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Abstract

Video Anomaly Detection (VAD) is a challenging task
due to the variability of anomalous events and the limited
availability of labeled data. Under the Weakly-Supervised
VAD (WSVAD) paradigm, only video-level labels are pro-
vided during training, while predictions are made at the
frame level. Although state-of-the-art models perform well
on simple anomalies (e.g., explosions), they struggle with
complex real-world events (e.g., shoplifting). This difficulty
stems from two key issues: (1) the inability of current mod-
els to address the diversity of anomaly types, as they process
all categories with a shared model, overlooking category-
specific features; and (2) the weak supervision signal, which
lacks precise temporal information, limiting the ability to
capture nuanced anomalous patterns blended with normal
events. To address these challenges, we propose Gaussian
Splatting-guided Mixture of Experts (GS-MoE), a novel
framework that employs a set of expert models, each spe-
cialized in capturing specific anomaly types. These experts
are guided by a temporal Gaussian splatting loss, enabling
the model to leverage temporal consistency and enhance
weak supervision. The Gaussian splatting approach en-
courages a more precise and comprehensive representation
of anomalies by focusing on temporal segments most likely
to contain abnormal events. The predictions from these spe-
cialized experts are integrated through a mixture-of-experts
mechanism to model complex relationships across diverse
anomaly patterns. Our approach achieves state-of-the-
art performance, with a 91.58% AUC on the UCF-Crime
dataset, and demonstrates superior results on XD-Violence
and MSAD datasets. By leveraging category-specific exper-
tise and temporal guidance, GS-MoE sets a new benchmark
for VAD under weak supervision.

1. Introduction
Video Anomaly Detection (VAD) in surveillance videos is
one of the most challenging tasks in the field of Computer

Vision. With the increasing capabilities of deep-learning
models, there have been various approaches to tackle this
task. The main focus of recent research in the field of VAD
has been to model spatio-temporal dependencies in videos,
obtaining meaningful representations of the motion of rele-
vant agents in the scene. In this sense, the transformer ar-
chitecture has proved to be very effective, forming the back-
bone of multiple works. While the current state-of-the-art
models have achieved reasonable results on publicly avail-
able datasets, they still fail to capture subtle anomalies and
to detect the temporal window in which they happen.

We identify one of the main reasons for these issues
in the formulation of the WSVAD task [31, 36]. Multi-
instance learning (MIL) strikes a balance between fully su-
pervised methods, which exhibit good performance but re-
quire costly data annotation, and unsupervised methods,
which do not require manual annotations but generally re-
sult in worse performance. The core idea of MIL is to cre-
ate bags containing positive and negative data samples (i.e.,
normal and abnormal videos), labeled only at the video-
level. During training, the model assigns a score between
0 and 1 to each snippet, with 0 indicating a normal snippet
and 1 indicating an abnormal snippet. The highest-scoring
samples in the normal bag are guided towards 0, allowing
the model to learn most normal scenarios correctly. On the
other hand, the highest-scoring negative samples are pushed
towards 1. This leads the model to be supervised, and there-
fore learn, few and specific instances of anomalous events,
ignoring useful information contained in neighboring snip-
pets. Over time, this approach has proved to be power-
ful but insufficient to train a model to correctly capture
the secondary and specific attributes of different anomalous
classes. In recent works [8, 38, 40], different auxiliary ob-
jectives are identified as priors for the VAD task to optimize
the training process.

To address this issue, we propose to model the anoma-
lies in a video as Gaussian distributions, rendering multi-
ple Gaussian kernels in correspondence with peaks detected
along the temporal dimension of the scores estimated for
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Figure 1. While SoTA methods address the task of WSVAD via
the most normal and abnormal snippets in a video, the approach
proposed in this paper focuses on learning a more complete repre-
sentation of anomalous events via Gaussian kernels.

abnormal videos. This technique, called Temporal Gaus-
sian Splatting (TGS), creates a more complete representa-
tion of an anomalous event over time, including snippets of
the anomaly with lower abnormal scores in the training ob-
jective. A side-by-side comparison of the MIL task and the
TGS task is shown in Figure 1. The Gaussian kernels are
extracted from the abnormal scores produced by the model.
An additional challenge is related to the intrinsic differences
between abnormal classes. Under the MIL paradigm, the
models are trained to learn the difference between normal
and abnormal videos, while the specific differences between
anomalous classes are overlooked. As a result, these meth-
ods mainly focus on coarse-level representations of anoma-
lies that allow us to distinguish between normal and ab-
normal events, but ignore the fine-grained category-specific
cues. Therefore, the more salient anomalies (i.e., such as
an explosion) are likely to be easily detected, while subtle
anomalies (i.e., shoplifting) are more likely to be confused
with normal events. This constitutes a major limitation of
most recent methods based on WSVAD. We address this is-
sue via a Mixture-of-Expert (MoE) architecture, in which
each expert is trained to model a single anomaly class, en-
hancing the specific attributes of each anomaly class that
are often overlooked. To further leverage the correlations
and differences between anomalies, a gate model mediates
between the predictions of each expert and the more coarse-
level anomalous features to learn potential interactions be-
tween anomalies.
The contributions of this paper are complementary: learn-
ing specific representations of anomalous classes allows for
more accurate Gaussian kernels, and the Gaussian splatting
enables the experts to learn from more subtle anomalous
events that would be overlooked otherwise. To summarize,
this paper presents:
• A novel formulation of the WSVAD task based on Gaus-

sian kernels extracted from the estimated abnormal scores
to generate a more expressive and complete representa-
tion of anomalous events. Splatting the kernels along the

temporal dimension allows the model to learn more pre-
cise temporal dependencies between snippets and high-
light more subtle anomalies;

• A Mixture-of-Expert (MoE) architecture that focuses on
individual anomaly types via dedicated class-expert mod-
els, allowing a gate model to leverage similarities and di-
versities between them;

• The impact of the proposed contributions is measured via
an extensive set of experiments on the challenging UCF-
Crime [30], XD-Violence [35] and MSAD [51] datasets,
showing notable improvements in performance w.r.t. pre-
vious SoTA methods.

2. Related Work
Weakly-Supervised VAD: In the WSVAD task, anoma-
lous events encompass various classes, each exhibiting dis-
tinct characteristics across the spatial and temporal dimen-
sions. The task of WSVAD was introduced in a seminal
work by [31]. In the following years, there have been mul-
tiple different approaches that addressed the trade-off be-
tween the ease of data collection and the performance ex-
hibited by models trained in this task. The limitation of
weak labels was addressed by [48] using a graph convolu-
tional network to correct noisy labels and supervise tradi-
tional anomaly classifiers. Further, [33] proposed to learn a
function of the magnitude of features to improve the clas-
sification of normal snippets and, therefore, the detection
of abnormal events. The model is based on attention mod-
ules and pyramidal convolutions. The idea of improving
the quality of weak labels was also explored by [18], which
designed a transformer-based method trained to predict ab-
normal scores both at the snippet and video levels. The
video-level predictions are then used to improve the perfor-
mance of the model at the snippet level. More recently, [43]
designed a multi-head classification model that leveraged
uncertainty and completeness to produce and refine its own
pseudo-labels. [24] proposed a two-stage transformer-based
model that generates anomaly-aware position embeddings
and then models the short and long-range relationships of
anomalous events. Inspired by point-supervision [1], [44]
introduced Glance annotations. These annotations enhance
the common weak labels by localizing a single frame in
which an anomalous event is happening. While reporting
very good performance, these annotations require an ad-
ditional manual-labelling procedure. Recently, [25] pro-
posed a method to include additional data modalities in the
anomaly detection process.
Under the MIL paradigm, these variations complicate the
model’s ability to effectively differentiate between them.
By focusing on the top-k most abnormal snippets of a video,
the model is guided towards specific and evident anoma-
lous events, without properly considering the sequence of
actions that lead to them and follow them. In fact, some



anomalies occur within short time windows, while others
unfold over longer periods; moreover in both cases, the MIL
paradigm selects the same amount of abnormal snippets.
Mixture of Experts: This architecture has been intro-
duced by [5] and has since been improved and employed
for diverse tasks, from image classification to action recog-
nition [10]. The original MoE design proposed a series of
small experts and a separate gate network, all receiving the
same input data. Each expert predicts an output, while the
gate network assigns a score of importance to them. Since
then, this architecture has been improved upon by various
works. A common idea across domains is to let a routing
network select which portions of the input data, or input to-
kens, to pass to each expert [6, 14, 26, 29]. A recent work
by [27] proposed to weight the input tokens in a different
way for each expert.
Gaussian Splatting: It has received a lot of attention in
recent years, proving to be very efficient in fields like 3D
scene reconstruction [12, 13]. The main idea of Gaussian
Splatting is to represent each 3-dimensional point in a scene
as a multivariate normal distribution, which allows to ren-
der the scene as the sum of the contributions of all the 3-
dimensional areas. Gaussian splatting has since been ex-
tended to incorporate the temporal dimension in multiple
domains, for example, dynamic scene rendering [15, 19]
and medical imaging [46].

Our approach utilizes Mixture-of-Experts (MoE) by as-
signing each expert to a specific anomaly class, enabling
fine-grained, category-specific learning often missed in tra-
ditional designs. A gate model bridges class-specific ex-
perts and coarse features, leveraging anomaly correlations
while ensuring balanced utilization. We extend Gaussian
Splatting into the temporal domain with Temporal Gaus-
sian Splatting (TGS), capturing nuanced dependencies and
integrating subtle, low-scoring snippets into training. An-
chored to temporal peaks, TGS mitigates noise, enhances
weak supervision, and preserves sharp transitions, avoiding
over-smoothing while delivering precise anomaly detection.

3. Methodology
Our novel Gaussian Splatter-guided Mixture-of-Experts
(GS-MoE) framework aims to accurately detect complex
anomalies using weakly-labeled training videos. GS-MoE
leverages two key techniques: (I) Temporal Gaussian
Splatting loss, to ensure superior separability between
normal and anomalous instances under weak-supervision;
(II) Mixture-of-Experts (MoE) architecture, that learns
class-specific representations and detects complex anoma-
lies with high confidence.

3.1. Temporal Gaussian Splatting (TGS)
Our Temporal Gaussian Splatting (TGS) technique provides
a novel formulation of the MIL optimization paradigm by

Figure 2. The abnormal scores obtained from the backbone model
on a training video at the end of training. The topk snippets used
in the MIL paradigm lead the model to focus on the first and last of
the three anomalous events present in the video, overlooking the
second anomaly. However, the second anomaly, while not scoring
as high as the others, is still detected.

Figure 3. The Gaussian kernels extracted from the abnormal
scores shown in Figure 2 are splatted across the width of the de-
tected peaks. This allows the model to learn a more complete rep-
resentation of the anomalous events in the video.

leveraging Gaussian kernels. The core idea of TGS is to
reduce the over-dependency on the most abnormal snippets
that is often the result of the classical MIL. An example of
such over-dependency is shown in Figure 2. The Top−k
abnormal scores are the ones that would normally be used
in the loss function in the MIL paradigm:

Top-k(S) = {score1, score2, . . . , scorek} (1)

such that

Ltopk = − 1

N+

N+∑
i=1

1

k

∑
j∈topk(S+)

log σ(scoreij)︸ ︷︷ ︸
Ltopk−abn

+

− 1

N−

N−∑
i=1

1

k

∑
j∈topk(S−)

log (1− σ(scoreij))︸ ︷︷ ︸
Ltopk−norm

(2)

where scorei is the score of snippet i of video S. S+ and
S− denote the set of scores obtained for an abnormal and a
normal video, respectively. Similarly, N+ and N− are the
number of videos in the abnormal and normal classes and σ
is the sigmoid function.

At the end of the training, the task encoder is able to de-
tect two out of three anomalies contained in the video as
in Figure 2, assigning a very high abnormal score to most
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Figure 4. Overview of the GS-MoE architecture: First, in the feature extraction stage, the video encoder extracts snippet-level features
from the video, and the task encoder refines them in the anomaly-detection latent space. In the second stage, each class-expert is trained
only on refined features belonging to its assigned class and to the normal class. In the final stage, the gate model collects the scores assigned
by each expert and compares them with the refined features of the task encoder, producing the final abnormal score.

snippets in the first and third anomalies time window. The
model is not as confident about the snippets belonging to the
second anomaly, due to the fact that during training, it has
never been supervised specifically on them, but it assigns
them an anomalous score higher than the normal snippets
of the video. Additionally, the snippets between anoma-
lies are still considered partially anomalous. We conjecture
that it is possible to leverage those situations to generate
pseudo-labels that allow a model to be trained on more in-
formation, while remaining in the data-annotation bound-
aries of the WSVAD paradigm. Following [44], we propose
a technique called Temporal Gaussian Splatting (TGS) that
leverages the peaks in the abnormal scores predicted by the
model to represent precisely the temporal windows in which
an anomalous event is happening.

Peak detection: Gaussian kernels are extracted in corre-
spondence with local maxima, called ”peaks”, in the tem-
poral axis of the abnormal scores predicted by a model.
The peaks are detected by thresholding the local maxima,
selecting only the ones that are above a minimum promi-
nence threshold over the previous two scores and the sub-
sequent two. The width Wi of each peak Pi is determined
by minimum(v1, v2), where v1 is the number of preceding
snippets with monotonically increasing scores, and v2 is the
number of following snippets with monotonically decreas-
ing scores.

The set of peaks P , detected for a given video, contains
the position of the snippet with the highest abnormal score
for each peak in the video. This may lead to the detection of
spurious peaks, meaning peaks in the abnormal scores of a
video that do not belong to an anomalous event. To mitigate
this, the model can be trained for a few iterations with the
Ltopk−norm component of the standard MIL training objec-
tive.

This allows us to identify subtle anomalies that are usu-

ally not included in the top-k snippets described in Equa-
tion 2. The kernels obtained from the detected peaks are
then rendered over the length of anomalous videos to ob-
tain a more accurate representation of the anomalies along
the temporal dimension.

Gaussian kernels Gi are then initialized with a unitary
value for the snippets corresponding to each peak Pi de-
tected in the abnormal scores of the video. To further rep-
resent the duration of the anomaly, the kernel values cor-
responding to snippets that are within the width Wi of the
respective peak are also set to 1 if their abnormal score is
higher than the difference between the peak score and the
standard deviation of the normal distribution centered in the
peak:

Gi,t =


1, if t = Pi,

1, if st ≥ sPi
− σi ∧ t ∈ Wi

0, otherwise
,∀t ∈ [1, T ] (3)

where st is the abnormal score assigned to snippet t and σi

is the standard deviation of the normal distribution centered
in peak i. This allows to treat each anomaly separately,
which is beneficial for the WSVAD task due to the fact
that different anomalies have different characteristics along
the temporal dimension. Computing the Gaussian kernels
in this way represents an improvement upon the top-k for-
mulation, allowing the model to learn from the entirety of
an anomalous event instead of its most abnormal snippets.
Each kernel is splatted via:

fi(t) = Gi,t · exp(−
∥t− Pi∥2

2σ2
i

),∀t ∈ [1, T ] (4)

where T is the length of the video and σi is the stan-
dard deviation of the scores around the peak centered in Pi

within the width Wi. Finally, the pseudo-labels ŷ are gener-
ated by rendering each of the K extracted kernels over the



length of the video:

ŷ = ∥(
k∑

i=1

fi(t))∥ (5)

An example of such pseudo-label (Temporal Gaussian
Splatting) is shown in Figure 3. The generated pseudo-
labels contain a target abnormal score between 0 and 1 for
each snippet in the video, allowing the model to learn the
severity of each abnormal snippet. This represents a rele-
vant improvement over the standard MIL training objective,
where only the top-k snippets are pushed towards 1 in the
training objective, as in Equation 2. Instead, the TGS loss
function used to train the experts and the MoE is formulated
as:

LTGS = Ltopk−norm +BCE(y, ŷ) (6)

3.2. Mixture of Experts (MoE)
Our Mixture-of-Experts (MoE) architecture, illustrated in
Figure 4, combines three stages. The first is task-agnostic
and task-aware feature extraction, the second has class-
specific expertise, and the third provides a novel gate mech-
anism. This multi-stage framework directly addresses the
challenges of weak supervision and anomaly diversity, en-
abling precise detection of complex anomalous patterns
through enriched representations and specialized models.

Stage 1: Enhanced Temporal-Spatial Feature Extrac-
tion. The synergy of I3D and UR-DMU forms the back-
bone of feature extraction. The widely-used I3D model pro-
vides task-agnostic general features, capturing basic video
dynamics. However, these features lack the specificity
needed for detecting intricate spatial and temporal anoma-
lies. To address this, UR-DMU [50] acts as a task-aware
feature extractor tailored to anomaly detection. Trained ini-
tially with the standard MIL loss [49] and fine-tuned using
our novel Temporal Gaussian Splatting (TGS) loss (Equa-
tion 6), UR-DMU extracts highly informative features by
leveraging temporal consistency. These richer features filter
motion dynamics and fine-grained temporal patterns crucial
for distinguishing between normal and abnormal events.
While UR-DMU can coarsely differentiate normal and ab-
normal events, it cannot fully address the complexities of
different anomaly types.

Stage 2: Class-Specific Anomaly Detection with Expert
Models. To overcome the limitations of coarse anomaly
detection, our framework incorporates multiple expert mod-
els optimized with our TGS loss (Equation 6), each dedi-
cated to identifying specific types of anomalies. This de-
sign introduces a crucial level of specialization, allowing
the framework to capture the unique attributes of individual
anomaly classes. Each expert model is composed of a trans-
former block with four self-attention heads and a MLP with

GELU activation [9], which maps the extracted features
to an anomaly score for its respective class. These expert
models leverage the enriched UR-DMU features, expand-
ing the boundaries of the latent anomaly space. These fine-
grained, specialized experts enable the model to detect sub-
tle or complex anomalies that may blend seamlessly with
normal events, a feat that generic models fail to achieve.

Stage 3: Collaborative Integration with the Gate Model.
In the final stage of the framework, the scores generated
by the expert models are passed to the gate model, which
acts as collaborative integration mechanism. This step en-
sures that the individual strengths of the experts are har-
nessed to create a unified representation capable of robust
anomaly detection. The gate model comprises of three com-
ponents: (a) Score Refinement: The expert scores are con-
catenated and projected into a higher-dimensional space,
enriching the representation of class-specific anomaly log-
its. This projection enables the gate model to handle the in-
tricate variations across anomaly classes effectively. (b) Bi-
Directional Cross-Attention Module: To bridge the gap
between fine-grained class-specific logits and coarse abnor-
mal logits from the task encoder, the gate model incorpo-
rates a bi-directional cross-attention mechanism. This mod-
ule learns the correlations and contrasts between the expert
predictions and the coarse anomaly-aware features, allow-
ing the gate model to leverage detailed, class-specific in-
sights as well as the more general anomaly-aware features.
(c) Final Prediction: The refined and integrated features
are processed through a transformer block followed by a
four-layer MLP, similar to the architecture of the experts, to
produce the final anomaly scores. This step ensures that the
latent space representation is expressive and well-suited for
capturing diverse anomaly patterns.

4. Experiments

Datasets. We conduct our experiments on two widely-used
Weakly-Supervised Video Anomaly Detection (WSVAD)
datasets, namely UCF-Crime [30] and XD-Violence [35].
We further experiment on the recent MSAD dataset [51].
Importantly, for all datasets, the training videos are anno-
tated with only video-level labels, without access to frame-
level annotations.

Evaluation Metrics. We adhere to the evaluation pro-
tocols established in prior works [22, 30, 35, 37]. To en-
sure comprehensive evaluation, we utilize multiple indica-
tors, such as frame-level Average Precision (AP), Abnor-
mal AP (APA) for XD-Violence and Area Under the Curve
(AUC), Abnormal AUC (AUCA) for UCF-Crime dataset.
The AP and AUC metrics show the method robustness to-
wards both normal and anomaly videos. However, APA and
AUCA allows to exclude normal videos where all snippets
are labeled as normal and retain only the abnormal videos



Model Encoder UCF-Crime XD-Violence
AUC AUCA AP APA

SoTA Methods With Multi-modal Features
M.A. [52] C3D 79.10 62.18 - -
HL-Net [35] I3D 82.44 - - -
HSN [23] I3D 85.45 - - -
MACIL-SD [41] I3D+audio - - 83.40 -
UR-DMU [49] I3D+audio - - 81.77 -
TPWNG [39] CLIP 87.79 - 83.68 -
VadCLIP [37] CLIP 88.02 70.23 84.15 -

SoTA Methods With RGB only Features

MIL [30] C3D 75.41 54.25 75.68 78.61
I3D 77.42 - - -

TCN [45] C3D 78.66 - - -
GCN [47] TSN 82.12 59.02 78.64 -
MIST [7] I3D 82.30 - - -
Dance-SA [28] TRN 85.00 - - -
RTFM [32] I3D 84.30 62.96 77.81 78.57
CLAV [4] I3D 86.10 - - -
UR-DMU [49] I3D 86.97 70.81 81.66 83.94
SSRL [16] I3D 87.43 - - -
MSL [17] V-Swin 85.30 - 78.28 -
WSAL [21] I3D 85.38 67.38 - -
ECU [42] V-Swin 86.22 - - -
MGFN [3] V-Swin 86.67 - - -
UMIL [22] CLIP 86.75 68.68 - -
TSA [11] CLIP 87.58 - 82.17 -

GS-MoE (Ours) I3D 91.58 83.86 82.89 85.74
(+3.56%) (+13.63%)

Table 1. State-of-the-art comparisons on UCF-Crime and XD-
Violence datasets. The best results are written in bold.

Model MSAD
AUC AUCA AP APA

RTFM[32] 86.65 - - -
MGFN[3] 84.96 - - -
TEVAD[2] 86.82 - - -

UR-DMU[49] 85.02 - - -
UR-DMU * 85.78 67.95 67.35 75.30

GS-MoE 87.72 69.54 68.91.26 76.68
Table 2. State-of-the-art comparisons on MSAD. * indicates our
own implementation. The best results are written in bold.

containing both normal and anomalous snippets. This poses
a more meaningful challenge to the model’s ability to accu-
rately localize anomalies.

4.1. State-of-the-art Comparison
In our experiments, the proposed GS-MoE model outper-
forms prior state-of-the-art (SoTA) approaches across mul-
tiple metrics, as summarized in Table 1. On the challeng-
ing UCF-Crime dataset, GS-MoE achieves an AUC of

Baseline TGS MoE AUC(%) APA(%)
Experts Gate UCF XD-V UCF XD-V

✓ - - - 86.97 94.07 45.65 82.91
✓ ✓ - - 87.84 94.13 46.01 83.39
✓ ✓ ✓ - 89.53 94.29 47.17 84.16
✓ ✓ ✓ ✓ 91.58 94.52 51.63 85.74

Table 3. Impact of each component in GS-MoE framework on
UCF-Crime and XD-Violence datasets.
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Figure 5. Category-wise performance comparison with UR-DMU.

91.58%, surpassing the previous best model, VadCLIP [37],
by 3.56%. This significant improvement illustrates the ef-
fectiveness of our model in detecting complex video anoma-
lies in real-world datasets. Additionally, when consider-
ing the performance on the abnormal videos (AUCA) only,
GS-MoE achieves a score of 83.86%, which constitutes a
remarkable 13.63% improvement over the second-best ap-
proach, UR-DMU [49], at 70.81%. This result supports one
key hypothesis of our work: different types of anomalies re-
quire class-specific fine-representations for more effective
detection. UR-DMU performance remains limited due to
feature-magnitude based optimization which overlooks the
subtle cues and enhances the sharp cues. However, the pro-
posed TGS loss promotes both subtle and sharp cues to take
part in the separability optimization. Further, the mixture-
of-experts architecture is capable of capturing these class-
specific representations, leading to substantial performance
gains, especially on complex anomalies.
On the XD-Violence dataset, GS-MoE achieves an AP
score of 82.89%, which is competitive with the best-
performing TSA [11] model (82.89%). Moreover, when
focusing on anomalous videos only, GS-MoE achieves an
APA score of 85.74%, outperforming the second-best ap-
proach, UR-DMU [49], which achieved an APA score of
83.94%. Since the AP metric considers both normal and
anomaly videos for evaluation, the performance gets ele-
vated by accurately predicting many normal videos.

As a result, methods performing well on the AP met-
ric may still struggle in anomaly detection. The proposed
method outperforms previous SoTA in the APA metric, re-
inforcing its utility in real-world scenarios. On the recently
released MSAD, GS-MoE surpasses the available baseline
models by up to 2.74% on the AUC metric and establishes
a new SoTA on the dataset. We report the other metrics as
well, in order to provide a baseline for subsequent works.



Expert Abuse Arrest Arson Assault Burglary Explosion Fighting RoadAcc. Robbery Shooting Shoplifting Stealing Vandalism

Mask 50.02 50.51 49.27 50.72 49.49 49.92 49.95 49.91 50.04 49.20 49.39 50.52 49.87
W/o Mask 86.37 55.48 61.73 63.12 53.65 57.04 65.14 65.22 72.37 60.89 54.73 77.62 57.43

Table 4. Category-wise performance comparison on UCF-Crime dataset between the UR-DMU baseline model and GS-MoE without the
expert model for a given class. Masking the relevant experts results in an almost random output from the gate model.

(a) UR-DMU features. (b) GS-MoE features.

Figure 6. Category-wise t-SNE feature distribution comparison between the baseline, the experts and the gate model.

Category-Wise Performance Analysis: To bring addi-
tional analytical insights on the complex anomaly perfor-
mance, Figure 5 provides an anomaly category-wise per-
formance comparison between GS-MoE and the baseline
UR-DMU method on the UCF-Crime dataset. Notably,
significant performance boosts are recorded for complex
categories like “Arson”, “Assault”, “Fighting”, “Stealing”
and “Burglary”, up to +24.3%. These performance gains
corroborate the benefits of GS-MoE in detecting complex
video anomalies. Figure 6 shows the t-SNE plot [34] of the
logits obtained at the first and third stages of GS-MoE for
the anomalous videos in the test set. The plot in Figure 6a,
obtained from the baseline UR-DMU, shows a low degree
of separability. The class diversification performed by the
experts and shown in Figure 6b demonstrates the capability
of GS-MoE to learn enhanced class representations.

4.2. Qualitative Results

As shown in Figure 7, the Gaussian kernels extracted from
the abnormal score contain a precise representation of the
anomalous events present in videos of the UCF-Crime
dataset. The kernel temporal activation (heatmaps) demon-
strate the capabilities of this approach. By correctly dis-
tinguishing the peaks of the anomalous events and from
the spurious peaks, the model is trained to predict high
anomaly scores for the associated anomalous snippets. In
the “Assault-010” video sample, two peaks are detected in
the abnormal score and the TGS finds a small variance for
both, leading to a steep normal distribution for each of them.
On the other hand, in the “Arson-011” and “Explosion-033”
samples, the TGS creates much longer distributions by lead-

ing the model to estimate a large variance and producing a
long time-window for the anomaly.

4.3. Ablation Studies

Component Impact: Extensive ablation studies are con-
ducted to evaluate the impact of each contribution to the
final performance of GS-MoE, as shown in Table 3. Fine-
tuning the baseline UR-DMU model with the TGS loss
in Equation 6 leads to a performance increase of +1.77%
on the AUC metric of UCF-Crime, while the APA of XD-
Violence increases by +0.48%. These results show that the
new formulation of the WSVAD task is beneficial to ex-
isting methods as well. The class-experts outperform the
fine-tuned baseline by +0.79% on UCF-Crime. Notably,
the APA increases on both datasets, leading to +1.16% for
UCF-Crime and +0.76% on XD-Violence, further support-
ing the idea that different classes of anomaly should be
treated separately. Adding the gate model to the framework
brings the largest performance increment. For UCF-Crime,
the AUC increases by +2.05% and the APA by +4.46%. On
XD-Violence, we observe relatively smaller improvements,
increasing AUC by +0.23% and APA by +1.68%.

Datasets W. TA features W/o. TA features

UCF-Crime (AUC) 91.58 90.98
XD-Violence (APA) 85.74 81.45

Table 5. Evaluation of the importance of the task-aware (TA) fea-
tures for the gate model on the key metrics of the UCF-Crime and
XD-Violence datasets.
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Task-Aware Features: In order to further analyze this
performance increment, the gate model was trained with
and without the task-aware features. The results of this
experiment are shown in Table 5. The task-aware features
seem to have a key role in the performance on the APA met-
ric of XD-Violence. In fact, the Gate model trained with the
task-aware features outperforms the other configuration by
4.29% on this setting, and by 0.6% on UCF-Crime.

Class-Experts Impact: The relevance of the expert mod-
els on the performance of the gate model is measured with
the class-wise AUC score obtained by masking the respec-
tive class expert on the UCF-Crime dataset. The results of
this experiment are shown in Table 4. By masking the ex-
perts, the measured AUC hovers around 50% for each class.
On the other hand, the gate model predictions are much im-
proved when the relevant expert score is included, leading
to a significant performance boost.

Class experts vs cluster experts: In practical applica-
tions, anomalies often span multiple classes, making it chal-
lenging to train a predefined set of specialized experts. To
address this issue, we trained GS-MoE using cluster-based
experts rather than class-specific experts. To form the data
clusters, we calculated the average task-aware features for
each anomalous video in the UCF-Crime training set and
applied the K-Means algorithm [20] to group them. Each
expert was then trained using videos from a single clus-
ter combined with normal videos, resulting in k special-
ized expert models. This approach enabled us to evaluate
the model’s performance in real-world scenarios where the
number of classes is undefined. The results are reported
in Table 6. In this setting, GS-MoE is able to outperform
current SoTA models by 0.56% clustering the anomalous
training videos in 7 clusters and using 7 experts while per-
forming on par with other SoTA models using fewer ex-
perts. These results highlight the capabilities of GS-MoE
in a real-world use case where the number of anomalous
events is not predefined.

Model AUC

UR-DMU [49] 86.97
TSA [11] 87.58

TPWNG [39] 87.79
VadCLIP [37] 88.02

GS-MoE (5 clusters / 5 experts) 87.35
GS-MoE (6 clusters / 6 experts) 88.03
GS-MoE (7 clusters / 7 experts) 88.58

GS-MoE (class experts) 91.58
Table 6. Comparison between the performance of GS-MoE with
varying number of experts.

5. Conclusion

We proposed GS-MoE to provide a novel formulation for
weakly-supervised video anomaly detection by leveraging
Temporal Gaussian Splatting to overcome the limitations of
previous methods. More specifically, we address the over-
dependency on the most abnormal snippets for separability
optimization. Our framework utilizes a mixture-of-experts
architecture that learns category-specific fine-grained repre-
sentations. building a correlation between coarse abnormal
cues and fine-grained cues to learn a more compact repre-
sentation for each category. Extensive experiments on chal-
lenging datasets across various metrics show GS-MoE con-
sistently outperforms SoTA methods with significant per-
formance gains. In the future, we aim to leverage LLMs to
provide more explainability to anomaly classes.
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