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Abstract

In this paper, we study how different skeleton extraction
methods affect the performance of action recognition. As
shown in previous work skeleton information can be ex-
ploited for action recognition. Nevertheless, skeleton detec-
tion problem is already hard and very often it is difficult to
obtain reliable skeleton information from videos. In this pa-
per, we compare two skeleton detection methods: the depth-
map based method used with Kinect camera and RGB based
method that uses Deep Convolutional Neural Networks. In
order to balance the pros and cons of mentioned skeleton
detection methods w.r.t. action recognition task, we propose
a fusion of classifiers trained based on each skeleton detec-
tion method. Such fusion lead to performance improvement.
We validate our approach on CAD-60 and MSRDailyActiv-
ity3D, achieving state-of-the-art results.

1. Introduction
Human Action Recognition is an important task in un-

derstanding the dynamic scenes and, it still remains a chal-
lenging task due to problems such as background clutter,
partial occlusion, change in scale, viewpoint, lighting and
appearance.

In this paper, we focus on comparing two skeleton de-
tection methods and fuse them for developing a framework
for human action recognition from the RGB-D videos. In
RGB-D videos, most of the methods which achieve top re-
sults use skeleton detection. Skeleton based methods have
become very popular on RGB-D due to the introduction of
low-cost depth sensors such as Kinect. This made detec-
tion task much easier because segmentation on depth map
is less challenging than on RGB. But RGB-D skeleton de-
tection methods have problems when the subject covers too
big distance, the depth map is noisy and it cannot work out-
doors. Recent advancements in Convolutional Neural Net-
works (CNNs) has made it possible to detect the skeleton
from RGB videos itself. Most of such approaches use a
top down approach by first detecting the person. But such

methods fail when person detection fails as it is prone to
do when people are in close proximity. Moreover, in case
of multi person frames, the computational cost increases.
So, here we select a bottom up approach to detect the hu-
man skeleton using confidence maps for parts detection and
Parts Affinity Fields (PAFs) as discussed in [4]. The pose
machines works well in diverse scenarios of multi-person
poses that contain many real world challenges like scale
variation, dense crowd, occlusions. On the other hand it
does not give good results in low lighting condition.
In this paper, we extract skeleton using both depth based
method and RGB based method using CNNs and discuss
their impact on Action Recognition task. To classify the
actions, we follow the approach proposed by [5]. The in-
put to the pose based CNN are the detected skeletons along
with their corresponding RGB videos. The recent success
of Convolutional Neural Networks (CNNs) have motivated
us to find the CNN features for each body parts separately
in each frame. Inspired from [5], we use flow based and
appearance based CNN features computed from each part
of the body which is aggregated further using max pooling
to obtain the video descriptors.
The accuracy differs depending on selected skeleton extrac-
tion method. Based on fact above we propose to fuse the
RGB-D skeletons and pose machines skeletons by fusing
their classifiers scores (distances). We show our experimen-
tal results on two popular datasets CAD-60 and MSRDaily-
Action3D datasets.

2. Related Work
Many authors in the past focused on methods based on

local features [16, 23, 31]. Laptev et al. [15] have pro-
posed Harris3D point detector. Some authors focused on
depth point cloud methods [36] and they are robust to
noise and occlusions. Currently, the Dense Trajectories [31]
combined with Fisher Vector (FV) aggregation have shown
good results.

Many authors [12, 11, 2, 10] have proposed a method to
merge both RGB and depth information for action recogni-
tion. Kong et al. [10] used a projection function which is
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learned based on both RGB and depth features.

There are many approaches [34, 1, 19] that use detected
human skeleton for modeling actions, which became easier
after the introduction of affordable depth sensors. Vemu-
lapalli et al. [30] represented each skeleton using the rela-
tive 3D rotations between various body parts. Their skeletal
representation becomes a point in a Riemannian manifold.
Then, using this representation, they model human actions
as curves in this manifold and perform classification in the
Lie algebra. Wu et al. [33] proposed a hierarchical dynamic
framework that first extracts high level skeletal features and
then uses the learned representation for estimating emission
probability to infer action sequences.

Recently, deep learning methods show some promising
results in action recognition [14]. Deep learning methods
require huge amount of annotated data for training. Some
authors use pre-trained CNNs for action recognition [9, 32].
But application of CNNs in action recognition has shown
little improvement so far [27, 37]. Mahasseni et al. [18]
have proposed that action recognition in video can be im-
proved by providing an additional modality in training data-
namely, 3D human skeleton sequences. For recognition,
they used Long Short Term Memory (LSTM) grounded via
a deep CNN onto the video. They regularized the training of
LSTM using the output of another encoder LSTM grounded
on 3D human skeleton training data. Most of the recent ac-
tion recognition works focus on using global aggregation of
local descriptors. Some methods have used human joints
and their temporal evolution to recognize actions. But hu-
man pose estimation is still a challenging task. Most ap-
proaches [22, 6, 28], for multi-person pose estimation have
used a top down strategy where the person is detected first
and then on the detected regions, poses are estimated. There
are some approaches which uses bottom up approach as
in [21] that jointly labels part detection candidates and as-
sociated them to individual people. This approach does not
rely on person detection but involves solving an integer lin-
ear programming over fully connected graph which is an
NP-hard problem. Thus the average processing time for
a single image is in the order of hours. So, we have se-
lected an approach [4] which uses bottom up approach to
extract the skeletons using confidence maps for parts de-
tection, Parts Affinity Fields (PAFs) for detecting the parts
associations and greedy parse algorithm to quantify the cor-
rect detections.

We use the estimated poses from pose machines as well
as skeletons from RGB-D to compute the CNN features. We
selected the approach discussed in [5] which uses positions,
appearance and motion of human body parts to compute the
CNN features.

3. Proposed Method

The proposed method consists of two steps: skeleton de-
tection described in section 3.1 and 3.2 and feature extrac-
tion for action recognition in section 3.3 and 3.4. Please
note that we use two different skeleton inputs, compare
them and fuse them to obtain better final action recognition
accuracy.

3.1. Skeleton from RGB-D

One of the skeleton detection method that we use is us-
ing Kinect as discussed in [26]. It infers the body in a two
stage process: first computes a depth map and then infer
body position. The body parts are detected using a random-
ized decision forest, learned from over 1 million training
examples. Inferring the body position is a two-stage pro-
cess. First a depth map is computed and then the body po-
sition is inferred. It begins with 100,000 depth images with
known skeletons from a motion capture system and then
computer graphics is used to render all sequences for 15
different body types. Thus a million training examples are
produced which are used to learn a randomized decision for-
est for mapping the depth images to body parts. Then, the
mean shift algorithm is used to robustly compute the modes
of probability distributions to transform the body image into
a skeleton.

3.2. Skeleton from Pose Machines

Second method that we use for skeleton detection from
RGB videos is [4]. The realtime multi person pose esti-
mation algorithm is used to detect the 2D pose of multiple
people in images. They present an explicit nonparametric
representation of the keypoints that considers both position
and orientation of human limbs. They also designed a CNN
architecture for jointly learning the parts and parts associ-
ation. They also use Part Affinity Fields (PAFs), a set of
vector fields each of which encodes the location and ori-
entation of a particular limb at each position in the image
domain. Then, they use a greedy parsing algorithm to de-
tect the correct candidates of the parts association using the
PAFs and form the full body pose of all people in the image.

Detection using confidence Maps - The confidence Maps
are obtained from the input images for detecting the parts.
If xj,k ∈ R2 be the ground truth position of body part j for
person k then, the value at location p ∈ R2 in the confidence
map Sj,k for person k is given by

S∗
j,k(p) = e

−||p−xj,k||
2
2

σ (1)

The confidence map S∗
j ∈ Rw×h with w × h being the di-

mension of the image and σ being chosen empirically. Ideal
confidence map is an aggregation of peaks of all people in



a single map via a max operator

S∗
j (p) = max

k
S∗
j,k(p) (2)

Association using PAFs - A measurement of the confi-
dence for each pair of two part detections that they are as-
sociated from the same person is required. The part affinity
field is a 2D vector that encodes the direction that points
from one point to the other. Each type of limb has an asso-
ciated field joining its two associated body parts. Ideal part
affinity field to be predicted by the network combines the
limbs of type c of all people into a single map.

During testing, the confidence score of each limb candi-
date by measuring the alignment of the predicted PAF with
the candidate limb that would be formed by connecting the
detected body parts.

Greedy Parsing algorithm - A set of body part detec-
tion candidates Dj for multiple people using non max-
ima supression on each predicted confidence map, where
Dj = {dmj : j ∈ {1, 2, ..., J},m ∈ {1, 2..., Nj}} with Nj

being the number of candidates of part type j and dmj ∈ R2

the location of the m-th detection candidate of body part
type j. The detected body parts are required to be asso-
ciated with other parts from the same person. A variable
Zmnj1j2 ∈ {0, 1} is defined to indicate whether two de-
tection candidates dmj1 and dmj2 are connected and the goal
is to find the optimal assignment for the set of all possible
connections Z = {Zmnj1j2 : j1, j2 ∈ {1, 2..., J},m ∈
{1, 2..., Nj}, n ∈ {1, 2..., Nj2}}.

Thus a bipartite graph matching problem is to be solved
in which nodes of the graph are Dj1 and Dj2 and edges
are all possible connections between pair of detection can-
didates. Each edge is weighted with the part affinity aggre-
gates. The goal is to find a matching with maximum weight
for the chosen edges for which the Hungarian algorithm is
used.

3.3. Pose based CNN

In pose based CNN, the images are cropped around the
joints as discussed in [5] to get the different body part
patches. These part patches are taken as input in CNN to get
the CNN features. The body regions are represented with
both motion based and appearance based CNN descriptors.
These descriptors are extracted per frame and aggregated
over time.

In order to construct the CNN features, we first compute
the optical flow for each pair of frames using [3]. Then we,
crop RGB image patches and flow patches right hand, left
hand, upper body, full body and full image. Each patches
obtained are resized to 224 × 224 in order to match the
CNN input layer. We use two different architecture to ob-
tain the appearance and flow based frame features. Each
networks having 5 convolutional and 3 fully connected lay-
ers. The output of the last layer consists of 4096 values

which is considered as the frame descriptor. For the RGB
patches, we use VGG-f network that has been pre-trained
on the ImageNet ILSVRC-2012 challenge dataset. For the
flow patches, we use the motion network provided by [7]
that has been pre-trained for action recognition task on the
UCF-101 dataset.

From each descriptors fpt for each part p and each frame
t of the video, we perform a max pooling over all the frames
to obtain a fixed-length video descriptor. Finally, video de-
scriptors for motion and appearance for all parts are nor-
malized by dividing the video descriptors by the average
l2-norm of the fpt from the training set and concatenated to
get the final CNN features.

We compute a χ2-kernel from these CNN features which
is the input to the SVM classifier.

3.4. Fusing RGB-D and Pose machines skeleton

Fusing the RGB-D and pose machines skeleton is the
key idea of this work. This is done because there are in-
stances which are discussed in section 4, where pose ma-
chines can detect the skeletons better than RGB-D and vice
versa. RGB-D does work well when the subject is in front of
the camera and sometimes pose machines fails in the skele-
ton detection when the subject gets mixed up with the back-
ground color. The pose based CNN features computes the
features from the upper body, right hand, left hand, full im-
age and full body patches. So, we put more importance to
the patches on the upper body and the pose machines in such
situations works well in detecting the skeleton on the upper
side of the subject as discussed in section 4.1. Thus, it is
very important to take the advantages of both the skeletons
from pose machines and RGB-D which is done by fusing
the classifier scores (distances). We report the accuracy of
our approach using RGB-D skeletons, using RGB skeletons
and using both the skeletons.

For classification based on either RGB-D skeleton or
pose machine skeleton, we use SVM classifier with χ2-
kernel. From each skeleton, the χ2(x, y)-kernel is com-
puted using equation 3 from the pose based CNN features.

χ2(x, y) = 1−
n∑

i=1

(xi − yi)2
1
2 (xi + yi)

(3)

Let’s define d as the distance of test example to SVM de-
cision plane, then dk is the distance of test example to de-
cision plane of SVM trained on input from RGB-D skele-
ton and dr is the distance of test example to decision plane
of SVM trained on input from pose machine skeleton. To
fuse both the classifiers, we propose to use the following
weighted sum

df = αdk + (1− α)dr (4)

The value for α is found using cross-validation.



4. Experiments

We evaluate our framework on 2 public data-sets: CAD-
60 [29] - contains 60 RGB-D videos with 4 subjects and 14
actions. The dataset contains the RGB-D frames which are
used to find the skeletons using pose machines and depth in-
formation. MSRDailyActivity3D [34] - contains 320 RGB-
D videos with 10 subjects and 16 actions. The dataset con-
tains the RGB frames which are used to detect the skele-
tons using pose machines and world coordinates which are
extracted in order to get the RGB-D skeleton information.
This dataset has been captured in a living room and consists
of all daily living activities.

From both the above datasets, we extract the skeleton
from RGB frames and their depth information. We evalu-
ate these dataset by setting up a cross actor training/testing
setup. We left out each actor from the training set and re-
peated the experiment for each of them.

4.1. Comparison of RGB and Depth based Skeleton

In this section, we provide qualitative result by visual-
izing the extracted skeleton and report the accuracy of the
actions. For the qualitative results, we detect the poses of
the person using pose machines and then use them to rec-
ognize the actions. We repeat the experiment to recognize
the actions again with skeleton information from depth data
and RGB data. From the confusion matrix, we can see that
depth data recognize activities like drinking water and cook-
ing(chopping) in CAD60 dataset with higher accuracy. On
other hand, all other activities are recognized with similar
accuracy using both the skeleton extraction methods. So,
this difference in action recognition accuracy is because of
the difference in the estimated poses. For activities such as
drinking water RGB data does not work well to detect the
skeleton, because in such activities the hand of the subject
overlaps with the body. While actions like still, opening
pill container, working on computer and so on, RGB data
works similar to depth data to detect the skeleton because
the hands are away from the body in the 3-D space and
hence can be distinguished accurately from the other parts
of the body.

In MSRDailyActivity3D dataset, the person performing
the action stands close to a sofa which makes the skele-
ton extraction using pose machines difficult. In most of the
cases, the depth based skeleton works better because of the
frontal view of the subjects. For actions like vacuum clean-
ing, laying, walking and gaming, pose machines works a bit
better than the depth based skeleton. The depth based skele-
ton works better for actions standing up and all other actions
as compared to pose machines skeleton. This is because, in
most of these actions, the subject has a frontal view and less
motion of the body parts.

In Figure 1, the person lying on the sofa in MSRDaily-

(a) Pose Machines skeleton (b) RGB-D skeleton
Figure 1: Difference in skeleton detection on MSRDaily-
Action3D

Action3D dataset is detected well by depth based method.
We have only considered patches from the upper body parts
and the full body for obtaining the CNN features, so pose
machines gives better results in this case since it detects the
skeleton more accurately on the upper side of the body.

For the quantitative results, we provide a brief analysis
of the performance of our framework w.r.t. action recogni-
tion task based on the ground truth. As discussed earlier,
in some cases depth based skeleton detection works better
for action recognition task and in some case pose machines
skeletons. Figure 2 and 3 represents the confusion matrix
of action recognition using pose machine and depth based
skeleton respectively in CAD60 dataset. We can see that
depth data is working way better for actions such as drink-
ing water and cooking(chopping). For other actions, both
the extracted skeletons work similar in recognizing actions.
For MSRDailyActivity3D, we can see that the pose ma-
chines is working better for actions such as playing game,
laying and walking. For actions such as using laptop and
cheering, both the methods show similar accuracy and for
all other actions depth based skeleton works better.
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Figure 2: Confusion Matrix for CAD60 with depth based
skeleton detection
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Figure 3: Confusion Matrix for CAD60 with pose machines
detection
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Figure 4: Confusion Matrix of fusion of depht based and
pose machines skeleton detection. Actions like drinking-
water, brushingteeth and cooking(chopping) are improved.

4.2. Merging both the skeletons and comparison
with the state-of-the-art

In this section, we report the overall accuracy of the pro-
posed framework when applied on CAD-60 and MSRDai-
lyAction3D dataset. The proposed approach outperforms
the state-of-the-art on CAD-60 dataset as reported in Ta-
ble 1 when we take any of the skeletons either from pose
machines or depth data or from fusing the RGB and depth
based skeleton. The accuracy for each actions on CAD-60
dataset are different when the skeleton input taken are dif-
ferent, and the accuracy improves on fusing the skeletons.
Figure 4 is the confusion matrix of action recognition us-
ing the fusion of depth based and pose machines skeleton on
CAD60. We can see that the fusion improves the recogni-
tion accuracy for activities such as drinking water, brushing
teeth and cooking(chopping).
Our proposed framework works considerably well on MSR-
DailyAction3D dataset reported in Table 2. The accuracy
is better when we take the depth based skeletons since in
most of the actions, depth based skeleton detections are very

Method Accuracy [%]
STIP [38] 62.50
Order Sparse Coding [9] 65.30
Object Affordance [13] 71.40
HON4D [20] 72.70
Actionlet Ensemble [34] 74.70
JOULE-SVM [8] 84.10
MSLF [12] 80.36
Our Approach with
Pose Machines 91.17
Our Approach with
Kinect 94.11
Our Approach with
kinect + Pose machine 95.58

Table 1: Recognition Accuracy comparison for CAD-60
dataset

good. So, the overall accuracy improves when we take the
skeleton from both depth data and RGB information in this
case since it exploits the advantages of both the detected
skeletons.

5. Conclusions
In this work we propose a framework to recognize ac-

tions from RGB-D videos. We use the skeleton detections
from depth map as well as skeletons detected from RGB.
We analyze the situations for different skeleton input on the
action recognition task. We use pose based CNN architec-

Method Accuracy [%]
NBNN [24] 70.00
HON4D [20] 80.00
STIP + skeleton [38] 80.00
SSFF [25] 81.90
DSCF [35] 83.60
Actionlet Ensemble [34] 85.80
RGGP + fusion [17] 85.60
Super Normal [36] 86.26
BHIM [10] 86.88
DCSF + joint [35] 88.20
MSLF [12] 85.95
Our Approach with
Pose Machines 80.63
Our Approach with
Kinect 83.75
Our Approach with
kinect + Pose machine 84.37

Table 2: Recognition Accuracy comparison for MSRDaily-
Activity3D dataset



ture to extract CNN features from the part patches obtained
from the input skeleton information and the input videos.
We use χ2 kernel from these CNN features to classify the
actions. We show that both the skeleton detection methods
carry complementary information as fusion improves the re-
sults. An interesting direction for future work is to model
temporal evolution of frames using LSTM.

References
[1] B. Amor, J. Su, and A. Srivastava. Action Recognition Us-

ing Rate-Invariant Analysis of Skeletal Shape Trajectories.
PAMI, 38(1):1–13, Jan. 2016.

[2] P. Bilinski, M. Koperski, S. Bak, and F. Bremond. Repre-
senting Visual Appearance by Video Brownian Covariance
Descriptor for Human Action Recognition. In AVSS, 2014.

[3] T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High ac-
curacy optical flow estimation based on a theory for warping.
In ECCV, 2004.

[4] Z. Cao, T. Simon, S.-E. Wei, and Y. Sheikh. Realtime multi-
person 2d pose estimation using part affinity fields. arXiv
preprint arXiv:1611.08050, 2016.

[5] G. Chron, I. Laptev, and C. Schmid. Ap-cnn: Pose-based
cnn features for action recognition. In ICCV, 2015.

[6] G. Gkioxari, B. Hariharan, R. Girshick, and J. Malik. Us-
ing k-poselets for detecting people and localizing their key-
points. In CVPR, 2014.

[7] G. Gkloxari and J. Malik. Finding action tubes. In CVPR,
2015.

[8] J.-F. Hu, W.-S. Zheng, J. Lai, and J. Zhang. Jointly learning
heterogeneous features for RGB-D activity recognition. In
CVPR, 2015.

[9] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar,
and L. Fei-Fei. Large-Scale Video Classification with Con-
volutional Neural Networks. In CVPR, 2014.

[10] Y. Kong and Y. Fu. Bilinear heterogeneous information ma-
chine for RGB-D action recognition. In CVPR, 2015.

[11] M. Koperski, P. Bilinski, and F. Bremond. 3D Trajectories
for Action Recognition. In ICIP, 2014.

[12] M. Koperski and F. Bremond. Modeling spatial layout of
features for real world scenario rgb-d action recognition. In
AVSS, 2016.

[13] H. S. Koppula, R. Gupta, and A. Saxena. Learning human
activities and object affordances from rgb-d videos. Int. J.
Rob. Res., 32(8):951–970, July 2013.

[14] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
NIPS, 2012.

[15] I. Laptev and T. Lindeberg. Space-time interest points. In
ICCV, 2003.

[16] I. Laptev, M. Marszaek, C. Schmid, and B. Rozenfeld.
Learning realistic human actions from movies. In CVPR,
2008.

[17] L. Liu and L. Shao. Learning discriminative representations
from rgb-d video data. In IJCAI, 2013.

[18] B. Mahasseni and S. Todorovic. Regularizing lstm with 3d
human-skeleton sequences for action recognition. In CVPR,
2016.
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