. Furthermore, we significantly im-
prove temporal reasoning while maintaining a practical
memory footprint.

3. Methodology

Glossary:

TIA: Adapter from the work AdaTAD [16].

AdaTAD: Framework using TIA adapter.

TIA++: Adapter introduced by us.

AdaTAD++: Framework using our adapter.

(sp) / (te) / (sp-te): Indicates which part of the adapter

is trained - spatial / temporal / both spatial and temporal.
When not mentioned, both are trained.

S / P : Series / Parallel. When not mentioned, series is the
default arrangement.

In this section, we introduce our AdaTAD++ step-by-
step. We start by introducing the notations and architectures
of the adapters. Then, we discuss the adapters’ serial and
parallel arrangements, followed by an alternate arrangement
to minimise resource usage. Finally, we discuss our separa-
ble training protocol in comparison to single-stage learning.
We also discuss the practical cases in which our protocol
transforms into a single-stage training method in section 4.

3.1. Notations

Temporal action detection can be described as follows:
given an untrimmed video X € R3*HXWXT  where H
and W represent the height and width of each frame, and
T denotes the total frame count, the temporal action anno-
tations can be expressed as ¥, = {¢; = (ts,tc,0) Y.
Here, ts and t. are the start and end times, respectively, ¢
is the action category for each instance ¢;, and IV is the
total number of ground-truth actions. Temporal action de-
tection (TAD) aims to predict a set of candidate proposals
U, = {¢; = (ts,te,c,5)}M, that ideally cover ¥, with
representing the confidence score.

In a general temporal action detection (TAD) approach
using adapters, the input video X € R3*H>XWxT jq dj-
vided into sequential chunks {X;}/<,, where each chunk
X; € R3>HXWXTj represents a segment of the video
split across the time dimension 7', and K is the number of
chunks. Each chunk X is then passed through a frozen
backbone network enhanced with trainable adapters, allow-



ing efficient adaptation without updating the primary back-
bone parameters. The resulting features from each chunk
{F; }jK:l are concatenated to form a unified feature repre-
sentation of the entire video. This concatenated feature rep-
resentation is then fed into a detector {nodule, which outputs
predictions for each action instance ¢; = (t;, te,c, 3), cap-
turing the start time £, end time ., action category ¢, and
confidence score S.

3.2. Adapter Architectures

In TAD, adapters are strategically integrated into a frozen
backbone network to adaptively refine video features with-
out altering the backbone parameters. Here, we describe
the specific methodology for each adapter type, highlight-
ing their mathematical formulations and operational mech-
anisms.

3.2.1. Plain Adapters

Plain adapters, specifically Houlsby Adapters, are inserted
in each block of the frozen backbone, one after the self-
attention module and another after the layer-norm. Given an
intermediate feature F', extracted from one input chunk X,
each plain adapter module applies a bottleneck layer: first,
a down-projection that reduces dimensionality, and second,
an up-projection that restores the original dimension. Math-
ematically, this is expressed as:

Fadapled =F+ WJf(WJF) (1)

Where W,; € R4¥% and W, € R%*? are the train-
able down- and up-projection matrices, d,. is the adapter’s
reduced dimension, and f(-) is a non-linear activation (e.g.,
GeLU). This formulation allows the adapter to capture task-
specific nuances while keeping the structure of the back-
bone intact. The skip connection with F' ensures that the
adapted representation Figaped remains aligned with the
original features, enabling the model to converge faster and
with fewer parameters. Figure 1(a) shows the architecture
of these adapters.

3.2.2. TIA++ Adapters

Having established the background, our proposed TIA++
adapters extend the above idea and specifically focus on
learning temporal interactions among chunks of the video
{X;}I<,. Each adapter processes the features { F; };; of
all chunks { X }X_,. This captures salient video parts, sim-
ilar to anchors in query-based methods. Meanwhile, the
backbone model only sees one chunk, X, at a time, and
the outputs corresponding to each chunk are concatenated.
This setting allows the backbone to have information about
the entire input while processing one chunk at a time. This
setup facilitates better local feature extraction while the de-
tector focuses on global temporal processing.

TIA adapters [16] used a 3D convolution kernel with ker-
nel size (k, 1, 1) and group size d,., followed by an FC layer

with a weight matrix, W,,, € R% > to learn cross-channel
information. They add this in parallel to the connection
from the downsampled part in equation | to the upsampling
layer. Figure 1(b) shows the architecture of these adapters.

Fy = GeLU(W]F) )
Fiemp = W,I - DWConv(Fy) 3)
F=F+a Wy(Fa+ Fremp)) 4)

Here, « is used to scale the adapter’s output.

We employ an alternative approach to refine temporal
feature representations within the TAD task, introducing
TIA++ adapters as illustrated in Figure 1(c). Transformers
have been shown to outperform convolutions in extracting
relations and excel at capturing information when it is scat-
tered in the input. This is true in the case of TAD, as actions
sometimes have salient parts that are not consecutive but
spread out across time, especially for long and complex ac-
tions. But, as discussed in Section 1, the challenge here is to
optimise resource requirements as transformers are known
to be bulky. So, the more salient novelty is in the aggrega-
tion module before the transformer encoder in the temporal
module, as seen in 1(c).

TIA++ adapters downsample the spatial part of the input
heavily before processing the temporal part. The only con-
cern is that the downsampled features should retain enough
spatial information to distinguish between different tempo-
ral parts. So, initial processing in the temporal part of the
adapters consists of a 2D pooling CNN with kernel size
(k, k) and group size d, which learns spatial information
to retain before spatial pooling attention [24] is applied to
the input. Then, the spatial part is reduced to one value
per convolution kernel by averaging. It is then passed to a
transformer encoder whose input has the same temporal res-
olution as the input. Mathematically, in equation 4, Fyep,p
is replaced by:

Fy = 2DCNN(Fy) 5)
Fyn = Fyqr x TransEnci (AveragePoolays(Fq+)) (6)

1 H W
Fd//:H*WZZFdw (7)
h=0 w=0
Fiemp = TransEncy(Fy ) (8)

Where H and W are the number of input patches along
the height and width dimensions, T'ransEnc represents a
transformer encoder composed of self-attention and an FC
layer. Both transformers are highly parameter-efficient due
to the reduced feature dimensionality in the downsampled
embedding within the adapter. Additionally, the input to-
ken count is minimised, representing less than a quarter of
the spatial patch count and the number of tokens/chunks in
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gradient from the basic layer.

time input for each transformer encoder in the model, re-
spectively.

Looking at the big picture, by adding global information
while processing local chunks, TIA++ adapters provide a
robust means to encode temporal relationships, which is vi-
tal in capturing the structure of complex action sequences
and improving the precision of temporal action detection.

3.3. Series and parallel adapters

In TAD, series and parallel adapters offer distinct methods
for integrating additional trainable parameters, each with
specific advantages.

Series adapters operate sequentially within the primary
model layers, where each adapter processes the feature out-
put from the previous layer before passing it to the next, as
demonstrated in Figure 2(c). By processing inputs sequen-
tially, series adapters allow for a deeper integration of learnt
modifications within the primary network. This makes them
beneficial for fine-tuning tasks that require detailed trans-
formation across layers. However, the sequential nature can
increase inference time, as each transformation must occur
consecutively.

Parallel adapters, on the other hand, apply their trans-
formations concurrently with the main layer processing.
This parallel structure allows for quicker inference, as both
main and adapter transformations co-occur (in Figure 2(d)).
However, the adaptation here is often more constrained
since it interacts less with the output of previous layers,
which may limit the adapter’s ability to make complex,
layer-dependent adjustments.

The notations for the two variants used in this paper are
AdaTad-S++ and AdaTad-P++ for series and parallel, re-
spectively. In the next section, we show experiments for
both arrangements to compare the two formally. This gives
the readers a quantitative measure under different settings

and this qualitative assessment.

3.4. Alternate Arrangement for the TIA++

Adapters

To further reduce resource requirements, TIA adapters have
an alternate placement: instead of adding connections back
to the main branch, they are directly added to the output of
the backbone. This stops the gradient flow from the main
branch and, thus, the overall resource requirement. How-
ever, their main problem is that the adapters are not com-
plex enough to compute features that give comparable per-
formance to the case where their output is added back to the
main branch. As already discussed, TIA++ adapters have
more complex temporal processing, and we modify them a
bit to be used in a similar alternate manner. The upsampling
layer is broken into two FC layers, taking one part for the
spatial and the other for the temporal. This is shown in Fig-
ure 1(c). Figure 2 shows the addition of these adapters to
the overall architecture.

We name the alternate arrangement of the adapters
TIAS++ to distinguish between the two architectures.
TIAS++ improves upon the lite version of TIA by adapting
the architecture to directly add to the output instead of mod-
ifying the backbone. TIA adapters directly use the same
adapters connected differently, which is sub-optimal.

3.5. Training Protocol: End-to-end vs. Separated
training

As described in Section 1, separating the training of spatial
and temporal adapters is essential to enable higher input res-
olutions across both dimensions. This independent training
approach allows each adapter to specialise more effectively,
optimising performance for spatial detail and temporal se-
quence recognition. The different parts are highlighted in
Figure 1(b,c).



Table 1. Performance comparison on ActivityNet-1.3 and THUMOS14 using mAP at different IoU thresholds. Mem refers to memory
usage (GB) per video. Results for variations of arrangements and training protocols are also added below. Results in blue are to be directly
compared against the line above. Unless mentioned, series arrangement is used for adapters. The results for all variations for (1536 x 2242)
without alternate arrangement or separating training for the adapters are achieved when only the last half of backbone layers are adapted;
otherwise, full-layer adaptation will lead to out-of-memory on A100-80G. On ActivityNet-1.3, our prediction is combined with CUHK [6]
classification results. * means we employ stronger video-level classification results used in InternVideo.

Method | Backbone | Mem | ActivityNet-1.3 | THUMOS14
| | | 05 075 095 | Avg. | 03 04 05 06 0.7 | Avg

BMN [14] TSN - 50.07 3478 829 | 33.85 | 56.0 474 388 29.7 20.5 | 385
TadTR [17] 13D - 49.10 32.60 850 | 32.00 | 624 574 492 378 263 | 46.6
ActionFormer [30] SlowFast-R50 - 5426 37.04 813 | 3630 | 787 733 692 546 39.7| 66.0
ActionFormer [30] 13D - 5350 3620 820 | 3560 | 82.1 778 71.0 594 439 | 66.8
ASL [20] I3D - 54.10 6740 8.00 | 36.20 | 83.1 79.0 71.7 597 458 | 67.9
TriDet [21] 13D - 5470 38.00 840 | 36.80 | 83.6 80.1 729 624 474 693
VideoMAEV2 [23] VideoMAEv2-g - - - - - - - - - - 69.6
InternVideo [25] VideoMAE-H+UniformerV2 - - - - 39.00* - - - - - 71.5
AFSD [13] 13D 12 | 5240 3530 6.50 | 3440 | 67.3 624 555 437 31.1| 520
E2E-TAD [17] SlowFast-R50 12 | 5047 3599 1033 | 34.10 | 69.4 643 560 464 349 | 542
BasicTAD [28] SlowOnly-R50 12 | 51.20 3341 757 | 3312 | 755 70.8 635 509 374|592
TALLFormer [5] VideoSwin-B 29 | 5410 3620 7.90 | 3560 | 76.0 70.0 632 - 345 | 59.4
Re?TAL [32] Re?VideoSwin-T 24 | 5475 3781 9.03 | 36.80 | 77.0 715 624 497 363 | 594
LoSA[8] VideoMAEvV2-G 40.6 | 585 398 7.8 386 | 8.0 8l.1 745 651 493 | 71.0
ViT-TAD160x 160 [29] ViT-B 897 | 5587 3847 880 | 3740 | 85.1 809 742 618 454 | 69.5
AdaTAD (768 x 2242) [16] SlowFast-R50 43 5528 38.11 887 | 37.11 | 81.0 762 694 59.0 445 | 66.0
AdaTAD (768 x 2242) [16] VideoMAE-B 49 |56.77 3935 971 | 3839 | 87.0 824 753 638 492 | 715
AdaTAD (768 x 2242) [16] VideoMAEV2-G 299 | 5845 41.16 1045 | 39.79 | 89.5 858 789 67.6 538 | 754
AdaTAD++ (768 x 2242) (ours) SlowFast-R50 7.1 | 5628 3994 992 | 38.03 | 837 787 716 604 449 | 675
AdaTAD++ (768 x 2242) (ours) VideoMAE-B 82 | 57.64 4085 1031 | 3924 | 883 837 766 650 518 | 733
AdaTAD++ (768 x 2242) (ours) VideoMAEV2-G 385 | 60.28 43.21 12.05 | 41.01 | 89.7 864 79.8 69.6 559 | 763

Higher temporal resolution (1536 x 2242)
AdaTAD [16] (1536x2242) VideoMAEV2-G 50.6 | 61.72 4335 10.85 | 41.93* | 89.7 86.7 809 71.0 56.1 | 769
AdaTAD++ (1536 x2242) (ours) VideoMAEv2-G 549 | 63.56 4584 12.82 | 43.24* | 90.0 87.7 826 732 59.5]| 78.6

Separating spatial and temporal training
AdaTAD[16](sp-te) (1536x2242) VideoMAEV2-G - 62.81 4529 1232 | 42.64* | 89.8 87.0 813 71.7 573 | 774
AdaTAD(sp-te)++ (1536 x2242) (ours) VideoMAEvV2-G - 64.03 46.33 13.09 | 43.55% | 90.0 88.1 832 74.0 62.1 | 79.5

Alternate efficient arrangements
AdaTAD' [16] (1536x2242) VideoMAEV2-G 436 | 60.82 42.69 9.84 | 41.15*% | 89.6 859 794 676 53.8| 75.8
AdaTADS++ (1536 x2242) (ours) VideoMAEV2-G 509 | 63.14 4583 12.61 | 43.02* | 89.9 874 820 725 584 | 78.0

Spatial Adapter Training Phase: Training begins
with the spatial adapters, focusing on high-resolution
spatial details. ~ The input is configured as X; ¢
R3*HnighxWhignXTiow to maximise spatial feature extrac-
tion while keeping the temporal resolution low to manage
memory consumption. The spatially adapted feature repre-
sentation for each chunk is computed as:

Fj,spatial—adapled = Fj + Wu7spalial : g(Wd,spatial . Fj)

where W spaial and Wy, spaiial are down- and up-projection
matrices specifically for spatial adaptation, and g(-) repre-
sents a non-linear activation function to enhance spatial fea-
ture refinement.

Temporal Adapter Training Phase: After spatial
features are refined, the focus shifts to the temporal
adapters, and the input configuration changed to X; €
R3*HiowXWiowxThigh prioritising temporal resolution. The

temporally adapted feature for TIA adapters is computed as
1.

Eemp =Wpn - chonv(f(Wdﬂﬁmp ’ FJ))

Where W emp is the down-projection matrix for tempo-
ral adaptation, W, is a weight matrix that enables cross-
channel temporal feature learning, and DWConv represents
a depthwise convolution. The non-linear activation function
f() (e.g., ReLU) refines the temporal features, capturing
essential temporal dependencies.

This two-phase protocol enables the model to prioritise
spatial detail first, followed by temporal sequence learn-
ing, improving action detection performance with efficient
memory use. A sample notation used in this work for this is
AdaTAD(sp), AdaTAD(te) and AdaTAD(sp-te), represent-

IFor ease of understanding, only the computation for TIA adapters is
mentioned; TIA++ adapters follow the same protocol and should be easy
to understand following this



ing spatial, temporal and both training, respectively. Table
3 shows two experiments with separable training.

4. Experiments

4.1. Datasets and Metrics

We use the ActivityNet-1.3, THUMOS14, and EPIC-
Kitchens 100 datasets to assess our proposed method.
ActivityNet-1.3 and THUMOSI14 are untrimmed, third-
person video datasets gathered from web sources, compris-
ing 19,994 and 413 videos, respectively. In contrast, EPIC-
Kitchens 100 includes 700 first-person videos, presenting
a unique challenge due to its domain-specific action cat-
egories, which differ significantly from conventional pre-
training data.

We report mean Average Precision (mAP) at specified
IoU thresholds to maintain consistency with established
evaluation methods. For ActivityNet-1.3, we use IoU
thresholds from 0.5 to 0.95 in increments of 0.1. THU-
MOS14 employs thresholds of 0.3, 0.4, 0.5, 0.6, and 0.7,
while EPIC-Kitchens 100 uses thresholds from 0.1 to 0.5.

Table 2. Results on EPIC-Kitchens 100 validation set.

Method \ 01 02 03 04 05 \ Avg.
Verb Task

BMN [14] 108 88 84 7.1 56| 84
G-TAD [27] 12.1 11.0 94 81 65|94
ActionFormer [30] 16.6 254 223 213 17.4|20.6
ASL [20] 279 - 255 - 198| -
TriDet [21] 327 26.1 242 21.8 20.5]25.1
AdaTAD (SlowFast-R50) [16] 345 273 26.1 244 228|274
ActionFormer (VideoMAE-L) [16] |31.7 31.6 29.1 26.7 23.6|28.5
AdaTAD (VideoMAE-L) [16] 33.1 322 304 275 25.1]293
AdaTAD(sp-te)-S++ (VideoMAE-L) | 35.1 34.2 329 30.0 27.9|32.0
Noun Task

BMN [14] 103 83 62 45 34|65
G-TAD [27] 124 108 7.0 54 41|79
ActionFormer [30] 252 214 202 17.6 15.2]20.0
ASL [20] 271 - 244 - 203| -
TriDet [21] 31.3 239 232 20.1 184|234
AdaTAD (SlowFast-R50) [16] 245 236 22.6 21.0 192|222
ActionFormer (VideoMAE-L) [16] |31.2 29.9 27.5 24.6 23.6|27.3
AdaTAD (VideoMAE-L) [16] 324 31.6 30.1 274 249|293
AdaTAD(sp-te)-S++ (VideoMAE-L) | 33.1 32.6 31.5 29.8 27.1|30.8

4.2. Comparison with SOTA Methods

Table | shows comparison against state-of-the-art (SoTA)
methods on ActivityNet-1.3 and Thumosl4 datasets.
AdaTAD++ has two main advantages, low memory con-
sumption and large input size. We see a 75.4 to 76.3 in-
crease in mAP compared to AdaTAD, the previous SoTA.
Higher temporal resolution: Concurrent with prior
work, we see that an increase in input size has the maxi-
mum impact on performance. We observe a 76.3 to 78.6
increase with a larger input size (1536 x 2242).
Separating temporal and spatial training: We see a
further increase to 79.5 with separable training as we can
add adapters to all blocks compared to adding to only half

of the blocks due to resource constraints in the past, like in
[16]. For a fair comparison, we applied the same training
protocol to AdaTAD and show the results in the table.

Alternate efficient arrangements: We see an improve-
ment for this setting too. It is discussed in detail in sec 4.3.2.

Table 2 presents our results on EPIC-Kitchens 100, a
dataset with longer-duration videos that previously led all
methods to rely exclusively on pre-extracted features. [16]
was the first to introduce end-to-end training for this dataset.
Owing to our contributions, we achieve better results for
both verb and noun tasks. We show a gain of 2.7 and 1.5 for
the two tasks.

4.3. Ablation and Analysis

In this section, unless mentioned otherwise, we use 768
frames as input, THUMOS 14 as the dataset, VideoMAEv2-
g as the backbone and serial arrangement for the adapters.

Table 3. Table to demonstrate how separable training benefits
from high resolution during inference. Two experiments are shown
here; the first two rows are training phases, and the third row shows
inference results using these two training phases. First, high spa-
tial and low temporal resolution is given as input and only the spa-
tial part of the adapter is trained. In the second experiment, high
temporal and low spatial resolution are used and only the tempo-
ral part is trained. During inference, no training is done, and high
spatial and temporal resolutions are used along with trained spatial
and temporal adapters taken directly from each adapter.

Method Res. Training Mem. mAP
Spat.  Tem. |

AdaTAD(sp)-S | (384x224%) v x | 18.7G(12.2) 69.4
AdaTAD(te)-S | (768x160%) x v 18.7G(6.5)  73.5
AdaTAD(sp-te)-S | (768x224%) x X - 74.9
AdaTAD(sp)-S | (768x224%) v x ]299G(18.6) 754
AdaTAD(te)-S | (1536x160%) | x v ]299G(11.3) 76.0
AdaTAD(sp-te)-S | (1536x2242) | x X - 77.9

4.3.1. The Advantage of Separable Training

We have established that increasing spatial and temporal
resolution improves performance, although one-stage learn-
ing has inherent limitations in scaling up input size. Sepa-
rable training offers an alternative by allowing for higher
input resolutions during inference. Table 3 illustrates that
models trained with either low spatial and high temporal
resolution or low temporal and high spatial resolution in-
dividually perform poorly during training. However, com-
bining spatial and temporal adaptations during inference at
high resolutions achieves notably strong results. Although
one-stage training is expected to perform better than sepa-
rable training, it is constrained by resource availability. So,
even though separable training falls slightly behind one-
stage training, it is a valuable compromise as it allows a
larger input. E.g., comparing results in table 1 and table 3,
AdaTAD with an input size of 768 x 2242 achieves 0.5 mAP
lower under separable training than with one-stage train-
ing. One-stage training becomes infeasible for AdaTAD at



1536 x 2242 resolution when adapters are added to all lay-
ers, while separable training not only makes this configura-
tion possible but also yields improvements (0.5 mAP) over
one-stage training when adapters are limited to half the lay-
ers to allow them to fit on the GPU (as done by [16]).

4.3.2. The Advantage of AdaTAD®++

There are two primary motivations behind this variation
(shown in Figure 2). First, it allows us to scale input reso-
lutions further by removing gradient flow through the back-
bone, thus reducing memory requirements. Additionally,
based on the main idea from [19], it is important to note
that transformers do not hierarchically extract features like
CNNs do. Instead, they tend to generate features that are
relatively more independent. Therefore, utilizing the out-
puts from each of the encoder blocks directly for the final
output is an effective strategy that helps enhance the overall
results. The difference between ours and the variation used
in [16] is mainly the separation of the spatial and temporal
outputs of each adapter and their concatenation instead of
being projected into the feature space of the corresponding
transformer encoder block. As we can see in Table | under
the section ”Alternate efficient arrangements”, we improve
the results from 75.8 for AdaTAD to 78.0 for us, thus prov-
ing the efficacy of our hypothesis. The reason for the im-
provement is that separating spatial and temporal features
and concatenating them before projecting them into the fea-
ture space of the backbone allows for lesser loss of infor-
mation (due to addition) compared to doing the two steps in
the opposite order as in AdaTAD.

Table 4. Ablation of different adapter architectural designs.
VideoMAE-B is used to conduct the following experiments.

Setting | Param. | Mem. | mAP | gains
Snippet Feature [16] |- | - | 647

+ Full FT 86M 5.6G 70.1 | +5.1
+ LongLoRA [4] 28M 6.2G 71.1 | +6.1
+ Standard Adapter [9] 3.6M 4.8G 702 | +5.2
+ AdaTAD (w/o residual) [16] 4.0M 4.9G 70.8 | +5.8
+ AdaTAD [16] 4.0M 4.9G 71.5 | +6.5

+ AdaTAD++ (w/o separable training) | 6.7M 82G | 733 | +83

4.3.3. The Advantage of Adapter Design

Looking at Table 4, AdaTAD already improves on previous
work, such as standard adapters and LongLORA, using less
memory and having a high gain. While training less than
6.7M parameters (less in the case of separable training), we
achieve a gain of +8.3.

4.3.4. Series vs Parallel Setting for AdaTAD and
AdaTAD++

As discussed in Section 3, both series and parallel settings
of the adapters have their advantages. We discuss these in
Table 5. It can be seen that, as hypothesised, parallel varia-
tions require less memory than their series counterparts. We

Table 5. Comparison of series and parallel adapter arrangements.
Input size is 768 x 2242

. Series/

Settings ‘ Parallel Mem. ‘ mAP
AdaTAD-S series 29.9 75.4
AdaTAD-P parallel | 26.2 | 72.3

AdaTAD-S++ series 38.5 76.3
AdaTAD-P++ | parallel | 33.7 75.8

have shown results for various input resolutions to show the
range of difference between the two. On the other hand,
we can see that series adapters perform better than parallel
adapters according to the intuition discussed in section 3.
It is interesting to note that the performance difference be-
tween the two decreases as the input resolution increases.
This is a favourable trend, as the training memory require-
ment will always scale proportionately to the input resolu-
tion, allowing the parallel arrangement to be more effective
as input resolution increases.

Table 6. Ablation results for spatial pooling CNN, spatial mean
and attention pooling (shown in Figure 1(c)). OOM means out of
memory, input resolution is 768 x 2242,

Setting | Mean | CNN | Mem. mAP

AdaTAD++
(w/o Att. Pool.)

v ‘ 343 73.8

v X 37.7 74.9
AdaTAD++ X v OOM -
(with Att. Pool.) X X OOM -

v v 38.5 76.3

4.3.5. Attention Pooling and Mean

Spatial pooling CNN and spatial mean (shown in Fig-
ure 1(c)) allow us to use transformer encoders instead of
depthwise convolution in the adapters. Table 6 shows that
spatial mean is necessary; otherwise, AdaTAD++ goes out
of memory for A100-80GB GPU. There is a performance
drop of 2.5 mAP when attention pooling is removed, and
1.4 mAP when spatial pooling CNN is removed. This shows
that the two are effective additions in AdaTAD++.

5. Conclusion

In this paper, we present an optimized Temporal Action
Detection (TAD) approach that enhances the TIA frame-
work by decoupling temporal and spatial adapter training.
Our two-phase protocol and use of a transformer encoder
instead of 1D convolutions overcome scalability constraints
and efficiently capture long-range dependencies with low
memory usage. Extensive evaluation on TAD benchmarks
demonstrates significant gains in accuracy and computa-
tional efficiency. The advancements demonstrated set a new
standard for handling long video sequences and large-scale
input data, underscoring the potential for our approach to
support increasingly complex action detection applications.
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