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Synthetic Data in Human Analysis: A Survey

Indu Joshi, Marcel Grimmer, Christian Rathgeb, Christoph Busch, Francois Bremond, Antitza Dantcheva

Abstract—Deep neural networks have become prevalent in human analysis, boosting the performance of applications, such as biometric
recognition, action recognition, as well as person re-identification. However, the performance of such networks scales with the available training data.
In human analysis, the demand for large-scale datasets poses a severe challenge, as data collection is tedious, time-expensive, costly and must
comply with data protection laws. Current research investigates the generation of synthetic data as an efficient and privacy-ensuring alternative to
collecting real data in the field. This survey introduces the basic definitions and methodologies, essential when generating and employing synthetic
data for human analysis. We summarise current state-of-the-art methods and the main benefits of using synthetic data. We also provide an overview
of publicly available synthetic datasets and generation models. Finally, we discuss limitations, as well as open research problems in this field. This
survey is intended for researchers and practitioners in the field of human analysis.

Index Terms—Human Analysis, Deep Neural Networks, Synthetic Data, Survey

1 INTRODUCTION

EEP neural networks (DNNSs) have witnessed remark-
Dable advancement in the past decade, leading to ma-
ture and robust algorithms in visual perception, natural
language processing, and robotic control [1], among others.
Such advancement has been fuelled by the development
of algorithms to train DNNs, the availability of large-scale
training datasets, as well as the progress in computational
power.

DNN techniques have been designed for, among other
applications, human analysis, aiming to recognize human
characteristics, behaviour, as well as interactions with the
physical world. In this context, human analysis ranges
from the unique authentication of single individuals, the
classification of human attributes or actions to the evalua-
tion of crowd-based data. Despite the immense benefit of
processing human data, lack of annotated training data still
hinders DNNs from unfolding their full potential. In ad-
dition, the implementation of data protection laws, such as
the European general data protection regulation (GDPR), defines
strict rules for processing data that can reveal identity infor-
mation, thus violating the data subjects’ informational self-
determination. According to article 9 of the GDPR, biometric
data is considered as sensitive data, and processing without
explicit consent of the data subjects is imposed with fines of
up to 20 million Euro or 4% of the firm’s worldwide annual
revenue from the preceding financial year (article 83).

One solution to overcome challenges related to limited
training data and data protection has to do with creating
large-scale synthetic datasets. Progress of deep generative
models has allowed for the generation of highly realistic
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(&) SURREAL [é]

(e) ElderSim [9]

Fig. 1: Synthetic images generated for human analysis,
namely (a) 2D face image generation, (b) fingerprint image
generation, (c) fingerprint presentation attack detection, (d)
2D pose estimation, (e) and elderly action recognition

synthetic human images - challenging to distinguish from
real data by both humans, and computer vision algorithms
[2][3] (see Figure 1). While generative models have been able
to produce highly realistic synthetic samples, we note that
they are prone to leak information from training datasets.
This is specifically of concern when human data is involved,
and hence identity leaks risk at infringing personal privacy
rights. In this context, current research indicates that iden-
tity leaks in deep generative networks become less likely,
in case the complexity of the training dataset exceeds the
complexity of the model architecture [4]. The main reason
for identity leaks stems from generative model overfitting to
the training dataset, with the consequence of specific units
in the network revealing information of single data subjects
- a concept referred to as generative adversarial network (GAN)
memorization.
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1.1 Domains of application

Synthetic data boosts the performance of many data-driven
models in human analysis [10] [11] [12]. In this context, a
number of training schemes have been introduced including
data replacement and data enrichment. The motivation for
replacing real samples with synthetic data (i.e., synthetic
training) has to do with alleviating privacy concerns. In
contrast, the combination of synthetic and real data (ie.,
augmented training) mainly aims at reducing biases achieved
by re-balancing according to observed soft characteristics.
Another optimization scheme aims at initializing model
weights based on synthetic data with subsequent fine-
tuning on a small subset of real data, referred to as model ini-
tialization. Finally, domain translation techniques are utilized
to close the synthetic vs real domain gap (domain adaptation),
thereby increasing the realism of synthetic datasets while
preserving fine-grained annotations.

Deviating from synthetic data employed for model
training, synthetic evaluation datasets have been utilized to
benchmark the performance of existing algorithms, pre-
trained models, and systems. This field of research is fu-
elled by the increasing representativeness of synthetically
generated samples, which allows interference with systems
and observed outcomes similar to those expected by real
evaluation datasets. The preparation of large-scale testing
databases intends to detect weaknesses in the human anal-
ysis pipeline without requiring expensive data collection
initiatives. Apart from the cost factor, real data from specific
(demographic) subgroups may not be accessible, so syn-
thetic samples could balance underrepresented categories.

1.2 Structure of paper

Given the increasing popularity of synthetic data, the main
contribution of this survey is to revisit current research in
human analysis, illustrating applications, benefits, and open
challenges to accelerate future research. We introduce basic
terminology and scope in Section 2, followed by Section 2.3,
which provides an overview of the main benefits associated
to synthetic data. Section 3 elaborates on techniques for
generating synthetic data, followed by the most prominent
application scenarios presented in Section 4. Section 3.5 sum-
marises synthetic datasets and data generation tools that are
publicly available across human analysis domains. Finally,
in Section 5 we discuss open challenges identified in the liter-
ature analysis with promising new DNN concepts outlined
in Section 6.

2 SYNTHETIC DATA IN HUMAN ANALYSIS

The vast progress of deep generative networks has brought
to the fore highly realistic synthetic data beneficial in
automated human-centred analysis. To avoid ambiguity
throughout this survey, we proceed to establish terminology
of basic concepts, as utilized in this overview article.

2.1 Synthetic data

In general, synthetic data can be defined as digital information
generated by computer algorithms to approximate information col-
lected or measured in the real world [13]. Synthetic data stems
generally from traditional modelling or deep generative models.

(c) Real

| a
(b) S-S

Fig. 2: Example images of a fully-synthetic (F-S), semi-
synthetic (5-S), as well as real samples. The S-S face image
(b) was generated with InterFaceGAN [20] by editing the
age of the real face image depicted on the right side [21]. The
F-S sample (a) was randomly generated with StyleGAN?2 [5].

(a) F-S

While traditional modelling generates real-world patterns
based on prior expert knowledge through the formulation of
mathematical models, deep generative models are designed
to automatically learn patterns from the training dataset. In
the last decade, deep generative models have outperformed
traditional modelling techniques, w.r.t. quality and general-
izability of the synthetic samples [14] [15]. In this survey, we
refer to generative models in the context of both mathematical
modelling and deep generative models.

Synthetic data samples can be fully-synthetic, as well as
semi-synthetic. Fully-synthetic samples are generated with-
out representing an underlying real-world object [16], gener-
ally by generative models, random sampling from a learned
distribution [17][18]. At the same time, semi-synthetic sam-
ples constitute representations of real subjects, whose se-
mantics have been manipulated [19]. For example, in human
analysis, predicting the future appearance of a real face
is considered semi-synthetic, as the image maintains the
identity information, while altering the age. In contrast,
fingerprint images synthesized by GANs based on random
noise vectors are defined as fully-synthetic. An example
image for each class is demonstrated in Figure 2.

In computer vision, real-world information is repre-
sented either at sample or feature level. In particular, we refer
to data samples as the analogue or digital representation of
human characteristics before feature extraction. According
to the harmonic biometric vocabulary of ISO/IEC 2382-
37:2017 [22], a feature vector is composed of numbers or labels
extracted from the data sample. Specifically, feature vectors are
treated as compressed sample representations, often encap-
sulating information, optimised for a specific downstream
task, such as biometric recognition. In practice, generative
models can either focus on generating “synthetic samples” [2]
or “synthetic features”[23], depending on the target applica-
tion.

2.2 Data replacement versus Data enrichment

While deep neural networks have achieved remarkable re-
sults in various computer vision tasks, it is still challenging
to unleash their full potential due to the limited availability
of large-scale datasets. The generation of synthetic samples
can improve scalability and diversity, motivated by the
following: Firstly, existing datasets being enriched with syn-
thetic samples can increase dataset diversity. In this context,
data enrichment (DE) imparts balancing of the proportions
of soft characteristics in order to reduce dataset biases [24].
Note that in this survey, data enrichment signifies minor data
perturbations such as image cropping, colour transformation,
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as well as noise injection [25]. Due to a plethora of data
augmentation techniques, distinction between synthetic and
augmented samples is often challenging. Therefore, we refer
to augmented samples as semi-synthetic, given that the
original sample is at hand. In addition, we here denote weak
supervision learning as a type of DE, as both synthetic and
real samples are jointly employed for model training (see
Section 4.5.3).

Secondly, data replacement (DR) refers to the replacement
of real data with synthetic data [26]. This is instigated by
privacy concerns in human analysis, where identity infor-
mation can be linked with the corresponding sample.

Training human analysis models on domain-adapted
synthetic datasets is considered a sub-category of DR, as
only high-level information from a small subset of real
data is being utilised (see Section 4.5.2). In contrast, the
initialisation or fine-tuning of model weights with synthetic
data is defined as a sub-category of DE due to the active
involvement of real data that remains part of the training
process (see Section 4.6).

Figure 4 introduces DNN-related training, evaluation,
and attack mechanisms in which synthetic data has been
employed including the following.

o Augmented Training refers to learning human anal-
ysis models or classifiers from a mixed training
dataset that includes both real and synthetic data
samples.

o Weakly-Supervised Learning signifies combined
training with weak labels (real data) and accurate
annotations (synthetic data).

e Model Initialisation denotes initial training on syn-
thetic data with subsequent fine-tuning on real data
towards reduction of the synthetic versus real domain
gap.

o Consistency Regularisation denotes the utilisation
of semi-synthetic data to enforce the consistency of
model predictions for similar training samples.

o Synthetic Training signifies the training of models
or classifiers on datasets composed of synthetic data
only.

e Unsupervised Domain Adaptation denotes the em-
ployment of models trained on synthetic data to do-
main adaptation techniques (e.g., Cycle-GAN), aim-
ing to close the gap between synthetic versus real
domain.

e Synthetic Performance Evaluation refers to assess-
ing synthetic datasets generated to test the scalabil-
ity and performance of systems, algorithms, or pre-
trained models.

o Digital Perturbation Attacks describe either fully-
synthetic or semi-semi-synthetic data generated to
maliciously interfere with automated human anal-
ysis systems (e.g., presentation attacks in biometric
systems [27])) or deceive the human perception in
recognizing individuals (e.g., Deepfakes [28]).

Motivated by the above, synthetic data has enabled a
number of applications, listed in Table 1 and elaborated
on in Section 4. Further, Figure 4 summarises application
scenarios derived from the forthcoming literature survey.

2.3 Benefits of synthetic data

Synthetic data can impart a performance boost to human
analysis models, augment controllability and scalability, and
mitigate privacy concerns. We here outline such benefits,
whereas Section 4 revisits relevant works.

Performance boost. One ample application of synthetic
data has been towards boosting the performance of hu-
man analysis models. Table 1 demonstrates such boost by
comparing the associated performance before and after the
use of synthetic data in several domains such as action
recognition, crowd counting, face recognition, pose estima-
tion, and gender classification. Moreover, Table 1 shows that
synthetic evaluation datasets, including controlled labels,
are exploited to evaluate the performance of new algorithms
and pre-trained models. In human analysis, the high fi-
delity of evaluation datasets has been mainly fuelled by
the remarkable progress in the domain of conditional image
synthesis, which enables the generation of synthetic mated
samples by manipulating single image semantics.

Controllability and scalability. The advances in generative
models have enabled the generation of synthetic data, incor-
porating fine-grained control over semantics. Consequently,
synthetic datasets can be created to balance important fac-
tors of variation (e.g., the proportion of images pertained
to male and female subjects), reducing biases caused by
the unequal class distributions often observed in real-world
datasets. Further, the employment of image synthesis mod-
els enables the generation of large-scale synthetic datasets,
a factor known to correlate with the performance of DNNS.

Mitigating privacy concerns. Finally, fully-synthetic
datasets reduce privacy concerns related to the distribution
and processing of sensitive human data. Despite known
incidents of information leaks of GANSs [4], [29], [30], the
reconstruction of training samples remains a challenge, as
opposed to real data processing. We note that such in-
formation leakage is of concern and a set of related coun-
termeasures have been identified, such as the concepts of
differential privacy [31] and precision reduction [30]. While due
to legal and privacy concerns, large-scale biometric datasets,
such as MegaFace [32], have been withdrawn from public
channels, we envision that large-scale synthetic datasets will
be availed for DNN training and evaluation.

2.4 Human analysis

This survey defines human analysis as the analysis of human
characteristics, behaviour, and interaction with the physical
world. Such analysis has a myriad of applications, sum-
marised in Figure 4. To elaborate, we note the following
applications.

o Biometric recognition refers to the automated recog-
nition of individuals based on their biological and
behavioural characteristics [22].

o Emotion Classification refers to the process of clas-
sifying human emotion [33].

e Soft-biometric classification aims at automated clas-
sification of human characteristics in pre-defined
categories, such as demographic, anthropometric or
behavioural groups [34].

o Presentation attack detection (PAD) refers to the
automated determination of a presentation to the
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Fig. 3: Application types of synthetic data in human analysis.

biometric data capture subsystem to interfere with
the operation of the biometric system [35].

o Person Re-Identification is the task of identifying an
individual captured in images and videos acquired
from different cameras or camera angles [36] [37]

e Human interaction recognition is the task of
analysing human interactions of at least two in-
dividuals who are interrelated to each other (e.g.,
handshaking) [38].

e People detection/counting denotes the detection or
counting of individuals within a given image or
video [39][40].

o Semantic segmentation signifies the pixel-based im-
age classification with the goal of tracking human
bodies [8] or body parts [11] in a given image or
video.

e (3D) Pose estimation quantifies the transformation
of the human body [41] or head [42] from a reference
pose, given an image or a 3D scan [43]. In this
context, pose tracking refers to the temporal pose
estimation within video sequences [44].

o Optical Flow Estimation refers to tracking and vi-
sualizing the 2D motion of humans in videos by
tracking human-specific features [45], [46].

e Action recognition focuses on recognizing activity of
individual(s) from a series of observations from data
subjects and their environment [47].

e Anomaly detection refers to classifiers trained to de-
tect human behaviours, interactions, or movements
deviating from normality [48].

e Medical analysis refers to the automated analysis
of data collected in medical applications with the
greater goal of restoring and maintaining human
health. In this survey, synthetic data in medical ap-
plications is considered out-of-scope, and interested
readers are referred to the work of Chen et al. [49].

3 HOW CAN SYNTHETIC DATASETS BE GENER-
ATED?

Initial approaches for synthetic data generation generally
exploit mathematical modelling, 3D rendering tools or pertur-
bations using classical and hand-crafted means. However, the
success of deep neural networks in image generation has
catapulted dynamic perturbations and deep neural networks as
primary generation models. We proceed to provide details

on such generation methods for synthetic data, leaving the
reader with a selected choice of generation tools and openly
available synthetic datasets.

3.1

Mathematical modelling constitutes an early approach for
generating human data aimed at approximating the distri-
bution of real human data through mathematical modelling.
Sampling from the approximated model can then be used to
generate synthetic samples and exploit such in downstream
human analysis tasks. Approximation of the mathematical
model pertaining to the human data requires domain ex-
pertise and a careful understanding of model parameters.
A popular mathematical modelling-based synthetic finger-
print generation (SFinGe) method is proposed by Cappelli
et al. [6]. The authors exploited domain expertise to define
a fingerprint orientation model characterized by the num-
ber and location of the fingerprint cores and deltas. The
synthetic fingerprint generation starts from initializing the
locations of core and deltas, followed by ridge orientation
and density generation. Subsequently, the authors applied
space-invariant linear filtering to obtain a binarized good
quality fingerprint image. Lastly, domain-specific noise was
introduced to simulate realistic greyscale fingerprint im-
ages. Approaches exploiting mathematical modelling using
domain knowledge for synthetic data generation include
finger vein recognition [73], hand shape recognition [74],
face recognition [75], and iris recognition [23].

Mathematical modelling

3.2 3D rendering tools

Several studies exploit 3D modelling to create mathemati-
cal representations of the three-dimensional surface of the
object of interest. Subsequently, a 3D rendering tool is ex-
ploited to render images corresponding to a 3D model. Han
et al. [52] argued that the generation of synthetic samples in
3D space allows for the incorporation of extreme changes in
illumination, viewpoint, occlusion, scale, and background.
Additionally, rendering engines allow precise control over
environmental conditions such as pose variations, lighting,
and object geometry, leading to accurate annotations, which
are often acquired for a real dataset. Most popular 3D
rendering tools include Blender!, Maya?, 3ds Max®, Cinema

1. https:/ /www.blender.org/
2. https:/ /www.autodesk.fr/products/maya/overview
3. https:/ /www.autodesk.com/products/3ds-max/overview
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TABLE 1: Performance of human analysis models trained or evaluated with and w/o synthetic data. Numbers given in
%, except for MPJPE, which is reported in in mm (DE=data enrichment, DR=data replacement, EER=equal error rate,
MAE=mean absolute error, MSE=mean square error, FNMR=false non-match rate, MPJPE=mean per joint position error,
U=Illumination, E=Expression, P=Pose). For precise definitions of the metrics used, we refer to the referenced studies.

[ Reference [[ Application Domain [ Application Type [[ Metric [[ wlo synthetic data | DE [ DR |
Aranjuelo et al. [39] People detection Augmented Training Average Precision (1) 70 82 -
Wang et al. [40] People counting Synthetic Training MAE (1) 275.5 - 225.9
Yadav et al. [15] Tris PAD Augmented Training EER (]) 25.18 18.52 -
Grosz and Jain [7] Fingerprint PAD Augmented and Synthetic Training || Accuracy (1) 99.52 100 36.53
Bird et al. [50] Speaker recognition Model Initialization Average Accuracy (1) 95.48 99.35 -
Tapia ef al. [51] Gender classification from periocular images | Evaluation Accuracy (1) 82.76 - 91.9
Han ef al. [52] Face Detection Evaluation Average Precision (1) 64 74.5
Basak ef al. [53] Head pose estimation Domain Adaptation MAE ({) 6.34 - 5.13
Bird ef al. [54] Speaker recognition Model Initialization Accuracy (1) 96.58 93.83
Dou et al. [10] Gait recognition Augmented Training Rank-1 Accuracy (1) 95.0 96.4 -
Piplani ef al. [55] Passthrough authentication Augmented Training Accuracy (1) 90.8 95 -
Gouiaa ef al. [56] Posture recognition Augmented Training Accuracy (1) 94.58 99 -
Ruiz et al. [57] Signature recognition Augmented Training EER (]) 11.11 4.9 -
Kim et al. [58] Face recognition Synthetic Training Average Accuracy (T) 94.62 - 91.21
Chen et al. [59] Emotion Classification Augmented Training Accuracy (T) 58.6 64.5 -
Meloet al. [60] Signature Recognition Synthetic Training EER (]) 10.26 - 9.74
Oz et al. [61] Eye Segmentation Augmented Training mloU (1) 73 75.4 -
Wang et al. [62] People Counting Model Initialization MSE (1) 14.3 13 -
Trtem ef al. [12] Fingerprint Classification Augmented and Synthetic Training || Classification accuracy (1) 91.9 95.53 69.47
Engelsma ef al. [17] Fingerprint Recognition Model Initialization True acceptance rate () 73.37 87.03 -
Bozorgtabar ef al. [33] || Expression Recognition Domain Adaptation Accuracy (1) 70.15 - 72.1
Qiu et al. [26] Face Recognition Augmented and Synthetic Training || Accuracy (1) 91.22 95.78 91.97
Kortylewski ef al. [24] || Face Recognition Model Initialization Accuracy (T) 91.2 93.3 88.9
Colbois ef al. [63] Face Recognition Evaluation False non-match rates U/E/P ({) 11/3/55 - 12/25/51
Marriott et al. [64] Pose-invariant Face Recognition Augmented Training Accuracy (T) 93.59 95.29 -
Wood et al. [11] Face Segmentation Synthetic Training F} score (1) 91.6 - 92
Ahmed ef al. [65] Facial Expression Classification Augmented Training Accuracy (1) 92.95 96.24 -
Niinuma et al. [66] Facial Expression Classification Synthetic Training Inter-rater reliability () 48.9 - 52.5
Ranjan ef al. [45] Optical Flow Estimation Evaluation Motion compensated intensity (1) 158.3 — 71.5
Zhu et al. [67] Pose tracking Synthetic Training MPJPE (1) - - 76.41
Cai et al. [68] Pose Estimation Augmented Training Procrustes-aligned MPJPE (]) 65.7 57.9 61.7
Varol et al. [69] Action Recognition Augmented Training Accuracy 0°/45°/90° (1) 88.8/78.2/57.3 90.5/83.3/68 -
Hatay et al. [70] (Phone) Action Recognition Model Initialization Accuracy (1) 95.83 96.67 -
Souza et al. [71] Action Recognition Augmented Training Accuracy (1) 93.3 92.7 -
Varol et al. [8] Human Body Segmentation Model Initialization Accuracy (1) 58.54 67.72 56.51
Priesnitz et al. [72] Contactless Fingerprint Recognition Evaluation Average EER ({) 30.93 - 3.55

Fig. 5: Aranjuelo et al. [39] utilized 3ds Max software to
virtually render humans (right) on a real scene (left) for
detection of moving subjects.

4D*, Unity®, and Unreal Engine®. Despite the precise con-
trol over subject and environmental-related attributes, it is
still an open challenge to close the domain gap between
synthetic and real data in terms of visual quality and ap-
proximation of intricate details [76], [77].

Aranjuelo et al. [39] virtually rendered humans on real
scenes for application in the detection of individuals (see
Figure 5). Similarly, Oz et al. [61] used a 3D rendering tool
to generate synthetic eye images and exploit the generated
samples to learn eye region segmentation (see Figure 6).

4. https:/ /www.maxon.net/en/cinema-4d
5. https:/ /www.unity3D.com
6. https:/ /www.unrealengine.com

[ RS ErS

Fig. 6: Oz et al. [61] generated synthetic eye images employ-
ing UnityEyes [81], a 3D rendering tool. The synthetic data
is used for learning eye region segmentation.

Recently, 3D rendering tools employed in video games have
become a valuable source for collecting synthetic data, aim-
ing to improve performances across different human anal-
ysis tasks. Among others, Zhu et al. [67] and Cai et al. [68]
extracted training data from NBA2K2019 and GTA-V, in
order to achieve state-of-the-art performances in 3D human
body reconstruction. Other studies exploiting 3D rendering
tools for generating synthetic data spanned applications in
re-identification of individuals [78], face recognition [79],
[52], and gait recognition [80].

3.3 Input perturbations

Perturbations of a given input are widely used to generate
synthetic data. Such perturbations are either introduced
by noise using classical and hand-crafted methods or by
a learning-based approach. We proceed to provide a brief
discussion on both approach types.
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Fig. 7: Cappelli et al. [6] exploited morphological operations
such as erosion and dilation to vary ridge thickness while
generating multiple impressions of a fingerprint image.
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Fig. 8: Jain et al. [87] dynamically perturb a face image using
six different adversarial training mechanisms (top row). The
corresponding perturbations are provided in the bottom
row. The authors demonstrate that synthetic faces generated
using dynamic perturbations can increase face comparison
score (obtained using ArcFace) in non-mated comparison
trials.

3.3.1 Perturbations using classical and hand-crafted meth-
ods

Classical and hand-crafted methods can perturb a given
input to either introduce variations in the available data
or simulate cases that are difficult to capture otherwise.
Most prominent classical and hand-crafted methods include
Gaussian blurring, image blending, colour jittering, hori-
zontal and vertical flipping, rotation, translation, as well as
affine transformations. Some studies utilize morphological
operations such as erosion and dilation to generate syn-
thetic data samples. Following this direction of synthetic
data generation, Ibsen et al. [82] exploited image processing
techniques to synthetically blend tattoos on human faces.
Similarly, Cappelli et al. [6] generated synthetic multiple
impressions from a given input fingerprint using morpho-
logical operations (see Figure 7). Other studies that generate
synthetic data using classical methods have been instrumen-
tal in fingerprint recognition [83] [84], iris recognition [85] ,
and re-identification of individuals [86].

3.3.2 Dynamic perturbations

A dynamic perturbation is defined as an input-specific per-
turbation introduced through an adversarial training mech-
anism such that a learning-based human analysis model
is likely to make an erroneous prediction [87]. Training a
human analysis model with the synthetic data generated
using dynamic perturbations is beneficial for regularization
and improvement of robustness. Following this approach,
several studies generated synthetic data using adversarial
training. Jain et al. [87] generated synthetic non-mated fa-
cial images using dynamic perturbations that obtain high
comparison scores (see Figure 8). Other studies in human
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analysis exploiting dynamic perturbations include applica-
tions in re-identification of individuals [88], face recognition
[89], iris recognition [90], and fingerprint recognition [91].

3.4 Deep neural networks

Deep neural networks (DNNs) represent state-of-the-art ar-
chitectures for generating synthetic data for among others,
applications in human analysis. By revisiting related litera-
ture, we identify following categories for doing so.

3.4.1 Sequence-based neural networks

Originally, a recurrent neural network (RNN) is a DNN
designed to process time-series, as well as sequential or
variable-length input data. Such models are designed for
applications, where input data samples depend on the
previous data samples, as RNNs are aimed at captur-
ing dependencies between data samples. Towards captur-
ing long-range dependencies, state-of-the-art RNNs exploit
long short-term memory (LSTM) and gated recurrent units
(GRU) [28] to store information from previous inputs or
states and generate the subsequent output of the input se-
quence. An LSTM comprises three gates: input, output and
forget gate, while a GRU incorporates a reset and an update
gate. These gates determine the most informative part of the
input to make a prediction in the future. Additionally, in the
realm of computer vision, vision transformers (ViTs) [92]
have been proposed as an effective architecture for image
data processing, leveraging self-attention mechanisms to
capture global patterns in high-resolution images.

One of the applications exploiting RNN to generate
synthetic data is the contribution of Bird et al. [54], where
a character-level RNN is exploited to generate audio sen-
tences for speaker identification. In addition, RNNs are em-
ployed for generating deep fakes, where these architecture
render continuous realistic flow in audio or video [28].

3.4.2 Auto-Encoders

Auto-Encoder (AE) based generative models constitute a
pair of encoder and decoder networks. While the encoder
network learns an efficient representation of the input, the
decoder network generates an output corresponding to the
given latent vector provided as output by the encoder net-
work. These models generate synthetic data by learning the
joint distribution of the latent space and the training data.
Such models are generally regularized by imposing a prior
distribution on the latent space to facilitate generation dur-
ing inference [93]. Prominent auto-encoder architectures for
synthetic data generation include variational auto-encoder
[93], adversarial autoencoder [94] and Wasserstein auto-
encoder [95], which includes a Gaussian prior. However,
the Gaussian prior is simplistic and might fail to capture
complex latent distributions. To alleviate this limitation,
rich classes of distributional priors have been explored
[96], [97]. Several research efforts have attempted to learn
disentangled representations in the latent space of the VAE
[98], [99]. Such a factored representation is beneficial in
interpolating the latent space, leading to the generation of
diverse samples and plausible modification in input data.
Despite offering interpretable inference, stable training, and
an efficient sampling procedure, the generation quality of
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Fig. 9: Choi et al. [14] proposed StarGAN, a generative
adversarial network that is able to alter attributes of a
given face image. The generated synthetic faces have been
commonly used as deepfakes.

VAE:s is not as impressive as the one achieved by GANs
[97]. Next, we discuss the most widely used state-of-the-art
deep generative framework, namely GANs [100].

3.4.3 Generative adversarial networks (GANSs)

Goodfellow et al. in their seminal work [100] proposed a
framework incorporating two networks, a generator and a
discriminator. The generator learns a distribution of training
samples, whereas the discriminator network is aimed at
classifying whether the input samples stem from the train-
ing set or are generated by the generator (real or fake). Both
networks are trained in an adversarial manner (zero-sum
game), and the framework targets to facilitate improved
approximation of true distribution by the generative model
[101]. Hence, the name generative adversarial network. GANs
are broadly categorized as noise to image translation or image
to image translation networks. The former aim at upscal-
ing a randomly sampled noise vector to a realistic image,
whereas the latter are trained to transform a given image
to another image. Although achieving photorealistic and
high-resolution image quality, GANs suffer from training
instability and mode collapse, constraining the diversity
by generating synthetic samples close to the average of a
training dataset.

Prominent noise to image translation GANs include DC-
GAN [102] and Wasserstein GAN [103], whereas frequently
empolyed image to image translation GANs include pix2pix
[104] and Cycle-GAN [105]. Several studies in human anal-
ysis exploited GANSs to generate synthetic data [106], [55],
[107], [108], [33]. One such study includes the contribution
of Cao and Jain [109]. The authors generated synthetic fin-
gerprints using noise to image translation GAN. Similarly,
Choi et al. [14] proposed an image to image translation GAN
to modify attributes in facial images (see Figure 9).

3.4.4 Scene Graphs

Deng et al. [110] argued the necessity of understanding
the relationship between different objects in a scene to
generate synthetic data with multiple objects in a scene.
The authors proposed to represent a multi-object scene as a
tree-structured probabilistic scene graph that is trained with
variational inference. Scene graphs are additionally utilized
to generate moving objects [111]. For details on scene graph-
based generative models, the readers are referred to [112].
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Fig. 10: Ho et al. [113] proposed to generate synthetic data
using a DPM that uses a directed graphical model at its core.

3.4.5 Diffusion Probabilistic Models

The most recent generative models for synthetic data gen-
eration include diffusion probabilistic models (DPMs) [113],
aiming to overcome the diversity constraints of GANs. A
DPM is parameterized through a Markov chain that exploits
variational inference to train the model towards generating
realistic data samples after a finite time. Transitions among
these chains are learnt via iteratively introducing noise into
the training set until the signal is destroyed. The overall
goal of noise injection has the goal to allow the model to
learn to reverse the diffusion process, and eventually to
learn to generate realistic data samples from a given noise
vector (see Figure 10). In addition, DPMs are exploited for
conditional data generation [114], as well as image-to-image
translation [115].

3.5 Open-Source Availability

Finally, we provide an overview of synthetic datasets and
synthetic data generation tools available for public usage.
We emphasize the importance of sharing datasets and tools
within the research community for improved reproducibil-
ity of results. As such, Table 2 presents publicly-available
datasets comprised of synthetic data only. Further, Table
3 introduces synthetic data generation tools to enable new
researchers in the field of human analysis to build custom-
generated datasets tailored to their needs.

In summary, we find that DNNs and 3D rendering tools
are frequently used techniques for generating synthetic data
for human analysis. However, the major challenge in syn-
thetic data generation remains related to ensuring diversity,
representation and preventing identity leakage (discussed
in Section 5).

4 HOW CAN SYNTHETIC DATA BE UTILIZED?

Synthetic data is frequently used to simulate complex scenarios
for which the data collection is particularly challenging, to
overcome privacy issues observed for collection of real human
analysis datasets, increase the size and diversity of training
datasets, as well as to mitigate bias in real training datasets.
Furthermore, looking at the challenge in collecting large-
scale datasets, synthetic data is widely used in scalability
analysis of systems. Additionally, as obtaining annotations
can be both time-consuming and expensive, synthetic data,
whose annotations can be automatically derived is prominently
used. With consistency regularization techniques, synthetic
data is used to learn generalizable models. Synthetic data
can also be employed to produce presentation attacks on hu-
man authentication systems. We proceed to provide details
on different uses of synthetic data.
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TABLE 2: Publicly available synthetic datasets.

[ Reference [ Name | Application Domain [ Year | Data Type | Dataset Size |
Wood et al. [11] Microsoft Face Synthetics Landmark localization, Face parsing | 2021 | Images 100, 000
Falkenberg et al. [116] | HDA-SynChildFaces Child-based Face Recognition 2023 | Images 188, 832 Frames
Varol et al. [8] SURREAL Human Pose Estimation 2017 | Video Frames 6,000, 000
Fabbri ef al. [44] Joint Track Auto (JTA) Human Pose Tracking 2018 | Videos 512
Barbosa ef al. [117] SOMASet Person Re-identification 2017 | Images 100, 000
Varol et al. [69] SURREACT Action Recognition 2021 | Videos 106, 000
Da et al. [118] Mixamo Kinetics Action Recognition 2020 | Videos 36,195
Ariz et al. [119] UPNA Synthetic Head Pose Database | Head Pose Estimation 2016 | Videos 120
Roitberget al. [120] Sims4Action Action Recognition 2021 | Videos 625.6 minutes
Hwanget al. [9] KIST SynADL Elderly Action Recognition 2020 | Videos 462,000
Ranjanet al. [45] MHOF Multi-Human Optical Flow 2020 | Video Frames | 111,312 Frames

TABLE 3: Publicly available synthetic data generation mod-
els (MM=Mathematical Modelling).

[ Reference ][ Generation tool [[ Year | Method |
Drozdowski et al. [23] Synthetic Iris Code Generator 2017 | MM
Li et al. [76] 3D Face Model Generation (FLAME) 2019 | 3D MM, DNN
Feng et al. [121] 3D Face Model Encoder (FLAME) 2021 | DNN
Chan et al. [122] 3D-Aware Face Image Generation 2022 | DNN
Karras et al. [2] Face Image Generation (StyleGAN3) 2021 | DNN
Maltoni et al. [6] Fingerprint Image Generator (SFinGe) 2009 | MM
Priesnitz et al. [72] Contactless Fingerprint Image Generator || 2022 | MM
Sun et al. [37] Person Re-Identification (PersonX) 2019 | 3D MM
Hwang et al. [9] Elderly Action Recognition 2020 [ 3D MM
Zhu et al. [67] 3D Pose Estimation 2020 | DNN
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(a) Real dataset collection.
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(b) Synthetic data generation.

Fig. 11: Dou et al. [10] discussed the limitations of existing
real databases for video-based gait recognition in capturing
complex scenarios. For instance, the authors discussed that
(a) real datasets are only acquired with a single camera pitch
angle and (b) on the other hand, the synthetic dataset is
generated with a diverse range of camera pitch angles. Thus,
synthetic data can be used to simulate complex scenarios,
which are otherwise difficult to acquire for a real dataset for
human analysis.

4.1 Simulating complex scenarios

Although suffering from the real-vs-synthetic domain gap,
synthetic datasets for augmented training or model ini-
tialization of DNNs are employed to improve associated
robustness towards complex scenarios across various ap-
plications, where collection of real data is particularly dif-
ficult. Dou et al. [10] argued that existing real databases
for video-based gait recognition do not possess examples of
complex scenarios that can be crucial for obtaining satisfac-
tory performance in real-world applications. For instance,

o4
o
&

FRGC
StyleGAN2(=0.75)

e
°
2]

relative frequency
o4
°
g

ol
o
)

-0.2 0 0.2 0.4 0.6
comparison scores

Fig. 12: Zhang et al. [127] compared the distribution of non-
mated comparison scores of real (FRGC-V2 face database
[21]) versus synthetic faces generated. Only minor differ-
ences in non-mated comparison scores corresponding to
synthetic data were observed, as seen in real data. These
results illustrated the potential of synthetic data being uti-
lized instead of real data, alleviating privacy issues.

real datasets are captured under ideal settings with only a
single camera pitch angle (see Figure 11). Specifically in the
OU-MVLP dataset [123] for gait recognition subjects only
walk twice without the change of bag or clothing, with
only one subject appearing per video frame. However, real-
world scenarios naturally include multiple walking indi-
viduals. Towards bridging this gap, the authors generated
approximately one million synthetic silhouette sequences of
11,000 subjects. The resulting synthetic dataset VersatileGait
comprises of gait sequences with a diverse range of cam-
era pitch angles and fine-grained annotations of attributes.
Furthermore, to promote the design of multi-person gait
recognition algorithms, the authors also generated multi-
person walking scenarios with up to three people walking
simultaneously.

Similarly, Aranjuelo et al. [39] argued that existing real
datasets for human detection do not exploit omnidirectional
cameras to capture a 360° view in surveillance videos. To
take advantage of the 360° view, the authors proposed the
subject detection model to be trained with synthetic data.
Other applications, exploiting synthetic data to simulate
complex scenarios include the contributions of Lai et al. [124]
for generating synthetic skilled forgery attacks, Tabassi et
al. [125] for simulating altered fingerprints and the contri-
butions of Arifoglu and Bouchachia [126] for simulation of
(abnormal) behaviour observed for dementia patients.

4.2 Addressing privacy concerns

Data collection is often governed by strict rules to pre-
serve the privacy of individuals. For settings in which
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Fig. 13: Feng et al. [79] generated synthetic faces with 11
yaw rotations (ranging from -50° to 50° over a step size of
5°) and 5 pitch rotations (ranging from -30° to 30° over a
step size of 5°). Therefore, augmenting the synthetic dataset
with the real training set increased the size of the training
set. Furthermore, synthetic data provided face images with
diverse pose variations. As a result, facial landmark detec-
tion performance improved w.r.t. variations in facial poses.

data collection is challenging due to time, cost, or privacy
constraints, the generation of synthetic data can be seen
as an efficient and privacy-preserving alternative [127].
However, a challenge with these applications has been to
ensure that synthetic data has a similar distribution (for
instance, distribution of minutiae in fingerprints [109], or
distribution of sample quality scores [109], [127]) as the
real data. Many studies demonstrated that synthetic data
with similar characteristics to the real data can be generated
and used, rather than the privacy-constrained real data. One
such study includes the generation of 50, 000 synthetic face
images each using StyleGAN [18] and StyleGAN2 [5] for
face recognition applications in face recognition systems at
the Schengen border [127]. The authors demonstrated that
realistic face images with image quality scores similar to real
faces can be generated. In addition, the authors compared
face recognition performance of models trained on synthetic
and real data and reported only minor differences, see
Figure 12. Similar to Zhang et al. [127], Bozkir et al. [128] and
Hillerstrom et al. [129] proposed to generate synthetic data
for applications implying gaze estimation and finger vein
recognition, respectively, in order to circumvent privacy
issues, occurring when publicly sharing human data. How-
ever, the privacy-preserving property of synthetic datasets is
closely related to the underlying generation model as recent
studies have shown that DPMs can leak information from
their training datasets [130] by learning to copy individual
samples. Likewise, concerns over identity leakage have been
raised for GANs [29].

4.3 Increasing the size and diversity of training dataset

Training DNNs requires a tremendous amount of data. At
the same time, datasets in human analysis have often very
limited samples. However, training with smaller datasets
may lead to poor generalization onto real-world test ex-
amples. Therefore, several studies in human analysis advo-
cated augmentation through synthetic data. Augmentation
with synthetic data improves diversity by introducing more
variations in training data, as well as increases the size of
the training set. Training with a more extensive and diverse
set leads to improved training and generalizability of the
trained model on the test data.

—6— CR + MPIE-Fro.
—+— CR +3D Syn. & MPIE-Fro.
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Fig. 14: Feng et al. [79] selected 44,820 images from the
Multi-PIE [131] as the training set and augmented it with
8,965 synthetic 2D face images. The authors demonstrated
that the face detection error of the cascaded regression (CR)
based method significantly decreased, when trained with
augmented data (plot in red) compared to when the land-
mark detection model was trained on only real faces (plot
in blue). Motivated by this observation, the augmented data
was used to train the proposed method based on cascaded
collaborative regression (CCR, plot in black) to achieve the
best face detection performance.

Feng et al. [79] discussed the limited availability of an-
notated datasets to train a facial landmark detection model.
The authors generated 8,965 synthetic 2D face images to
address this limitation with 11 different yaw rotations and
five pitch rotations (see Figure 13). The authors augmented
the training set for landmark detection and found that the
face detection error reduced significantly after training on
the augmented dataset (see Figure 14). Similarly, Masi et
al. [132] augmented the training set of face images using
augmentations that introduce variations in pose and shape.
The authors demonstrated that rank-1 face recognition ac-
curacy on the IJB-A dataset [133] improved from 94.6% to
96.2% after augmentation with synthetic samples. Several
other studies additionally advocated augmenting the train-
ing set with synthetic data. Some of these studies include
applications in human posture recognition [56], brain-based
authentication [55], face photo-sketch recognition [134] , and
cross spectral face recognition [135].

We observe that due to the simplicity and low compu-
tational requirements, perturbation of training samples to
generate semi-synthetic data remains the most frequently
used method towards increasing size and diversity of a
training dataset.

4.4 Assessing scalability of systems

Evaluation of scalability of large-scale systems such as the
Aadhar database maintained by the unique identification
authority of India requires assessment of a system’s perfor-
mance for a colossal number of enrollees, sometimes up to
a billion (Aadhar has 1.32 billion enrollments till 31 October
20217). Scalability analysis of automated systems is crucial
to assess whether these can be deployed for large-scale real-
world applications. However, the collection of such large-
scale datasets pertaining to humans is often challenging.
To address this problem, researchers proposed to generate
large-scale synthetic data. Such synthetic data is instrumen-
tal for scalability analyses of human analysis systems.

7. https:/ /uidai.gov.in/
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Rank-20 identification acouracy (%)

Fig. 15: Cao and Jain [109] generated synthetic fingerprints
and augmented the gallery of standard real fingerprint
databases to assess the scalability of state-of-the-art fin-
gerprint search algorithms [136]. The authors found that
the rank-20 identification accuracies dropped as the gallery
was augmented with synthetic fingerprints. These results
signified the usefulness of synthetic data, in order to assess
the scalability of systems.

We note that the scalability can either be evaluated with
system-relevant metrics (e.g., throughput rate) or metrics
that reflect the employed algorithms’ performance or pre-
trained models. According to the work of Sumi et al. [137],
synthetic evaluation datasets have to comply with following
three criteria.

1) Privacy. There shall not be a link between a syn-
thetic sample to one of the individuals contained in
the training dataset.

2) Precision. The performance of a pre-trained model
evaluated with synthetic data shall be equal to the
performance reported based on real data.

3) Universality. The precision shall be consistent
across the evaluation of different pre-trained mod-
els.

Wilson et al. [138] demonstrated that the identification
performance of a fingerprint recognition system drops lin-
early with the increase of enrolment records in the gallery.
This observation motivated Cao and Jain [109] to generate
10 million synthetic rolled fingerprints using I-'WGAN [139]
in order to evaluate the scalability of fingerprint search
algorithms. Similar to the trend observed for real data [138],
the authors found that the rank-20 accuracy on NIST SD4®
accuracy drops from 98.7% to 96.1% after the gallery was
augmented with 250K synthetic fingerprints generated by
the authors. Related to that, the report NIST SD14 [140]
indicated that the rank-20 accuracy drops from 98.7% to
95.0% (see Figure 15).

Recently, Colbois et al. [63] analysed the verification
accuracy and privacy of synthetic face images generated
with StyleGAN2 [5] and InterFaceGAN [20]. The authors
introduced a synthetic version of the Multi-PIE dataset [131]
(Synth-Multi-PIE), representing the same factors of varia-
tion. The precision was assessed following the evaluation
protocol of [131], identifying only minor performance differ-
ences between Synth-Multi-PIE and Multi-PIE. Similar stud-
ies on scalability analysis using synthetic data have been
conducted for hand-shape biometrics recognition [141], face

8. https://www.nist.gov/srd/nist-special-database-4
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Fig. 16: Costa et al. [118] introduced a large-scale synthetic
human action recognition dataset to promote the design of
unsupervised domain adaptation methods for minimizing
the cost and human effort in acquiring a large annotated
dataset for human action recognition.

recognition [75], and iris verification [23]. However, as also
noted in Section 5, synthetic data may not always be truly
representative of real data. Hence, assessing scalability us-
ing synthetic data may suffer from reliability issues.

4.5 Providing annotated data for supervision
4.5.1 Supervised Learning

Numerous applications can be formulated as a supervised
learning problem, for which annotation might be challeng-
ing to obtain. For such applications, representative synthetic
samples and their annotations are generated in order to
train models in supervised learning manner [83], [142], [8],
[143], [144], [145], [146], [82], [147], [148]. Feng et al. [79]
argued that manually annotated facial landmarks are often
inaccurate for occl5uded facial regions. The annotations of
synthetic faces generated from a 3D model are correct for
all different pose variations as these are direct projections
to 2D from 3D. Therefore, the authors used a synthetic
dataset to obtain reliable and consistent annotations for
various image variations. Some applications have exploited
synthetic data to learn a transformation from distorted to
clean samples. Associated to this direction, Dieckmann et
al. [149] proposed to learn the pre-aligning of fingerprint
images through horizontally and vertically translated and
rotated synthetic fingerprints. Likewise, Zhang et al. [150],
and Joshi et al. [151] utilized synthetic data to learn blind
inpainting of face images, and enhancement of fingerprints,
respectively.

4.5.2 Unsupervised domain adaptation

Supervised DNNs require a massive amount of manually
annotated training data. However, collection, and partic-
ularly annotation of such is tedious, time-consuming and
expensive. Furthermore, many human analysis applications
require annotations by domain experts [152], or reliable
annotations cannot be obtained for the real data [153]. To
address this challenge, researchers proposed to train models
on a synthetic training dataset whose annotations can be
computationally acquired. However, a huge gap in model
performance was observed between real and synthetic data
due to the visible domain shift (see Figure 16). Researchers
adapted models to unannotated real-world datasets, in
order to reduce the performance gap between real and
synthetic data. An important application of unsupervised
domain adaptation of human analysis models includes the
contributions of Wang et al. [40] [62]. The authors exploited
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Target dataset: Weakly Supervised
(Image-level annotations)

Image-level labels.

Fig. 17: Sindagi et al. [156] studied domain adaptation of
a crowd counting model. While the source had pixel-level
annotations, the target data was annotated on image level
and only provided weak supervision.

15,212 synthetic labelled crowd scene images containing
more than 7,000,000 subjects for the purpose of training
a model for pixel-level understanding in a crowd. However,
instead of directly using the synthetic data, the authors
firstly translated synthetic images into realistic images us-
ing a GAN. This was beneficial in reducing the domain
gap between synthetic and real data. Next, the model was
trained on translated images instead of actual real images.
The authors reported that the structural similarity index
measure (SSIM) value improved from 0.554 to 0.660 after
exploiting the synthetic crowd counting dataset.

Joshi et al. [152] highlighted the dependence of state-
of-the-art fingerprint segmentation models on annotated
data as a means to obtain satisfactory performance on a
newly introduced fingerprint capture device. To mitigate
this limitation, the authors only used synthetic data (source
domain) annotations to learn fingerprint segmentation. To
adapt the model to a new fingerprint capture device (target
domain), the authors aligned the source and target domain
features using recurrent adversarial learning. Extending the
theme of unsupervised domain adaptation, Bondi et al.
[153] argued that annotations of thermal infrared videos
were often erroneous and therefore proposed to train the
detection and tracking model on a synthetic dataset, adapt-
ing subsequently to a real dataset. Several applications
spanning areas such as face recognition [154], person re-
identification [36], human action recognition [118] and head
pose estimation [155] successfully exploited synthetic data
to eliminate the need for annotations of real data through
unsupervised domain adaptation.

4.5.3 Weakly supervised learning

Synthetic annotated data has been utilized in weakly su-
pervised learning (see Figure 17) aiming to introduce a
higher degree of supervision. For instance, Mequanint et al.
[157] highlighted the unavailability of annotated data for
training an eye-openness estimation model (see Figure 18).
To alleviate this issue, the authors generated 1.3 million
annotated synthetic eye images with varying levels of eye
openness to enable supervised learning. Furthermore, to
counter the domain shift between real and synthetic eye im-
ages, the authors exploited weak supervision (eyes simply
open or closed). It was demonstrated that the classification
(open/close) accuracy improves from 96.30% to 100% after
utilizing synthetic data. Deviating from the above, Zhang
et al. [158] generated weakly labelled face images (labels
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Fig. 18: Mequanint et al. [157] proposed weakly supervised
learning in an eye-closeness estimation model. The model
exploited synthetic annotated data that provided a degree
of openness of eyes, whereas the real data only provided
weak supervision, whether the eye is open or closed. Thus,
annotated synthetic data can be used to enable learning in
weakly supervised learning.
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Synthetic

as bounding box and class) using a deep convolutional
generative adversarial network (DCGAN) [102] and used a
limited amount of fully annotated real data (labels as land-
mark vector, bounding box and class). A weakly supervised
learning framework was used to train the facial landmark
detection model, which improved the average error distance
for landmark detection on the labelled face parts in the
wild (LFPW) dataset [159] from 4.25 to 3.12 after utilizing
synthetic faces.

Synthetic data offers a remarkable substitute for an
array of applications where annotations are not available.
However, as we note in Section 5, such datasets are often
not made publicly available, leading to unfair comparison
among different baselines, as well as rendering reproducibil-
ity challenging.

4.6 Model initialization

DNNs impart a large number of parameters and, therefore,
require a large amount of training data to avoid over-
fitting, e.g., ImageNet incorporates approximately 1.2 mil-
lion annotated images. However, in human analysis often
only limited annotated training sets are publicly available,
including hundreds or thousands of images. Therefore, once
again synthetic data is advantageous in alleviating the need
for a large amount of training data required for training
data-hungry DNN. It is common practice to generate an-
notated synthetic datasets and use such to pre-train deep
models, which are then fine-tuned with annotated real data.
A number of studies demonstrated that such pre-training
with synthetic datasets leads to better performance than
training directly on the real dataset. In one of the recent
studies, Engelsma ef al. [17] demonstrated that performance
gain was observed by a DNN-based fingerprint recognition
model (DeepPrint) [160] that was pre-trained on synthetic
fingerprints and fine-tuned on real fingerprints. The au-
thors generated 525K synthetic fingerprints for pre-training
DeepPrint and fine-tuned it on 25K fingerprints from the
NIST SD302 database [161]. The authors then assessed the
fingerprint recognition performance of DeepPrint on NIST
SD4 database’, with and without pre-training with synthetic

9. https://www.nist.gov/srd/nist-special-database-4
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data. The authors observed that the true acceptance rate
(TAR) @ false acceptance rate (FAR)=0.01% improves from
73.37% to 87.03%, when pre-trained with synthetically gen-
erated fingerprints.

Similarly, Wang et al. [40] trained a pixel-level crowd
understanding model on large-scale synthetic data (15,212
images of 7,625, 843 subjects) and fine-tuned it on labelled
real data. The mean square error decreased by 14.1% after
pre-training on synthetic data was noted, compared to the
performance of the crowd counting model pre-trained on
ImageNet dataset [162]. Similar trends were observed for
other applications analyzing human data including speech
recognition [50], hand shape recognition [163], head pose
estimation [53], eye gaze tracking [164], re-identification of
individuals [117] and face recognition [165].

4.7 Enforcing consistency regularization
4.7.1

Contrastive learning is a learning paradigm that ensures
that representations of similar samples must be close,
whereas representations of dissimilar samples are far apart
in the latent space. Various studies exploited synthetically
augmented data to generate similar samples for a given
input. Subsequently, using contrastive learning, the model
was encouraged to have similar representations for the
original and the augmented input samples. Ryoo ef al. [166]
introduced different low resolution (LR) transformations
into videos and trained an activity recognition model such
that the images obtained from the same scene, pertaining
to different pixel values due to LR transformation, shared
a common embedding (see Figure 19). The authors demon-
strated that the classification accuracy under low-resolution
constraints improves from 31.50% to 37.70% after using
synthetic data. Neto et al. [167] applied augmentation tech-
niques to generate synthetically masked faces. Contrastive
learning brought then representations of masked and un-
masked faces of the same data subject close to each other.
The authors demonstrated that the model trained using the
synthetically masked images outperformed existing stan-
dard face recognition systems on masked face recognition.
Several other applications in speaker recognition [168], face
recognition [169], person re-identification [106], [170] and
electrocardiogram (ECG) based authentication [171], pro-
posed to generate synthetic data for exploiting contrastive
learning.

Contrastive Learning

4.7.2 Self-supervision

Self-supervision is an unsupervised learning paradigm,
through which a model can be regularized by introducing
an auxiliary task. Several approaches in human analysis
have introduced transformations to an input data to gener-
ate synthetic labelled data for training the auxiliary task in a
supervised manner. For example Zhou et al. [172] proposed
rotate-and-render, an augmentation technique that rotates
faces back and forth in 3D space and subsequently ren-
ders them back in 2D (see Figure 20). Such augmentation
strategy ensured consistency regularization, while training
face recognition models. As a result, TARQFAR = 0.001
on the IJB-A dataset improved from 80.00% to 82.48% after
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LR videos with different transforms

Fig. 19: Ryoo et al. [166] exploited different low-resolution
transformations towards synthetically generating videos
with the same scene and different pixel values due to
changes in resolution. Later, a Siamese network was trained
that ensures that the feature representations of the original
and augmented video frames were similar. Thus, synthetic
data can be used to ensure consistency among representa-
tions learnt by a human analysis model.

Pose: P,

Rotate-and-Render
e

Pose: P, Pose: B,

Rd,

Pose: P,

Fig. 20: Zhou et al. [172] proposed rotate-and-render aug-
mentation that given a face image generates a synthetic face
image with a varying pose. Later, the synthetic face was
rendered back to the original pose. Such an augmentation
ensured self-supervision in face recognition models. As a
result, the model learned to preserve consistency in identity
information while varying facial poses.

introducing self-supervision through the proposed augmen-
tation strategy. Other applications utilizing synthetic data
for self-supervision include deepfake detection [173], fa-
cial expression recognition [174], face recognition [175] and
sleep recognition [176].

4.7.3 Few-shot learning

Few-shot learning is characterized by learning with a lim-
ited number of samples. Specifically, in order to compen-
sate for limited availability of data and to promote the
learning to learn paradigm, augmentation strategies simulate
challenging real-world scenarios and ensure consistency in
prediction for real and augmented input sample. Ge et
al. [177] proposed in this context a knowledge distillation
framework to improve face recognition performance under
limited data and low resolution constraints. The face recog-
nition model was trained on high-resolution face images,
serving as teacher network. The authors then synthetically
generated low-resolution face images and trained the stu-
dent model such that the output of the student model on
the synthetic low-resolution face was close to the output
of the teacher model on the real high-quality face image
(see Figure 21). The associated performance of face ver-
ification on the UMDFace dataset [178] improved from
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Knowledge
Distillation

Fig. 21: Ge et al. [177] proposed a knowledge distillation
framework for few-shot face recognition in the wild. The
authors exploited consistency regularization among the out-
put of the teacher model for the high-quality input and
output of the student model for synthetic low-quality face
images. Therefore, synthetic data can be used to enforce

consistency regularization for improved performance of the
human analysis model in few-shot learning scenarios.

67.59% to 73.58% after knowledge distillation compared to
training the student model directly on synthetic faces. Thus,
consistency regularization between real and synthetic data
improved the face recognition performance with few-shot
learning. Other studies utilizing synthetic data for few-shot
learning in human analysis include applications in attribute-
based person search [179], deepfake detection [180], login
authentication [181], signature verification [182], and gaze
estimation [134].

4.8 Mitigating dataset bias and ensuring fairness

Human datasets often contain demographic bias w.r.t. at-
tributes such as ethnicity, gender, or age [184]. In addition,
collected datasets might be biased to a certain group of
labels [66]. Synthetic data is able to balance and unbias
datasets beneficial in training and designing fair and un-
biased human analysis models. Georgopoulos et al. [183]
exploited an attribute-transfer based approach to balance
underrepresented demographic groups in training datasets.
Attributes such as skin tone, gender, and age were trans-
ferred into given training samples (see Figure 22) towards
creation of an unbiased training dataset. In the related study
the accuracy of face recognition on dark-skinned women
over 60 years old characterized by true positive rate (TPR)
improved by 20% on the UNCW dataset [185] after training
on the training set augmented with synthetic faces.
Similarly, Niinuma et al. [66] discussed that real datasets
employed for facial action detection are not balanced w.r.t.
action unit (AU) intensity labels. To address this limitation,
the authors generated a balanced training set using GANi-
mation [186]. The generated balanced training dataset was
used to train the facial action detector, with the related inter-
rater reliability score of AU intensity level estimation, im-
proving from 48.90% to 52.50% after training the model on
synthetic data, as opposed to training on real data. Several
other studies in face recognition [24] [108] confirmed the
ability of synthetic data to train unbiased and fair models.
Again, as the representation ability of synthetic samples
can be questionable (see Section 5), using synthetic samples
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for under-representated classes or demographics can affect
the reliability of models trained on such datasets and may
adversely impact related deployment in real-world.

4.9

Synthetic data is particularly instrumental in creating novel
attacks on biometric systems. One prominent study in-
troduced DeepMasterPrints [27], which aimed to generate
one masterprint, namely a synthetic fingerprint that was
designed to impersonate a set of fingerprints and falsely
match with a large number of non-mated enrollees in the
enrolment database (see Figure 23). This presentation attack
for fingerprint recognition systems employed a GAN, where
the latent input variables in the generator network were
obtained using a covariance matrix adaptation evolution
technique. The associated false match rate (FMR) of 0.1%
increased via DeepMasterPrints to 8.61% on the NIST 9
dataset [140], as well as to 22.50% on the FingerPass DB7
dataset [187]. Additional attacks facilitated by synthetic
data include those in iris recognition [15], [188], [189], face
recognition [190] and fingerprint recognition [191].

A related direction has to do with digital human creation
[2], [18], [192], as well as with manipulation of human faces
[193], [194], [195]. Specifically, a face image of a target indi-
vidual being superimposed on a video of a source individ-
ual has been widely accepted and referred to as deepfake (see
Figure 24). Deepfakes entail several challenges and threats,
given that (a) such manipulations can fabricate animations
of subjects involved in actions that have not taken place
and (b) such manipulated data can be circumvented nowa-
days rapidly via social media. Deepfakes are considered in
human analysis as digital perturbation attacks, attracting
large interest by their own right, with overview articles
focusing on deepfake creation and detection [28], [196],
[197], as well as adversarial attacks and defences in images,
graphs, and text [198]. We note that similarly morphing
attacks can be introduced using synthetic data [199]. A
morphing attack is characterized by a synthetic image for
which the authentication system is compelled to match
with two contributing subjects instead of one. A morphed
image is usually generated by aligning and blending images
of two different contributors. For a comprehensive survey
on published morphing attacks and associated detection
methods, we refer to related overview articles [200], [201].

Inducing digital perturbation attacks

4.10 Learning by synthesis

A machine learning model can be categorized as a discrimi-
native or generative model. The former learns a conditional
distribution p(y|z;6), where y denotes the output y for
the input sample z and 6 signifies model parameters. A
generative model learns the joint distribution p(z,y) and
hence learns the distribution of data by learning to generate
synthetic data. Such model is able to generalize on new
and unseen test examples. A related seminal work [202]
presented a hierarchical generative model, which jointly
synthesizes eye images in a top-down approach, while
estimating eye gaze in a bottom-up approach. A further
generative modelling-based approach includes a relativistic
average standard GAN (RaSGAN) [203] by Yadav et al..
RaSGAN was trained to generate synthetic iris images,
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Fig. 22: Georgopoulos ef al. [183] improved intra-class diversity in the training set by transferring demographic attributes
(left to right): age, skin tone and gender. The authors demonstrated that training with diverse synthetic samples of the
same subject is instrumental in mitigating demographic bias observed in face recognition models.

Fig. 23: DeepMasterPrints [27] by Bontrager et al. constitutes
a synthetic fingerprint masterprint aimed at presentation
attacks on fingerprint recognition systems. The top and
bottom illustrate the masterprints for the rolled fingerprints
and fingerprints acquired using a capacitive capture device.
The first, second and third columns represent the master-
print to achieve a false match rate (FMR) of 0.01%, 0.1%,
and 1%, respectively.
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Fig. 24: Synthetic videos called Deepfakes with varying
attributes, can be generated with th induce an attack to ruin
the public perception of an individual [28].

demonstrating the ability of its discriminator to generalize
better on new and unseen presentation attacks. Several
approaches learning to synthesize data for improved model
performance were proposed for re-identification of individ-
uals [204] [106] and face recognition [205] [206].

5 OPEN CHALLENGES AND DISCUSSION

We discussed benefits and means to generate and use
synthetic datasets, placing emphasis on synthetic datasets
being instrumental in mitigating challenges associated to
real datasets. Despite related advances, there are a number
of open research problems in this expanding field.

1) Identity leakage. Studies that advocate using syn-
thetic data for alleviating the privacy issues related

to human data frequently do not conduct support-
ing experiments to show that there is no identity
leakage from the training dataset [29], [130]. Such
an assessment is critical to address privacy concerns
related to sharing data for applications in human
analysis. For instance, Engelsma ef al. [17] computed
comparison scores between training samples and
the synthetically generated fingerprints. Only 0.04%
of the training samples obtained comparison scores
above a threshold, and all such samples were re-
moved from the synthetic dataset before introduc-
ing it in the public domain. Similar practices need
to be adopted by the research community working
in human analysis to mitigate any identity leakage.
Lack of diversity. The development of synthetic
datasets in human analysis, generally speaking re-
quires the generation of mated and non-mated sam-
ples. Recently, Grimmer et al. [207] emphasised the
challenge of approximating the full intra-identity
variation of real datasets. Mated samples were ob-
tained through minor manipulations of various se-
mantic attributes in a given sample. However, the
generated datasets still lacked diversity compared
to real-world datasets. Another challenge has to
do with creating synthetic datasets balanced w.r.t.
demographics. Generative models are often trained
on biased datasets, thus lowering the generation
quality of synthetic samples from underrepresented
classes. We note that the current working draft of
ISO/IEC 19795-10 [208] aims at quantifying the
biometric system performance variation across de-
mographic groups, hence providing a standardized
and consistent evaluation framework to assess the
diversity of synthetic datasets.

Representation ability. Numerous scientific work, par-
ticularly in biometrics [127], [109], have observed
that while the generated synthetic data appears
realistic, its characteristics represent notable differ-
ences from real biometric samples. Such observa-
tions question the representation ability of gener-
ated synthetic data and motivate the design of rep-
resentative synthetic data generation methods. For
instance, synthetic videos (deepfakes) frequently
incorporate artefacts e.g., in the eye or lip region.
In addition, characteristics/semantics in synthetic
data differs from those in real samples. For instance,
Gottschlich and Huckemann [209] demonstrated the
distribution of minutiae in synthetic fingerprints
generated by SFinGe [6] was different from the
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Fig. 25: First row: synthetically distorted training samples.
Second row: real testing samples for fingerprint enhance-
ment algorithms, as used in [84]. The performance of the
fingerprint enhancement model was directly dependent on
how well the synthetic data modelled the noise observed in
real fingerprints. Therefore, synthetically distorted training
data must be publicly available to ensure fair comparison
among different fingerprint enhancement algorithms.

one observed for real fingerprints. Therefore, the
representation ability of synthetic data needs to
be carefully validated before exploiting it for real-
world applications.

4) Lack of comparison. While state-of-the-art works in
human analysis have gradually exploited synthetic
data, related datasets are often not shared pub-
licly. This is crucial, as the performance of human
analysis models is directly dependent on how well
synthetic data aligns with the testing dataset (see
Figure 25). In the case of Figure 25, the fingerprint
enhancement performance is dependent not only
on the enhancement model but also on how care-
fully curated synthetic training data is. Therefore, to
foster reproducibility and ensure a fair comparison
among different methods, there is a need to share
synthetic datasets publicly.

6 CONCLUSIONS AND FUTURE APPLICATIONS

A review of the human analysis literature suggests that
research in synthetic data is on the rise. This expansion
is due to the large number of associated benefits in set-
tings including enrichment and replacement of existing real
datasets. In this article, we revisited methods that have been
developed for generation and exploitation of synthetic data
in human analysis. In particular, we discussed techniques
for generating semi-synthetic and fully synthetic data.

In addition, we provided examples of related applica-
tions, elaborating on simulation of complex scenarios, miti-
gating bias and privacy concerns, increasing the size and di-
versity of training datasets, assessing scalability of systems,
providing additional data for supervision, pre-training and
fine-tuning of DNNSs, enforcing consistency regularization,
as well as adversarial attacks. Finally, we discussed open
research problems in synthetic data research. We believe
that synthetic data has the ability to mitigate issues related
to privacy, scalability, and generalization of unseen data.
Although currently synthetic data is abundantly utilized
in human analysis, we believe that additional research di-
rections including active learning, knowledge distillation
and source-free domain adaptation will benefit in future
from synthetic data. Furthermore, upcoming synthetic data
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generation mechanisms such as scene graphs and diffusion
models will be exploited in future to generate data for
applications in human analysis.
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