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We include additional details and results about GS-MoE.001
In Section 1, we report the details on the training of the002
models presented in the main paper as well as the data pre-003
processing. Section 2 presents an additional ablation study004
on the peak-detection mechanism, while Section 3 includes005
the design and experimental results on an alternative soft-006
MoE architecture implemented for GS-MoE. Section 3 re-007
ports the computational costs of the proposed framework.008
In Section 4, we include a qualitative analysis of the most009
common failure cases of GS-MoE and finally, Section 5010
contains the experimental results obtained on the UBnor-011
mal [1] dataset.012

1. Implementation Details013

The video features were obtained with the I3D model [3]014
pre-trained on Kinetics-400 with sliding windows of 16015
frames. The I3D implementation chosen is the ResNet50,016
which is proven to be one of the best-performing [4]. The017
transformer blocks implemented in the experts and gate018
model do not have positional embeddings and class tokens.019
The I3D features of each video have dimensions 1xNx1024,020
where N is the number of snippets in the video. Each snip-021
pet contains 16 consecutive frames. Each video has a differ-022
ent number of snippets. In order to create batches of videos,023
the snippets of each video are linearly projected to a fixed024
dimension D. To do so, the snippets are evenly spaced over025
D. Following the common practice in the WSVAD field,026
D is set to 200. For example, if a video contains 100 snip-027
pets, they are projected as [1, 1.5, 2, 2.5, ..., 99, 99.5, 100],028
where the decimal values indicate that the respective pro-029
jected snippet is the weighted average between the previous030
snippet and the following snippet. This is done only for the031
training set videos, for the testing set it is not necessary to032
create batches. Therefore, the features dimension used as033
input for the expert models have dimension Bx200x1024,034
where B is the batch size. All models were implemented035
in PyTorch and trained on a single NVIDIA RTX A4500036
GPU. The models were trained using the AdamW [6] opti-037

mizer. The batch size was set at 128, containing 64 normal 038
and 64 abnormal videos. Under these conditions, the entire 039
training procedure requires about three hours, while testing 040
on the UCF-Crime test set requires 55 seconds. For training 041
stability, during the first epoch, the models are trained with 042
the Lnorm component of ??. For the same purposes, we 043
employ the same smoothness and sparsity loss components 044
as presented in [8]. 045

Expert Model: The expert models are composed of a 046
transformer block and an MLP. The input of each expert 047
model is the 1024-dimensional logits of the task-aware en- 048
coder. The transformer block first applies layer normaliza- 049
tion to them, followed by a 2-head self-attention layer. The 050
output is then added to the task-aware logits and further 051
normalized via layer normalization. The resulting tensor 052
is projected to a 512-dimensional space and a Relu activa- 053
tion is applied to introduce nonlinearities in the latent space. 054
The features obtained this way are then projected back to a 055
1024-dimensional space and added to the output of the self- 056
attention layer. The MLP is composed of four linear layers 057
than progressively reduce the dimensionality of the trans- 058
former’s output to 256, 128, 64 and finally 1, which is the 059
expert’s score. A Gelu activation function is applied be- 060
tween the second-to-last and the last linear layer. To ensure 061
that the score is between 0 and 1, the sigmoid function is 062
applied to the last layer’s output. An expert model contains 063
approximately 500 thousand parameters. 064

Gate Model: The expert scores are concatenated 065
along the last dimension, creating a tensor of dimen- 066
sion Bx200xN. of experts. The tensor is projected to a 067
1024-dimensional space via a linear layer. Then, the bi- 068
directional cross-attention layer is applied. In one direction, 069
it takes the projected scores as values and the task-aware 070
logits as key and queries. In the other direction, the task- 071
aware logits are the values and the projected score are the 072
keys and queries. The outputs of the bi-directional attention 073
are concatenated along the last dimension, creating a tensor 074
of dimension Bx200x2048. This is then fed to a transformer 075
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block similar to the one described for the expert models,076
with 4 attention head instead of 2. This difference is due to077
the fact that the input of the gate’s transformer block is dou-078
ble the dimension of the input of the expert’s transformer079
block. The MLP component of the gate model has the same080
architecture as the expert’s MLP. The gate model contains081
approximately 1 million parameters.082

2. TGS Ablation Study083

As mentioned in Section 3.1, in order to mitigate the pres-084
ence of spurious peaks, a model trained with TGS has to085
be warmed up using the standard MIL loss function or the086
Ltopk−norm component. We conducted experiments with087
different peaks thresholds to evaluate the sensitivity of our088
approach to the selection of peaks. As shown in Table 1,089
the performance of the model are marginally influenced by090
the threshold selected within the range of 0.1 and 0.3. For091
threshold values below 0.1, TGS detects too many peaks,092
especially in early stages of training, which does not allow093
the model to converge. On the other hand, a threshold above094
0.3 leads to selecting very few peaks, leading the model to095
estimate low scores for every video due to the fact that the096
major component of the loss function is given by the topk097
normal frames.098

Threshold
0.1 0.15 0.2 0.25 0.3

AUC 90.34 91.08 91.58 91.23 90.75

Table 1. Performance comparison between different peak thresh-
olds on the UCF-Crime dataset.

3. Soft MoE099

In order to provide an overview of the capabilities of the100
proposed GS-MoE framework, we implement the same101
training strategy with soft-MoE, a modern MoE architec-102
ture introduced by [7]. The framework, shown in Figure 1,103
differs from the Gating model detailed in the main paper104
by the strategy used to leverage the expert’s predictions. In105
the soft-MoE architecture, the task-aware features are pro-106
cessed by a linear layer followed by a transformer block. A107
MLP predicts abnormal scores for each anomaly class in the108
dataset. Subsequently, these abnormal scores are weighted109
by the abnormal scores predicted by the experts to produce110
a single abnormal score.111

We conducted experiments with this architecture on the112
UCF-Crime following the same training strategy detailed113
in the main paper. The results, reported in Table 2, show114
that the Gating model presented in the main paper achieves115
a 1.44% higher AUC score compared to soft-MoE. This116
result is in line with the results reported in Table 3 of the117

main paper, which highlights the benefits of processing the 118
task-aware features together with the expert’s scores. 119

Gate Soft

AUC 91.58 90.14

Table 2. Comparison between the Gating MoE and the Soft MoE
architectures for GS-MoE. We report the AUC score achieved on
the UCF-Crime dataset.

Computational Costs: GS-MoE increases the computa- 120
tional cost over a SoTA baseline model, while still able 121
to process 10 frames per second. It is important to notice 122
that, in our implementation, the experts process the input in 123
sequence, while a parallel implementation would result in 124
higher fps and near real-time performance.

UR-DMU Experts Gate GS-MoE (Our)

GFLOPs 1.54 1.56 0.789 4.133
Params. (M) 6.16 6.52 3.34 16.02

FPS 110.09 35.73 212.83 9.57

AUC 86.97 89.53 - 91.58

Table 3. Computational cost analysis for UCF-Crime with 13 ex-
perts. 125

4. Qualitative results - Failure Cases 126

In Figure 3 we report some examples of videos on which 127
GS-MoE is unable to correctly detect the anomalous portion 128
of the video. We identify three main failure cases: false 129
negative, false positives and long peaks. 130

In WSVAD, a false negative is a missed detection 131
of an anomaly in a video. For “Shoplifting-015” and 132
“RoadAccidents-004”, GS-MoE predicts abnormal scores 133
close to zero for every frame. In the former example, the 134
anomalous action is very subtle and requires a deeper under- 135
standing of the context in which the anomaly happens. Ad- 136
ditional context cues could be useful in such cases, such as 137
the inclusion of text features via a video-captioning model. 138
On the other hand, in “RoadAccidents-004” the anomaly 139
happens in a very small pixel-region of the video due to the 140
camera being far away from the scene. 141

False positives are instances where GS-MoE predicts 142
(relatively) high abnormal scores for portions of the videos 143
that do not contain anomalous actions. The shape of the 144
false positive peaks in the abnormal scores of “Explosion- 145
004” and “Abuse-030” suggests that TGS could be par- 146
tially responsible for them. On the other hand, in the 147
“Shoplifting-001” video the frames in the ground-truth 148
anomaly region closely resemble the previously ones and 149
identifying when the anomaly starts is challenging for hu- 150
mans as well. 151
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Figure 1. The soft-MoE architecture uses the scores estimated by the experts to inform the prediction made by the gate model.

Shoplifting037 Shoplifting016 Normal783

Figure 2. GS-MoE qualitatively outperforms the URDMU model
used to produce the task-aware features. Specifically, in the case
of subtle anomalies, TGS allows to localize the anomalous event
precisely within the ground-truth time window, but the predicted
scores have lower values in the peak (true positive) than the ones
predicted by the baseline. Similarly, the anomaly scores produced
for normal videos (false positives) have lower scores compared to
the baseline.

In the last example, the anomaly is correctly detected but152
the peak is extended further outside the anomaly region. In153
fact in the video of “Shooting-024”, a person can be seen154
shooting in an empty street and then remaining on the road155
for a few seconds before entering a vehicle. This seems to156
be a common issue in videos where the anomaly action has157
lasting effects on the scene.158

5. UBnormal Experiments159

In order to present a more comprehensive overview of the160
performance of GS-MoE, we experiment on the UBNormal161
dataset [1]. This dataset is composed of synthetic videos162
generated in 29 different scenes. We experiment on this163
dataset in order to show the efficiency of our proposed164
model in data-constrained context. In fact, UBnormal con-165
tains 14.02 minutes of abnormal videos and 50.48 minutes166
of normal videos in the training set. The dataset does not167
contain anomaly-class labels, therefore we train an expert168
on normal and abnormal videos of a single scene, obtaining169

Model AUC

Georgescu et al. [5] 61.3
Sultani et al. [8] 50.3

Bertasius et al. [2] 68.5
UR-DMU[9]* 61.03

GS-MoE (5 clusters / 5 experts) 68.50
GS-MoE (6 clusters / 6 experts) 67.61

GS-MoE (7 clusters / 7 experts) 69.28
GS-MoE (8 clusters / 8 experts) 64.08
GS-MoE (9 clusters / 9 experts) 67.82

GS-MoE (10 clusters / 10 experts) 68.87
GS-MoE (11 clusters / 11 experts) 68.61
GS-MoE (12 clusters / 12 experts) 68.54
GS-MoE (13 clusters / 13 experts) 68.82
GS-MoE (14 clusters / 14 experts) 68.78
GS-MoE (15 clusters / 15 experts) 68.55

GS-MoE (scene experts) 65.95

Table 4. Performance comparison on the UBnormal dataset. * in-
dicates our own implementation and was used as task-aware fea-
ture extractor.

29 scene-specialized experts. We compare the performance 170
of our GS-MoE with other baseline models in Table 4. We 171
also experiment by clustering the anomalous videos in the 172
training set and assigning an expert to each cluster, as de- 173
scribed for the UCF-Crime dataset in Section 4.3 of the 174
main paper. 175

The training set of UBnormal contains 82 abnormal 176
videos and 186 normal videos in total, but it is important to 177
notice that there are no training abnormal videos for some 178
scenes (scenes 7, 10 and 15), while for others there is only 179
one anomalous video (scenes 1, 2, 5, 13, 17 and 28). This 180
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Figure 3. Failure cases examples on the UCF-Crime dataset.

leads to a very unbalanced set of experts for the scene-181
experts implementation, which strongly hinders the over-182
all performance of GS-MoE. However, GS-MoE achieves183
65.95% on the AUC metric in the scene-experts setting,184
which is better or on par with baseline methods, highlight-185
ing the efficiency of the proposed framework in such a data-186
constrained setting.187

In the context of this dataset, the cluster-experts do not188
suffer from the lack of scene-specific anomalies and con-189
sistently exhibit much better performance than the scene-190
expert version. By clustering the training anomalous videos191
in seven clusters, GS-MoE is able to achieve 69.28% on192
the AUC metric, surpassing most baseline methods albeit193
falling short of the SoTA mark.194
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