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Abstract

Head detection may be more demanding than face recog-

nition and pedestrian detection in the scenarios where a

face turns away or body parts are occluded in the view of

a sensor, but locating people is needed. In this paper, we

introduce an efficient head detection approach for single

depth images at low computational expense. First, a novel

head descriptor is developed and used to classify pixels as

head or non-head. We use depth values to guide each win-

dow size, to eliminate false positives of head centers, and to

cluster head pixels, which significantly reduce the compu-

tation costs of searching for appropriate parameters. High

head detection performance was achieved in experiments –

90% accuracy for our dataset containing heads with differ-

ent body postures, head poses, and distances to a Kinect2

sensor, and above 70% precision on a public dataset com-

posed of a few daily activities, which is higher than using a

head-shoulder detector with HOG feature for depth images.

1. Introduction

Significant research achievements have been made on

face recognition and pedestrian detection for applications

in surveillance, human tracking, counting people, to name a

few. However, they are not applicable when a face is turned

away from a camera, in far-field, or few body parts appear

in cameras. In these scenarios, robustly locating people is

also urgently needed, e.g. in home care centers, to monitor

elderly people performing daily activities where face and

body occlusions often occur. Thus head detection is highly

valuable as an alternative in locating people. Figure 1 shows

some occlusion examples in standing and bending cases.

Head detection aims to locate head center robustly in

the wild, regardless of body postures and head orientations.

Some analytics can benefit from it when head region is re-

quired in the first place, e.g. head pose estimation [5] and

human gaze estimation [7].

Nevertheless, direct head detection with depth images

Figure 1. Examples of depth maps of standing (the first two

columns) and bending (the 3rd and 4th columns) postures in full

360
◦ views to a Kinect2 sensor and with different head poses.

Depth maps of the three rows correspond to the distance of one,

two and three meters to the Kinect2 sensor.

is not often seen in current research when inexpensive

depth cameras become available, allowing us to better han-

dle shape information from depth data than RGB data.

Recent studies with depth images include people count-

ing [2][11][17], pedestrian detection [14], predicting body

joints position [12], head pose estimation [5], and fall detec-

tion [10]. Among them, the methods of head detection are

an extension of appearance and feature based methods with

RGB data, e.g. patch classification [5] and head-shoulder

detector with HOG (Histogram of Oriented Gradients) fea-

ture [10]. Their tests are often limited to specific contexts

such as facing cameras within one meter or people start

falling. Head detection without body and distance con-

straints has not been addressed.

This paper introduces a novel approach for direct head

detection, taking the advantage of the depth information

measured from a single Kinect2 camera. As opposed to

conventional classification with patch images or omega-

shape detector with multi-scaled windows [5] or fixed head
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size searching and tracking [10], our method is more flex-

ible with head appearance, that is, two-shoulder shape and

multi-scaled windows are not necessary. The contribution

lies in: 1) utilizing depth information of each pixel to de-

termine different parameters when performing the feature

level, probabilistic classifier level and clustering level. This

strategy has general implications and may be applied for

any other similar parameter requirements; 2) proposing a

new head descriptor and filter which not only capture the

characteristics of a head and the closest body part around,

but also robustly detect people wearing long hair and a

hat; 3) creating a new RGBD image dataset for real-world

head detection challenges. It contains people in different

body postures, standing and bending, in different orien-

tations, forward, backward and profiled, in different dis-

tances, around one to four meters away from a Kinect2 cam-

era, and performing different head poses.

2. Related Work

Generally speaking, head detection shares some similar-

ities with face recognition and pedestrian detection. Fol-

lowing their directions, one research line for head detection

is to find discriminate features and strong classifying ap-

proaches. Haar feature and cascade classifier have shown

discriminating power for face recognition [13]. Similarly,

HOG feature has demonstrated suitability for pedestrian

detection [3]. When applying them for head-shoulder de-

tection in [4], the authors found that HOG feature outper-

formed Haar and SIFT features. By combining multilevel

HOG and LBP (Local Binary Pattern) features, the study

[16] significantly improved head detection performance and

achieved 89% detection rate at 10−4 FPPW (False Positive

Per Window). In spite of explicit defined features, inex-

plicit head features can also be learned with direct input

of head patches. This appearance-based method is often

seen in head pose estimation where head region is either

pre-located or detected along with head pose estimation [9].

Since the advent of low cost RGBD cameras, depth map,

which describes measured distances of objects in a scene to

a sensing camera, has been treated as an intensity image. As

a direct head detection study, [10] detected head with depth

data to recognize people for fall detection. In their head de-

tection algorithm, moving objects were firstly detected by

background subtraction and clustered by thresholding dis-

tance. Then possible head positions were searched through-

out contour segments by fitting a circle with a certain head

diameter. HOG features were then extracted from the rect-

angular grids around each head candidate, and went to a

head and shoulder classifier for further identification. How-

ever, they assumed that head is always on the top of moving

objects, and their direct head detection accuracy was not re-

ported for varied body postures and head poses. As another

relevant study, [5] used depth image patches to directly es-

timate head location and orientation at the same time with

discriminative random classification and regression forests.

Head pose was voted only for positive head patches. In their

method, densely extracted patches were required and sub-

jects were facing a camera doing different head poses. From

their showed training patch examples, it might be more ac-

curate to say that they are face patches because only the face

region was cropped.

Among head detection studies, whether with RGB data

or depth maps, most tried to locate a head-shoulder shape,

which is one of the distinctions to face detection. It makes

sense because head and shoulder are very close body parts

and less prone to be occluded in camera views than other

parts. However, in some contexts, such as people perform-

ing daily activities, both shoulders clearly to be viewed all

the time by cameras is not realistic. Therefore, in [10],

once head-shoulder shape was found, it would not perform

it again. Instead, it began tracking the moving object. Fur-

thermore, HOG and LBP features are useful for describ-

ing shape and texture, which might make head-shoulder

descriptor sensitive to the omega shape and fail for peo-

ple wearing a hat. It is also worth noting that to extract

these features over a whole image, sliding window needs to

be performed at a specific range of scales, the trade-off be-

tween detection-error and window metric needs to be con-

sidered.

In another research line, efforts are devoted to handle

false positives and false negatives given these favorite fea-

tures and classifiers to improve head detection accuracy.

Typical method is to locate ROI (Region of Interest) first

by motion segmentation and searching head-like candidates

from ROI for head-shoulder classification rather than work

on the whole image [10], so that falsely detected heads

from environment become impossible. Another improve-

ment were made through head tracking where data associ-

ation rules with regard to the detected heads and trajectory

were employed [15]. Because of these rules, false positives

were suppressed and false negatives were recovered.

Although these approaches achieved reasonable results,

they inevitably add extra concerns on the robustness of mo-

tion segmentation and tracking as both of them are in ac-

tive research. Meanwhile, they introduce some limitations

on head detection, such as requiring a collection of video

sequences and head initialization, therefore they are not ap-

plicable to still images.

Over recent years, direct head detection did not gain

much attention from computer vision community, proba-

bly because these difficult cases which are inapplicable to

face recognition and pedestrian detection are also challeng-

ing for current head detection methods. In this paper, we ad-

dress these difficult situations. Similar to face recognition

with LBP in [1], we use circular windows but not multi-

scaled. New head descriptor is developed specifically for
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Figure 2. Framework of our proposed head detection approach

depth data to handle shoulder occlusion problems. Depth

information also serves for parameter estimation without

multi-scaled search, which significantly reduces processing

overheads. As far as we know, this is the fist attempt to

propose such depth map application.

3. Head Detection with Depth Images

A general framework of our proposed head detection

method with depth data is shown in Figure 2. Firstly, a

classifier is trained with head descriptors extracted from an-

notated head regions on depth images after a 3 x 3 median

filtering. Secondly, before a new depth image is tested, a 3

x 3 median filtering is also applied and head descriptors are

extracted from each pixel. Thirdly, each pixel is classified

as head center or non-head-center based on its descriptor.

Then a false positive filer is employed to select the most

possible head centres of the depth image, followed by head

center clustering to determine the final locations. Details

of head descriptor with feature arrangement, false positive

filtering, and head center clustering are explained below.

3.1. Depthbased head descriptor

For the center of a head, its distance to any other point

on the head that can be seen from a camera is only around a

few centimeters. Similarly, its distance to any point on the

neck or the closest body part such as the back, if the neck is

invisible like the bending cases in Figure 1, is also in such

a small range but its distance to any other point in the envi-

ronment, i.e. non-body part, is far larger than that range and

also varied. To describe the depth texture and relationship of

the head, the closest body part, and its environment, depth

information on two circular windows centered at each pixel

is used. We use the notation (P ,R,C) to indicate P sam-

pling points on a circle of radius R and centered at pixel C,

and use DP and DC to refer the depth values of P points

and C respectively. If this pixel C is near the head center,

one circular window (R1) is entirely inside the head and the

other (R2) is completely enclosing the head, as shown in

Figure 3 left. The head descriptor is defined as

H = DC −DP ij , i = 1, 2; j = 1, ..., P (1)

where DP1j and DP2j are the depth values of the circles

inside the head and enclosing the head respectively. These

depth differences between the circle center and two circles

are concatenated to form a 2P -dimensional vector repre-

senting the descriptor H at pixel C.

For each pixel, its circular window sizes are determined

by its depth value:

R1 = α ∗ f/DC
R2 = β ∗ f/DC

(2)

where α and β are constant values, smaller than the low

bound and larger than the high bound of statistically mea-

sured head size in population respectively. It is different to

trying multiple-scaled windows to directly estimate each of

varied head size where the processing overhead is relatively

high. Meanwhile, since the sampled points on the two cir-

cles are not directly from head boundaries, head appearance

does not affect the descriptor. Therefore, it can detect a head

with a hat on it or with different hair styles. Here f is also a

constant value representing the focal length in pixels which

can be obtained from geometric calibration [8]. It is worth

noting that these pixels whose circular windows (any sam-

pling points) are outside the range of image size or whose

depth value is zero due to noise in acquisition are removed

from further processing.
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Figure 3. Depth-based head descriptor (left) and feature arrange-

ment (right).

3.2. Feature arrangement

Due to different head poses, body postures and different

views of a camera, the closest body part to the head may

appear to be any part of the circle R2. To reduce this confu-

sion during head model learning, we introduce a feature ar-

rangement to align body parts in each descriptor. The body

parts will always be placed from the right central point of

the circles, at 0 ◦ degree as shown in Figure 3 left. That is,

the absolute depth difference between DP1j and DP2j is



firstly sorted and then the descriptor H is reorganized based

on its ascending order.

It is based on the assumption that compared to the sur-

roundings, the distance between the head and the closest

body part should be smallest. However, it may occur that

an object just appears next to the head causing the small-

est depth difference. Nevertheless, it will not cause much

trouble to the descriptor’s discriminative power because few

objects have a ring shape surrounding a head. Thus it only

affects a small portion of the descriptor’s depth values.

3.3. Depthbased false positive filter

Similar to the studies aforementioned [15], there are in-

evitably many false positives from surroundings after head

classification, because the features are hardly unique to

head attributes only. Different to face detector using cas-

caded classifiers [13], a filter is introduced to eliminate false

positives. As we mentioned before, the smaller circular

window is entirely inside a head region if the circle center

is the head center, and there is a margin between the head

boundary and all sampling points. If the circle center moves

around by a few pixels, this circular window is still inside

the head and the other still encloses the head. This makes all

these pixels near the circle center detected as head centers.

While for most false positives, when one pixel is happened

to be detected as a head center, the pixels next to it have low

chance to be detected as head centers all, as the red dots

shown in Figure 4 left.
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Figure 4. Examples of detected head centers in red over a whole

depth map (left), where the true head center has 100% detection

rate per window and the pixel on the table corner has lower de-

tection rate per window, both are shown in blue circular windows.

The principle of depth-based clustering is described on the right.

According to this observation, we propose the following

functions to filter false positives. Suppose after head classi-

fication, there are k pixels classified as head centers. Li is

the label for pixel Ci. 1 denotes head center and 0 denotes

non-head center. Given a pixel C and its circular window

radius R1, we can obtain a set of pixels {P=(R1,C)} inside

this small circular window. We define F as detection rate

per circular window :

Fi =

{ ∑
n∈Pi

Ln

#Pi

ifDCi < D

0 otherwise
(3)

where #(·) is cardinality. Then we assign a new label L′ for

each pixel with this filter:

L′

i =

{

1 ifFi = max(F)
0 otherwise

(4)

where only these head candidates who have the highest de-

tection rate per circular window are possible to go to the

next procedure. It is assumed that ideally the detection rate

near a true head center is 1 and when this condition is met

(or detection rates are same but less than 1) by multiple head

candidates, they will then be processed in the next cluster-

ing stage. Otherwise, only the one with the highest detec-

tion rate is chosen and directly taken as the true head center.

Meanwhile, we set a condition for a valid depth value D be-

cause if it is too far from the camera, the radius of circular

window R1 is too small to discriminate anything while the

detection rate can be easily high if it is a false positive.

3.4. Depthbased Clustering

When multiple head candidates survive filtering, the next

step is to determine head centers by clustering. Usually it

is difficult to know how many heads in images beforehand

for the number of clusters. Depth information of each pixel

is again used to determine the cluster number. Then each

cluster center is taken as the final detected head center.

Hierarchical clustering is employed where a hierarchical

cluster tree is created according to the Euclidean distance

between every pair of the selected head candidates. Given

the depth value of each head candidate, we know their ra-

dius R1 of the smaller circular window. If the cluster center

distance between two head candidates is larger than the sum

of their radius, the two head candidates is set into two clus-

ters. Therefore, by examining the distance of the clusters at

one level and the next in the cluster tree, we can easily find

how many levels of clusters whose distances are larger than

the sum of their radius to know the number of clusters. This

is illustrated in Figure 4 right.

4. Experiments

4.1. Data acquisition and head center labeling

As far as we know, there is few dedicated public depth

dataset for head detection. Thus we acquired a dataset con-

taining some difficult head detection cases with a Kinect2

sensor. This dataset consists of 882 depth images obtained

from two males and three females – one wearing glasses and

one wearing a hat. They performed totally seven sets of dif-

ferent head poses and body postures at different distances.

In each set of 126 depth images, one subject firstly stood

at about one meter away from the sensor, rotating the head

by around −60 ◦, 0 ◦, and 60 ◦ for pitch, around −40 ◦, 0 ◦,

and 40 ◦ for roll, and around −75 ◦, 0 ◦, and 75 ◦ for yaw.



The standing posture contains four directions, facing for-

ward, backward to the sensor, left and right in which only

one shoulder was visible to the sensor. With this distance,

only half body was visible to the sensor. Next the subject

stood at about two meters away where the whole body can

be seen, performing the same head poses with four stand-

ing directions. Then the subject faced the camera and bent

the upper body by around 90 ◦, performing the same head

poses. He/she turned the body to right by 90 ◦ and bent

again, performing these head poses, and finally turned left

by 90 ◦ doing the same postures and head poses. Lastly, the

subject stood and bent at around three meters away, doing

the exactly same head poses and standing directions.

The ground truth of head position on each depth image

was manually annotated with a bounding box. So the center

of the bounding box is taken as the head center. Later, one

non-head bounding box was automatically generated from

each depth image by randomly selecting a patch of the same

bounding box size outside the labeled head region.

Despite our collected dataset for training and testing, we

used a public Kinect2 depth dataset [6] collected by the

Cornell University to test the learned head model and com-

pare our algorithm with other available algorithms. As op-

posed to the designated head poses and body postures in

our dataset, this dataset contains a few human daily activi-

ties with object interaction in an unsupervised setting.

4.2. Experimental design

LDA(Linear Discriminative Analysis) is employed to

classify each pixel as head center or non-head center in the

classification procedure. We use leave-one-set-out scheme

to train a head classifier with the descriptors extracted

from 756 head bounding boxes and 756 non-head bounding

boxes. Here half of the bounding box length is taken as ra-

dius R2 and R1 is one thirds of R2. For each of the rest sets

(126 depth images), the descriptors for each pixel are tested

to determine the head candidates for clustering. Centered at

each of the final detected head centers, a rectangular is gen-

erated whose length is the radius of the larger circular win-

dow in order to compare with the annotated head bounding

boxes. Dice coefficient is calculated and if it is larger than

the threshold of 0.3, the head is correctly detected. Average

precision and recall of the seven sets are then computed.

There are a few constant parameters that need to be de-

termined. According to statistics, the smallest and largest

head size are around 120 mm and 200 mm. As the Kinect2

sensor was placed about 2 meters high, well above the head

of subjects, the head size is smaller in the camera view. We

set β to 150 mm, and α is one thirds of β, 50 mm in equa-

tion 2 for all datasets. Meanwhile, the value of focus length

in pixels f is set to 366 pixels according to [8]. The value of

D in equation 4 is set to 4 meters. According to equation 2,

it makes R1 to be 4 pixels, being little informative. The only

Body posture Distance (approximate) Precision Recall

Standing 1 meter 1.00 1.00

Standing 2 meters 1.00 1.00

Standing 3 meters 0.99 0.99

Bending 2 meters 0.88 0.88

Bending 3 meters 0.51 0.51

Overall 0.90 0.90

Table 1. Head detection performance for each body posture and

distance category and overall detection performance when P is 24

(an interval of 15 ◦).

parameter which is difficult to determine is the number of

sampling points on the circular windows in equation 1. We

set P to 24, that is, in an interval of 15 ◦, and report the

head detection results. Then we analyze how P affects the

detection performance in Discussion.

5. Results

The mean head detection precision and recall for our

dataset are presented in Table 1. Please note, if something

other than head is incorrectly detected as a head, it creates

one false positive and one false negative. To illustrate how

our proposed approach being able to detect head in differ-

ent body postures and head poses, and how distance affects

detection performance, we detailed head detection perfor-

mance in each category besides the overall accuracy.

To demonstrate the influence of the number of sampling

points on the two circular windows, we sampled points with

different interval of degrees over the circular windows to

observe the detection performance, as shown in Figure 5.
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Figure 5. Detection performance vs. number of sampling points

The head detection performance on the dataset of Cor-

nell University is shown in Table 2, where our algorithm is

compared to the algorithm in [10]. For this dataset, we used

skeleton data as the ground truth.

Another head detection comparison is made between us-

ing skeleton, the algorithm in [10], and our algorithm on a

benchmark video of Cornell University, where 148 head lo-

cations were manually annotated. The results are illustrated

in Table 3.



Nghiem’s algorithm [10] our algorithm

Image number 2785 2785

True positive 1447(51.9%) 1976(70.9%)

False positive 213(7.6%) 301(10.8%)

Table 2. Head detection performance comparison on the Cornell

University dataset.

Skeleton Nghiem’s algorithm [10] our algorithm

Image number 148 148 148

True positive 110(74.3%) 52(35.1%) 124(83.8%)

Table 3. Performance comparison of three head detection algo-

rithms on a benchmark video of Cornell University.

6. Discussion and Conclusions

High performance was achieved for close-ranged head

detection irrespective of varied body postures and head

poses in our real-world testing set, above 85% in precision

and recall as shown in Table 1. It can attribute to the instinc-

tive usage of depth information. Firstly, a double circular

window descriptor successfully captures the depth relation-

ship between a head center, its surroundings and the clos-

est body part. It overcomes the limitation of omega-shape

based features when one shoulder is invisible to a camera.

Meanwhile, feature arrangement further enhances the depth

relationship. It improves the classification accuracy of train-

ing data, from around 80% to more than 90%. Secondly, as

opposed to the practice of shifting sliding windows by a cer-

tain number of pixels, where it assumes that content in win-

dows changes little between the skipped pixels, we utilized

the invariance to strengthen the true positive of head center

classification on the pixel level. Therefore, from Table 1,

99% of the time the head center was the most dense area

if the head was not occluded by a shoulder when standing,

disregarding the distance. Thirdly, using depth information

to estimate circular window size and the number of clusters

works well and significantly reduces the complexity of the

algorithms employing multi-scaled windows to scan images

and employing parameters tuned for different datasets.

In our approach, the only concerned parameter is the

number of sampling points. If it is too big, it not only as-

signs these points with repetitive depth values and collects

more depth information about surroundings in the larger cir-

cular window, but also increases processing time, and vice

versa. Figure 5 demonstrates that the detection performance

can be degraded markedly if the number of sampling points

is inappropriately selected. However, performances of P in

the range of 18 to 60 (sampled every 6 ◦ to 20 ◦) are rela-

tively stable. Here we fix the number of sampling points to

24 across different datasets.

As we mentioned before, there are few studies dedicat-

ing their methods for head detection although they are often

head related. It is of little interest if we tested their algo-

rithms just for comparison given our knowledge that their

detectors were trained for face only or for a limited body

rotation while our dataset contains a number of non-face

and full body rotation cases. However efforts were made to

compare given similar depth data cases. As relative com-

parisons, [5] has the same processing in terms of frame-by-

frame depth images, but used depth image patches. Accord-

ing to their data acquisition, their depth data is similar to the

cases in our dataset when subjects are one meter away fac-

ing the sensor. The best detection rate is 99% when the win-

dow stride is four pixels and the head center error is around

15±22 mm. Although it is difficult to directly compare with

the head center errors because we used dice coefficient with

a threshold of 0.3, the best head detection performance can

be 100%. [12] also shares some common to our approach

in terms of using single depth image and per-pixel classifi-

cation but their objective is to predict 3D position of body

joints. As one body part, head was detected with an average

precision of 91% with a body rotation of ±120 ◦ to the sen-

sor (distance is unknown), but the specific detection rate for

head when a body was in the full 360 ◦ scenario was not re-

ported. Their detecting cases are close to the standing cases

in our dataset while our detection rate can be above 99%.

With available Kinect2 depth datasets and available head

detection algorithms, given trained head models, we found

that our algorithm outperforms the head-shoulder detector

with HOG feature in [10] and the skeleton method used in

[6] on the daily human activities depth dataset, as shown in

Table 2 and Table 3.

The main failure cases in our study are when subjects

bending and rotating their head in far field. This is likely

due to two reasons. Firstly, when subjects bent their body

and rotated head away from the sensor, the head is easily

occluded by a shoulder, thus the detectable head area is re-

duced. Secondly, in far field, the accuracy of depth map

decreases, especially for reflective and dark area [8]. We

find that dark hair becomes visible in depth map and the

corresponding distances in the depth map are larger than

expected. This phenomenon seldom occurs in the one me-

ter cases. Larger depth values in the hair region can result in

the smaller circular windows being larger than the head re-

gion. Although they may only account for a few pixels, the

detectable head region further shrinks. The consequence is

that the detection rate per circular window becomes lower,

losing the competition to the objects who share close at-

tributes of the descriptor, such as a table corner and bum.

Future work may involve discriminating non-head re-

gions as this approach is based on the assumption that there

are heads in single depth images, and may extend it to crowd

scenes. Also the use of Kinect allows to recognize heads

within 4 meters, so experimentation of the method using

another depth sensor with a wider range may be conducted.
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