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Abstract—Designing activity detection systems that can be successfully deployed in daily-living environments requires datasets that
pose the challenges typical of real-world scenarios. In this paper, we introduce a new untrimmed daily-living dataset that features
several real-world challenges: Toyota Smarthome Untrimmed (TSU). TSU contains a wide variety of activities performed in a
spontaneous manner. The dataset contains dense annotations including elementary, composite activities and activities involving
interactions with objects. We provide an analysis of the real-world challenges featured by our dataset, highlighting the open issues for
detection algorithms. We show that current state-of-the-art methods fail to achieve satisfactory performance on the TSU dataset.
Therefore, we propose a new baseline method for activity detection to tackle the novel challenges provided by our dataset. This
method leverages one modality (i.e. optic flow) to generate the attention weights to guide another modality (i.e RGB) to better detect
the activity boundaries. This is particularly beneficial to detect activities characterized by high temporal variance. We show that the
method we propose outperforms state-of-the-art methods on TSU and on another popular challenging dataset, Charades.

Index Terms—untrimmed videos, activity detection, activities of daily living, real-world settings.

1 INTRODUCTION

CCORDING to a recent report of the United Nations [1],
Athe global population aged 60+ is projected to grow
from 0.9 billion in 2015 to 1.4 billion in 2030. This de-
mographic trend translates to the dramatic need for an
increase of the workforce in healthcare. A great support to
the healthcare workforce could come from activity detection
systems, which help monitor the health state of older pa-
tients and support the early detection of potential physical
or mental disorders. For instance, monitoring patient eating
habits allows doctors to track the state of a patient and
react before serious health conditions arise. Thanks to such
systems, seniors could stay longer at home without the
need of being hospitalized, which would greatly improve
their comfort and quality of life. Building such monitor-
ing systems requires fine-grained understanding of long
untrimmed videos.

In recent years, numerous datasets for activity classifi-
cation in trimmed videos have been proposed [2], [3], [4],
whereas very little has been done for activity detection in
untrimmed videos. By activity detection, we mean predict-
ing the activity label as well as the temporal boundaries
within an input video. This detection task has to cope with
important open challenges: i) handling the combinatorial
explosion of activity proposals while detecting accurate
temporal boundaries in long video sequences, ii) managing
concurrent activities, and iii) distinguishing between back-
ground and foreground activities (e.g. standing still/using
telephone). In this work, we focus on untrimmed videos
of Activities of Daily Living (ADLs). These videos contain
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activities that usually occur in the daily lives of older peo-
ple. Typically ADLs feature activities with similar motion
(e.g. eating/drinking), activities with high temporal variance
(e.g. putting on glasses in 5 sec./ reading for 10 min.), or subtle
motions (e.g. stirring the coffee).

Most of the untrimmed video datasets that are widely
adopted in the literature do not focus on ADL. These
datasets are often collections of videos from the web [5],
[6], [71, [8], [9], [10]. For instance, ActivityNet [5] and Multi-
Thumos [9] are collections of a large number of videos
encompassing sports and outdoor activities. These activities
are often characterized by high inter-class variation due to
large and distinctive motions. Other datasets contain movie
excerpts or instructional videos [11], [12]. The videos in
these datasets retain only the key part of the activity and are
mostly recorded by a cameraman from a frontal viewpoint,
with nearly no occlusions.

Some ADL datasets have been proposed in the past
few years [13], [14], [15]. These datasets share common
characteristics: i) Subjects usually follow a rigid script,
which results into unnatural movements; ii) Videos and thus
activities are usually short; iii) Subjects are usually centered
in the middle of the frame and perform activities facing the
camera (i.e. high camera framing). These characteristics do
not reflect the spontaneity of human activities in real-world
scenarios.

Motivated by the shortcomings of current datasets, we
introduce Toyota Smarthome Untrimmed (TSU). TSU pro-
vides realistic untrimmed videos with diverse spontaneous
human activities and real-world settings. We invited 18
volunteers to the recording session in a smarthome. The vol-
unteers are senior people in the age range of 60 to 80 years.
Each volunteer was recorded for 8 hours in one day. The
resulting data consists of 536 long RGB+D videos with 51
annotated activity classes. This dataset is an extension of the
previously published Toyota Smarthome dataset [16], which
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Fig. 1: Overview of the challenges in TSU. On the left part, we present challenges related to spontaneous behaviours:
For the first two examples, we present the activity following a strict script on the left, and the same activity performed
spontaneously in TSU on the right: i) Different from using drawer performed quickly, once per video [13], in TSU, using
drawer may be repeated several times in a video, and the subject may keep several drawers open at the same time to
facilitate finding things. ii) In [14], subject uses shortly the telephone while looking at the camera. In contrast in TSU, the
subject is deeply involved with his telephone and the activity may last several minutes instead of few seconds. iii) In TSU,
subject may stayed seated or stand up to cut the bread in an easier manner. Besides the spontaneous behaviours, we also
illustrate on the right part the following real-world challenges: (1) Camera framing: subject is not in the middle of the
image and can be even outside the field of view. (2) Object-based activities: similar activities can be performed while
interacting with different objects. (3) Multi-views: activities look different in appearance from different view points. (4)
Composite activity: composite activities can be split into several elementary activities (e.g. While having breakfast, we may
cut bread, spread butter and eat at the table). Moreover, these complex composite activities can last a long period of time.
Large variations of appearance make the recognition challenging, requiring to understand the composition of elementary
activities to better recognize the composite activities. (5) Concurrent activities: activities can be performed concurrently
(e.g. take note while having a phone call). (6) High temporal variation: in the same untrimmed video, we may have related
short activities (e.g. taking on glasses) and long activities (e.g. playing tablet). Different instances of the same activity class

can also be short or long (e.g. writing) corresponding to high intra-class temporal variance.

is designed for the classification task of clipped videos.
Unlike previous datasets, these videos are unscripted. Ac-
tivities are annotated with both coarse and fine-grained
labels. The dataset poses several challenges: high intra-class
temporal variance, high class imbalance, composite and
elementary activities, and activities with similar motion. In
our data acquisition process, each participant was recorded
continuously for 8 hours. We believe that this setup reduced
camera awareness in the participants, leading to increased
spontaneity. Consequently, in TSU, the participants may
commiit errors, search for items and repeat several times the
same activity before succeeding. The fact that activities are
performed in a spontaneous manner also amplifies other
challenges such as low camera framing and high tempo-
ral variance. Some of the challenges in TSU dataset are
illustrated in Fig. 1. In section 3, we analyse in detail the
characteristics and novelty of the proposed dataset.

Experimentally, we find out that state-of-the-art activity
detection methods fail to address the aforementioned real-
world challenges offered by TSU. We also find that the
model trained on the untrimmed TSU outperforms the same
model trained on the trimmed version [16], reflecting the

difficulty of handling background actions. So, the question
remains, how to address these real-world challenges for
the task of activity detection? To this end, we design a
novel activity detection baseline method, Attention Guided
Net (AGNet), which builds upon existing temporal convo-
lutional networks. This method uses two input modality
streams (e.g. RGB and 3D Poses). The attention module
generates the attention map from one stream to guide the
other stream to predict more precise activity boundaries.

In general, the low performance achieved by activity
detection methods on TSU highlights the many challenges
that are yet to be addressed. To promote the development
of novel activity-detection methods that can better address
such challenges, we are releasing TSU to the research com-
munity.

2 RELATED WORK

In this section, we give an overview of publicly available
untrimmed activity detection datasets and related state-of-
the-art algorithms.
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TABLE 1: Untrimmed dataset comparison along the seven real-world challenges. *Indicates that the activity labels are provided in
terms of caption. With ‘'woT” we indicate that the composite labels are provided without the corresponding temporal boundaries.

Dataset Spontaneous | Camera | Object-based | Multi- | Composite | Concurrent | Var. activity | Temporal View Video
behaviour framing activities view activities activities duration annotation type type
MEVA [17] High Low Yes No No No Low Precise Monitoring | Surveillance
ACTEV/VIRAT [18] High Low Yes No No No Low Precise Monitoring | Surveillance
DALY [8] Medium High No No No Yes Low Precise Shooting Web
HACS [10] Medium High Yes No No No Medium Precise Shooting Web
YouTube’8M-Segments [7] Medium High No No No No Low Noisy Shooting Web
ActivityNet-200 [5] Medium High Yes No No Few Medium Precise Shooting Web
Thumos14 [6] Medium High No No No No Low Precise Shooting Web
Multi-Thumos [9] Medium High No No No Yes Medium Precise Shooting Web
AVA [11] Medium High No No No Yes Low Precise Shooting Movie
How2 [19] Low High Yes* No - - - Noisy Shooting | Instructional
HowTol00M [12] Low High Yes* No - - - Noisy Shooting Instructional
Coin [20] Low High Yes No No No Medium Noisy Shooting | Instructional
ADL [21] Medium High Yes No No No Low Precise Egocentric ADL
Charades-ego [22] Medium High Yes No No Yes Low Precise Egocentric ADL
50 Salades [23] Medium High Yes No No No Low Precise Top-view Cooking
EGTEA Gaze+ [24] Medium High Yes No No No Low Precise Egocentric Cooking
EPIC-KITCHENS [25], [26] High High Yes No Few Few High Noisy Egocentric Cooking
MPII Cooking 2 [27] Low High Yes No woT No Medium Precise Shooting Cooking
Breakfast [28] Medium Medium Yes Yes woT No Medium Precise Shooting Cooking
CAD-120 [29] Low High Yes No Yes No Low Precise Shooting ADL
DAHLIA [15] High Low No Yes No No High Precise Monitoring ADL
PKU-MMD [14] Low High No Yes No No Low Precise Shooting ADL
Charades [13] Low High Yes No No Yes Low Precise Shooting ADL
Toyota Smarthome Untrimmed High Low Yes Yes Yes Yes High Precise Monitoring ADL

2.1 Activity detection datasets

The availability of videos replicating real-world challenges
is crucial to design robust activity detection algorithms.
Among existing datasets, only few of these challenges are
properly addressed. To understand the limitations of cur-
rently available datasets, we introduce the following 7 real-
world challenges.

Spontaneous behaviour: activities in the real-world are
performed naturally. However, most existing datasets are
acquired by providing the subjects with a strict script.
Besides, as the subjects are aware that their activities are
being recorded, they often overact. To quantify spontaneous
behaviour, we define a heuristic that considers three as-
pects: (i) Scripted or unscripted: The datasets following
a strict script always have lower spontaneity. We assign
the datasets that follow strict script 1 point; the datasets
following a coarse script (e.g. cooking a specific meal in
a video) 0.5 point; unscripted 0 point. (ii) Camera Aware-
ness: Camera awareness also affects spontaneity. We assign
1 point to the datasets recorded by the cameraman/self-
recorded /wearable sensor. We assign 0.5 point to datasets
with continuous videos that were recorded for a long dura-
tion (at least 30 minutes). For monitoring datasets recorded
for a long duration, we assign 0 point. (iii) Environment:
it is also an important factor for spontaneity. Activities
are often more spontaneous when performed in a familiar
environment. Here, we assign a dataset that is recorded
in an unfamiliar location 1 point, in a familiar location
(e.g. home) 0 point. Datasets with continuous videos that
were recorded for a long duration in the same environ-
ment are given 0.5 point, as people get accustomed to
the location. Following these criteria, we re-evaluate all
datasets. The datasets with less than 1 point are considered
as featuring high spontaneity, more than 2 points obtained
low spontaneity, the others are rated with medium spon-
taneity. Camera framing: when videos are recorded by a
cameraman, subjects mostly appear in the middle of the
image and facing the camera (high camera framing). On the
other hand, when videos are recorded automatically by a

monitoring system using fixed cameras, subjects can often
be offset from the center, occluded or partially outside the
field of view (low camera framing). Object-based activities:
similar activities that can be performed while interacting
with different objects (e.g. drinking from cup or from bottle) are
more challenging to classify. In Table 1, object-based activities
indicates the availability of object level fine-grained anno-
tation for these activities. Multi-views: activity detection
methods need to be robust against view-point variations.
Therefore, benchmark datasets should provide samples of
the same activities recorded from different views. Compos-
ite activities: Some complex ADLs can be decomposed into
several elementary activities. For example, having breakfast
may contain elementary activities like cutting bread, spreading
butter and eating at table. In Table 1, the composite activities
column indicates whether the dataset provides annotation
for both composite activities and their respective elementary
activities. Concurrent activities: activities, such as making a
phone call and taking notes may be performed simultaneously.
The appearance of activities can drastically change when
multiple activities are performed at the same time. In Table
1, concurrent activities indicates whether the dataset provides
samples and annotations in which activities are performed
simultaneously. Variation of activity duration: this property
indicates the level of variation in the length of activities in
the dataset. In this table, the high variation indicates that
the average duration of an activity class is more than 80
times larger than the one of the lowest activity class. The
low variation indicates that the highest average duration of
an activity class is less than 30 times than the one of the
lowest activity class.

To be noted that, activity detection methods need precise
temporal annotation (i.e. start time and end time) for each
activity. We consider that a dataset features Noisy annota-
tion when: (i) the dataset provides temporal annotation only
for part of the activities in the video [7], or (ii) the dataset is
coarsely annotated by the audio [25], or iii) the dataset only
provides caption of the video [12], [19].

Table 1 summarizes the comparison of most used public
untrimmed video datasets based on the above challenges.



Below, we detail how these untrimmed datasets differ from
our proposed TSU.

2.1.1 Surveillance datasets

Surveillance datasets, such as VIRAT and MEVA [17], [18],
have fixed camera views and are designed to monitor hu-
man activities in the wild. These datasets are collected in
natural scenes showing people performing normal activities
in standard contexts, most of the time outdoors. Besides,
activities look natural as they are performed by actors
following a light script. For these datasets, only few simple
human activities are annotated (i.e. crouching, standing...)
along with the object information (i.e. carrying a box). These
datasets thus differ from TSU as the complexity of surveil-
lance activities is significantly lower than the one from
daily-living activities, for example, no concurrent & com-
posite activities.

2.1.2 Web & Youtube & Movie datasets

A large number of datasets are collected from YouTube or
movies [5], [6], [7], [8], [9], [10], [11]. Most of these videos
are self-recorded or recorded by a cameraman from a single
view, which causes the subject to be centered within the im-
age frame (i.e. high camera framing), facing the camera and
with limited occlusions. These videos are carefully selected
and only the key parts of the activities are retained, in which
the subjects always perform the activities smoothly without
hesitation in front of the camera (i.e. reduced spontaneity).
Thus, these videos are less representative of real-world
scenarios compared to TSU videos.

2.1.3

Similar to the above category of datasets, instructional
videos [12], [19], [20] are collected from internet sources.
These videos provide intuitive visual examples for learn-
ers to acquire knowledge to accomplish different tasks.
In contrast to TSU, these instructional videos have noisy
annotations which are often text descriptions [12], [19] and
follow strict temporal ordering of the activities [20]. Similar
to web videos, the subjects always perform the activities
smoothly without hesitation in front of the camera [12], [20].
These characterizations of the instructional videos are not
adequate for real-world activity detection task.

Instructional videos

2.1.4 Activities of daily living (ADL)

Activities of daily living are performed in indoor environ-
ments such as homes or labs. These activities are usually
characterized by low inter-class variation and subtle motion.
Below, we discuss the ADL datasets categorized by their
camera viewing angle.

Egocentric view datasets: In Egocentric datasets [21], [22],
[24], [25], [26], the videos are recorded with a wearable
camera (i.e. reduced spontaneity) or from a top view [23]
that captures the scene directly in front of the user at all
times, in which only hands are visible in the center of the
camera view (i.e. high camera framing). Egocentric videos
are designed to study the activities, where the user’s hands
are manipulating various objects. However, the egocentric
paradigm can only collect the activity information from a
very restricted viewpoint. This restricted viewpoint makes
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the appearance of egocentric activities very different from
third person view datasets like TSU (e.g. poses are un-
available) and prevent the recording of those activities that
cannot be observed from this viewpoint (e.g. making a phone
call). Due to these characteristics, our comparison mainly
focuses on third-view datasets.

Third person view datasets: Many of the ADL datasets [27],
[28], [30] are limited to kitchen activities. MPII Cooking
2 [27] and Breakfast [28] contain only cooking activities (like
preparing recipes or making breakfast). The subject is asked to
cook a single dish (i.e. composite activities) in each video in
these datasets. However, there are no temporal boundaries
(i.e. no ground truth timestamps) for the composite activities
as they correspond to a whole video. Besides, some of
the composite activities occur only once in the dataset. In
these datasets, subjects are asked to prepare a specific recipe
in a video clip, therefore the activities are performed in
rapid succession without hesitation or mistake (reduced
spontaneity). Moreover, the dataset lacks the presence of
secondary activities irrelevant to cooking (e.g. drinking water)
but often occurs in real-life. In MPII Cooking 2, the subjects
follow strict scripts (i.e. low spontaneity) and are always in
the center of the frame (i.e. high camera framing). Although
the videos are recorded from 8 camera views, only a single
view is released for this dataset. In Breakfast, the hands of
the subjects and the objects used are always at the center
of the frame without much occlusion (i.e. medium camera
framing). Moreover, the number of views are not fixed, even
in the same kitchen (from 2 to 5). As mentioned, the subjects
in these two datasets perform the activities quickly without
much hesitation, which means the datasets are characterized
by medium temporal variation and no concurrent activities.
So, in the following, we present the datasets that encompass
a larger variety of ADLs which are not only restricted to
kitchen activities and where not only the top body part can
be observed.

CAD-120 [29] is a small dataset (about 60 K frames in total).
This dataset comprises of 20 different activities (including
composite and object-based activities) performed by four
people in different rooms. The subjects are always in the
center of the scene performing short sub-activities follow-
ing a script (i.e. high camera framing & no spontaneity).
Because of the simplicity of activities, current state-of-the-
art methods [31], [32] can already achieve excellent results
on this dataset. DAHLIA [15] is recorded in a single room
in a lab with 44 subjects. Each subject has about 40 min
recording from 3 fixed camera views (i.e. high spontaneity,
low camera framing). The dataset contains only 8 coarse
activity classes, thus it does not have the challenges of
concurrent, composite and object-based activities. In PKU-
MMD [14], the videos are recorded from 3 camera views.
The activities are performed in the center of the scene
by the subjects following a strict script. Besides, there are
pauses in between the activities which makes the prob-
lem of distinguishing between an activity and background
easier compared to real-world scenarios. Thus, this dataset
lacks spontaneity & concurrent activities in addition to high
camera framing. Charades [13] explores object-based ac-
tivities and concurrent activities. The videos are recorded
by hundreds of people in their private homes following
strict scripts. Although Charades depicts large numbers of



environment diversity, these self-recorded activities are very
short (30 sec./video, 10 sec./activity) with low variation
of activity duration and in general performed in unnatural
manner (overacted), in the center of the camera view (high
camera framing). All in all, current ADL datasets address
only partially the 7 aforementioned challenges of real-world
scenarios. This motivates us to propose TSU.

2.2 Activity detection methods

In this section, we review how previous methods address
real-world challenges for activity detection. The task of
activity detection involves two steps: (1) Extracting frame
or segment level features using a model trained for activity
classification, we call this step video encoding; (2) Modeling
temporal relations among the previously extracted features
for the detection task. Below we present the relevant meth-
ods for each of these two steps.

2.2.1 Video encoding

Learning video encoding is an important factor for video
understanding problems [33], [34]. In this step, frame or
segment level features are extracted using a model which
is trained on activity clips. These features are further in-
put to a model which is trained for the task of activity
detection. Thus, the efficacy of the detection task highly
relies on the quality of the extracted features or, in other
words, the learned representations of the activity classifi-
cation models. These classification models vary based on
the input data modality. For instance, 3D huamn poses are
generally processed by sequential networks whereas RGB
images and optical flow images are generally treated by 3D
convolutional networks.

3D human pose is a popular modality which provides
the location of the key joints of the subject for every
frame. Skeleton attracted considerable attention due to their
strong adaptability to dynamic motion and complicated
background [2], [4]. Conventional deep learning based
methods manually structure the skeletons as a sequence
of joint-coordinate vectors [2], [35]. However, representing
the skeleton data as a vector sequence can not fully express
the dependency between correlated joints. Recently, graph
convolutional networks (GCNs) have been applied to model
the skeleton data. Yan et al. [36] have constructed a spatial
graph based on the natural connections of joints in the
human body. Inspired by [36], Shi et al. [37] have proposed
a two-stream GCN to better model the spatial information
within a short period of time. However, skeletons can only
represent the pose of the person performing an activity.
But what about contextual information like environmental
details (e.g. sink for clean dishes with water), encoding ob-
ject information (e.g. glasses)? For that, we need the RGB
frames.

RGB images are utilized by many effective methods in
order to model the appearance information. Few works
learn appearance features from frame-level classification of
activities, using 2D CNNs [38]. 3D CNNs are the natural
evolution of their 2D counterparts. Du et al. [34] have
proposed 3D CNNs (C3D) to capture spatio-temporal pat-
terns from a sequence of 8 RGB frames. In the same vein,
I3D [33] inflates the kernels of ImageNet pre-trained 2D
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CNN to jump-start the training of 3D CNNs. While these
methods are effective for the recognition of fine-grained
and object-based activities with a short temporal extent [39],
[40], they are too rigid and computationally expensive to
handle minute-long videos. In order to effectively learn
temporal localization of activities in long videos, the existing
detection methods [41], [42], [43] process the videos on top
of the aforementioned 2D or 3D CNNs [33], [34], [38], [44].

2.2.2 Temporal modeling

The difference between activity classification and detec-
tion is the way long-term and complex temporal relations
are processed. After the step of encoding videos, activity
detection can be seen as a sequence-to-sequence problem.
Recurrent Neural Networks (RNNs) [9], [45], [46] have been
popularly used to model the temporal relations between
frames. However, they only implicitly capture relationships
between certain activities with high motion. Furthermore,
due to the vanishing gradient problem, RNN-based models
can only capture a limited amount of temporal information
and short-term dependencies.

Temporal Convolutional Networks (TCNs) are another
group of temporal processing methods. In contrast to RNN-
based methods, TCNs can process long videos thanks to the
fact that kernels share weights for all the time steps. The
result is a feature vector preserving the spatial information,
along with contextual information from the neighboring
frames. Some recent variants of TCNs for activity detec-
tion include Dilated-TCN [41] and MS-TCN [43]. Dilated-
TCN [41] increases the temporal reception field by using
dilated convolutions to model longer temporal patterns.
This is extended by MS-TCN [43], which stacks multiple
Dilated-TCNs to construct a multi-stage structure, where
each stage refines the prediction of the previous one. How-
ever, the dilated-based TCNs [43] have dozens of dilated-
convolution layers (e.g. 5x10 layers in MS-TCN) and there
is no mechanism to combine the local and global features.
Hence, the top layer contains only the information of the
high-level reception field, but lacks the local features. Be-
sides, the number of filters for each layer is small and can
only process datasets with videos characterized by simple
temporal relations [23], [28]. Moreover, the number of filters
can not be increased in this deep structure due to the
computational cost.

Further, the introduction of datasets like MultiTHU-
MOS [9] and Charades [13] with dense labelling and con-
current activities (i.e. multi-labels), pushed more and more
methods to attempt modeling complex temporal relations
between activity instances. Piergiovanni et al. have pro-
posed a global representation, namely super-event [42]. In
this model, Cauchy distribution based filters process the
video across time to learn a latent contextual representation
of the activities on particular sub-intervals of the video. The
set of filters are summed by a soft attention mechanism
to form the global super-event features. During prediction,
the local I3D features are used along with the super-event
features to better handle the composed activities. Similarly,
Piergiovanni et al. [47] have introduced Temporal Gaussian
Mixture (TGM) layers. In contrast to standard convolution
layer, TGM computes the filter weights based on Gaussian
distributions, which enables TGM to learn longer temporal



structures with a limited number of parameters. Although
the above methods achieve state-of-the-art in modeling
complex temporal relations, the non-adaptive receptive field
limits the ability of the models to capture the dynamics for
both short and long patterns.

To summarise, state-of-the-art methods have high per-
formance on ADL datasets containing simple activities such
as PKU-MMD and DAHLIA. However, these methods still
struggle to get reasonable performance on more complex
datasets such as Multi-Thumos and Charades. Thus, we
propose a new ADL dataset TSU to explore how these state-
of-the-art methods perform in real-world conditions.

3 TOYOTA SMARTHOME DATASET

In this section we describe the main features of Toyota
Smarthome Untrimmed dataset. Our goal is to create a
large scale dataset with daily-living activities performed in
spontaneous manner.

3.1 Data collection
3.1.1

We use 7 Microsoft Kinect sensors in the recording phase.
The apartment plan and camera locations are shown in
Fig. 5. Cameras 1 and 2 cover the dinning room area, 4 and
5 the living room, 3, 6 and 7 the kitchen. Thus, we have a
coverage over the entire apartment from at least 2 distinct
viewing angles. The videos are recorded at 20 frames per
second, the size of RGB is VGA (640x480), the standard
resolution in most real-world scenarios. The dataset offers
3 modalities: RGB, depth and 3D skeleton (i.e. pose) (see
fig. 2).

For the 3D skeletons, we fine-tune LCR-Net++ [48] on
this dataset and then extract the 2D skeletons. Finally these
2D skeletons are processed through VideoPose3D [49] to
extract the 3D skeletons. We observe that this mechanism
extracts 3D poses of better quality compared to those ob-
tained using depth or LCRNet++.

Collection Setup

3.1.2 Data collection protocol

One of the key applications of daily-living activity detection
is older patient monitoring. Thus, in our dataset, we invited
18 volunteers to our dataset recording sessions. The age of
the volunteers ranges between 60 and 80 years old. Each
volunteer was recorded for 8 hours in one day starting from
morning at 9 a.m. until afternoon at 5 p.m.. On the day
of recording, the volunteer arrived in the apartment at 8
a.m. and had a visit to get acquainted with the place and
to learn how to use the household equipment such as coffee
machine, television, remote control, etc.. The volunteers also

|
A

(2) 3D Skeleton

(1) RGB (3) Depth

Fig. 2: Available modalities in Toyota Smarthome
Untrimmed. Note: in the sub-figure of RGB modality, we
also mark the 2D skeleton joints.
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received an informal description of what it was expected
with reference to having meals and interacting with any-
thing in the apartment as it was a normal day at home.
No further guidance was provided about how the activities
should be performed.

In total, we recorded more than 1000 hours of video
data. Based on these data we prepared two datasets: Toyota
Smarthome dataset [16], previously published, and Toyota
Smarthome Untrimmed dataset that is introduced in this

paper.

3.2 Toyota Smarthome Trimmed dataset

Toyota Smarthome Trimmed [16] has been designed for the
activity classification task. It consists of 16K short RGB+D
clips of 31 activity classes. Each clip is about 12.5 sec. long
and contains only one activity. Unlike previous datasets [2],
[3], activities were performed in a natural manner. As a
result, the dataset poses a unique combination of chal-
lenges: high intra-class variation, high class imbalance, and
activities with similar motion and high duration variance.
Activities were annotated with both coarse and fine-grained
labels. These characteristics differentiate Toyota Smarthome
Trimmed from other datasets for activity classification.

3.3 Toyota Smarthome Untrimmed dataset

Toyota Smarthome Untrimmed and Toyota Smarthome
Trimmed [16] are obtained from the same recording footage.
Different from the Toyota Smarthome Trimmed, TSU is tar-
geting the activity detection task in long untrimmed videos.
Therefore, in TSU, we kept the entire recording when the
person is visible. The dataset contains 536 videos with an
average duration of 21 mins. Since this dataset is based on
the same recording as Toyota Smarthome Trimmed version,
it features the same challenges and introduces additional
ones. In section 3.3.1, we describe the annotation protocol.
Then, we present the properties of the TSU dataset in
section 3.3.2, we present its challenges in section 3.3.3, and
finally we compare this untrimmed version of the dataset
(i.e. TSU) with its trimmed version in section 3.3.5.

3.3.1 Annotation protocol

TSU is designed particularly for the activity detection task.
With the support of a medical staff, we have identified 51
activities of interest to annotate. A team of annotators man-
ually annotated the videos using the open-source toolkit
ELAN [50]. The videos were annotated individually without
relying on the fact that some camera views overlap. The
annotation process took more than 6 months, including
verification and quality checks. We performed the quality
check with the help of 5 annotators. We estimated the
precision of the annotation by considering the same 50 long
videos annotated by different annotators. These 50 videos
are randomly chosen and cover all the subjects and camera
views. The precision of annotation of those 50 videos is
96.8%. Additionally, we reviewed, normalized and corrected
the 25 hours of annotation by checking again the videos
where the methods were achieving low activity detection
performance. Fig. 3 shows an example of the annotation.
This example corresponds to composite activity cooking.
While cooking, the subject abruptly stops cutting vegetables
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Cook
Cut vegetable Dump in trash dra Get water Set stove Cut vegetable
Put sth. on table Put sth. on table  Take sth. off table
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Fig. 3: An example of annotation on TSU dataset. <~ and '—’ indicate respectively the start and end of an activity.

and starts heating water in a pot so that she can have boiled
water after cutting the vegetables. After setting up the stove,
she resumes cutting the vegetables. This process does not
follow a strict temporal order and reflects the spontaneous
behaviour of the participant.

3.3.2 Dataset Properties

The result of the extensive annotation process is a rich
corpus of activities. Fig. 4 presents the diversity of activities
in this dataset. The activities are categorized into compos-
ite and elementary activities. Composite activities are the
complex activities that are composed of several elementary
activities that may or may not follow a temporal ordering.
TSU contains 5 composite activities which are relatively
long. Elementary activities are atomic activities which may
be performed concurrently in time. These activities may
or may not be part of a composite activity. TSU contains
46 elementary activities and these activities may be long
or short. In Fig. 4 (c), we illustrate the composite activity
cooking, with its elementary activities. In Fig. 4 (a) and (b),
the composite and its corresponding elementary activities
are marked with the same color.

TSU contains a rich diversity of elementary activities.
We present three challenging scenarios that might occur
while attempting to recognize these activities. Firstly, the
dataset contains pose-based activities for which poses could
be sufficient for classification. In contrast, the appearance
information may not improve the recognition of these activ-
ities. In Fig. 4 (d), we provide 8 such pose-based activities.
For example, sit down only needs the 3D poses to be distin-
guished, whereas the books and laptop around the subject
may mislead an appearance-based classifier to recognize an
activity related to those objects, such as reading. Secondly,
TSU contains many elementary activities characterized by
similar motions and interactions with objects. These objects
provide strong clues to distinguish an activity. However, a
reliable detection of the object while processing the whole
video is a challenge. Sometimes, the objects are occluded
within the hands of the subject, like in the case of grasping
a cup while drinking. As a result, these activities with similar
motion are often miss-classified amongst each other. In
Fig. 4 (e), we provide 22 such activities. For example, the
subjects performing use fridge and use cupboard have very
similar poses. A fine understanding of the object informa-
tion (e.g. fridge and cupboard) may facilitate the recognition
of these activities. Finally, the dataset contains fine-grained
activities characterized by subtle motions, which presents
additional challenges for the recognition task. In Fig. 4 (f),

we describe 7 such activities. For example, subjects who
perform the activity Stir coffee/tea move only slightly their
wrist and forearm. Compared to activities with pronounced
motions, such as sitting down, learning discriminative rep-
resentations for these activities with subtle motions is very
challenging.

We further analyze the distribution of the activities in
TSU in Fig. 5. We first provide a pictorial representation of
the apartment along with the camera placements. TSU fea-
tures multi-view settings, as all the activities are captured
by more than one camera. Then, we provide 6 statistics
pertaining to the activity distribution in the dataset. Fig. (a)
depicts a distribution of activity instances across the dif-
ferent rooms. Most activities occur in the living room,
then kitchen and dinning room. This is similar to real life
distribution as we spend most of our time in the living
room. Correspondingly, Fig. (f) presents the distribution
of environment for each activity. We find that 51% of the
activities are environment independent. For instance, we
can eat snack or work with laptop in all these three environ-
ments. However, activities that rely on specific equipment
occur in the same environment, such as using oven in the
kitchen. Fig. (b) shows the activity distribution across the
activity duration. We find that in TSU, most activities are
short activities, followed by medium and long activities.
This is because long activities have few occurrences but
longer duration. Interestingly, short activities are often more
challenging to detect compared to the longer ones [51].
Fig. (c) shows the distribution of activities based on their
intra-class temporal variance. We notice that 22% of the
activities have high temporal variance (i.e. vary more than
500 sec.). Correspondingly, Fig. (e) provides the heat map
of the temporal variance of these activities. The lighter grey
means that the temporal variance is higher. Such intra-class
variance within the same activity class further complicates
the task of detection. Finally, Fig. (d) provides the occurring
frequency for every activity in the dataset. We have a
non-uniform distribution of activities following the Zipf’s
law [52]. This long-tail distribution characterizes the real-
world scenarios [13], [53].

In addition, we leverage the spatial distribution of the
person location to illustrate the camera framing property.
We use the key-joint locations of Poses to compute the
coordinates of the human position. Fig. 6 shows the spa-
tial distribution of the person center location in different
views. Compared to other similar datasets, TSU exhibits
a significantly larger spatial scatter for all camera views.
In most cases, the subjects move along the edge of the
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Fig. 4: On the top row, we divide the 51 activities in TSU into (a) composite and (b) elementary activities. Then, we analyze
the activities along four properties: (c) highly related composite and elementary activities, (d) pose-based activities, (e)
similar motion/activities, and (f) activities with subtle motion.

camera coverage area. Consequently, we consider TSU to
have relatively low camera framing.

3.3.3 Challenges

TSU provides the 7 real-world challenges which are dis-
cussed in Section 2.1. (1) Spontaneous behaviour: TSU is an
untrimmed ADL dataset where people are recorded while
performing activities in a spontaneous manner. This prop-
erty defines the uniqueness of TSU dataset. (2) Low camera
framing: because of the long duration of the recording, the
subjects do not pay attention to the fixed cameras. Therefore,
activities can be performed very far, very close or out of
view of the camera. Activities can also be partially occluded
by furniture. (3) Object-based activities: The annotations in
TSU include the fine-grained details of activities performed
using different objects (e.g. drinking from a cup, can or bot-
tle). TSU contains 7 object-based activities. (4) Multi-views:
TSU features 7 camera views. As shown in Fig. 5, the camera
placement enables 2-3 camera views for each environment.
In this work, we use these different views for increasing the
view diversities in order to design view-invariant methods
and also use them for joint-view action detection (see Sec.
3.3.4). (5) Composite activities: TSU contains 5 composite
activity classes and 16 related elementary activity classes.
(6) Concurrent activities & dense annotation: TSU contains
up to 4 concurrent activities for a single frame. About
10% of the frames contains more than one activity label.
On an average, there are about 76 activity instances per
video. (7) High temporal variance: This new dataset offers a
large variation of activity duration and intra-class temporal

variance. TSU features short activities (e.g. taking on glasses),
long activities (e.g. reading book), and instances of the same
class that can be long or short (e.g. writing ranges from 3
seconds to 10 minutes). As a result, handling temporal in-
formation is critical to achieve good detection performance
on TSU.

3.3.4 Balanced TSU and Joint-view TSU

To address the different interests pertaining to long
untrimmed videos, besides the aforementioned fine-grained
version of the dataset (dubbed Fine-grained TSU), we in-
troduce two additional versions of the dataset: (1) Balanced
TSU and (2) Joint-view TSU. Each dataset version has its
specific videos, annotations and evaluation protocol.

Balanced TSU is a version of the dataset that overlooks the
fine-grained details (e.g., the manipulated object) but keeps
only the different movement patterns (e.g., cut, drink). There
are many activity classes that have a limited number of in-
stances (i.e., samples) in the fine-grained TSU version. This
is because some activity classes with specific fine-grained
details occur rarely as activity instances within the dataset
which may not be sufficient to learn activity-specific repre-
sentations. Thus to handle this, we release Balanced TSU,
which focuses on the different movement patterns of the
activity (i.e., verb) rather than the fine-grained details (i.e.,
noun). Balanced TSU shared the same untrimmed videos
as fine-grained TSU: 536 videos with 21 minutes average
duration. The only difference lies in the annotation. This
version of the dataset merges the fine-grained activities that
share similar motion into the same activity class (e.g., cut
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The green bounding boxes embrace the high frequency
locations. From the size of the bounding box, we find that
TSU exhibits the largest spatial scatter, indicating the low
camera framing property.

bread, cut vegetables — cut). Therefore, this version of dataset
is more balanced in terms of the number of samples, with
slightly less number of classes (in total 34 activity classes).
The activity list and instance frequency are provided in
Supplementary material.

Joint-view TSU targets the joint-view activity detection
task. Different from the aforementioned versions, this ver-
sion of dataset contains only synchronized video pairs to
be used for learning joint-view activity detection models.
We have collected 177 synchronized video pairs from the
original recording footage. Each video pair contains the
video content recorded from two different cameras (i.e., Din-
ing room: C01, C02; Kitchen: C03, C06; Living room: C04,
C05). For the annotation, this Synchronized version features

fine-grained activity annotation. In the aforementioned fine-
grained TSU, we have annotated each video separately by
different annotators, resulting in potentially different anno-
tations of the synchronized activity pairs. In particular, the
synchronization can cause a shift in the activity boundaries.
To build the Joint-view TSU version, the annotators have
manually modified and adjusted the annotations for those
synchronized videos.

All three versions will be provided in the TSU dataset web-
site along with the annotation and videos for each version.

3.3.5 Toyota Smarthome Trimmed Vs Untrimmed dataset

The Toyota Smarthome Trimmed dataset contains only a
single activity instance per video. In contrast, TSU dataset
is composed of untrimmed videos and these videos are in-
termixed with multiple activity instances and backgrounds.
The complexity of the problem is increased by the presence
of concurrent activities and composite activities. Learning
the dependencies across such activity instances is an im-
portant prospect for video understanding which was not
considered in the previous trimmed version of Smarthome.
Both the trimmed version and TSU feature spontaneous be-
haviours. As untrimmed videos contain multiple activities,
the degree of spontaneity is also enhanced by the dependen-
cies among the activities. For example, with spontaneous be-
haviour, the order of the elementary activities in composite
activities can vary largely in untrimmed videos. For intra-
class temporal variance, activity recognition methods on
trimmed videos can handle this issue easily by sampling a
fixed number of frames from different videos. However, in
untrimmed videos where the task involves predicting the
activity occurring at each timestamp, sampling mechanisms
could lead to imprecise detection of activity boundaries.



TABLE 2: Comparison between the two versions
of Toyota Smarthome.

Dataset Smarthome Smarthome
Version Trimmed [16] Untrimmed
Task Recognition Localization
#Classes 31 51
#Instances 16 K 41 K
#Frames 39M 13.8 M

Thus, learning an activity classifier for untrimmed videos
which is robust to intra-class temporal invariance is a real-
world challenge and is often ignored in trimmed scenarios.
Concerning data size, as shown in Table 2, TSU is 1.6 times
larger in terms of activity classes compared to the previous
version of the dataset, 2.8 times larger in terms of activity
instances, and 3.5 times larger in terms of total number of
frames.

3.3.6 Benchmark Evaluation

In TSU, we define 2 evaluation protocols: Cross-Subject and
Cross-View. We provide also two evaluation metrics (frame-
based and event-based mAP). For frame-based evaluation,
we adapt the protocol of [54] to evaluate the same mAP
metric on single frames. This way of evaluating detection is
robust to annotation ambiguity. For event-based evaluation,
we adapt the protocol of [14]. This metric enables us to get a
better insight into activity detection as not biased by activity
duration.

Cross-Subject (CS): For cross-subject evaluation, we split
the 18 subjects into training and test sets. To balance the
number of videos for each activity category, we use 11
subjects for training and the 7 remaining ones for testing.
This protocol considers all the 51 activities.

Cross-View (CV): For cross-view evaluation, the training set
contains the videos from cameras 1, 3, 4, 6, 7. The remaining
cameras (2, 5) are reserved for testing. The training set
contains all the 51 activities and the testing set contains 32
activities from these two camera views.

4 THE PROPOSED BASELINE METHOD

To address the challenges in TSU dataset, we introduce an
end-to-end baseline method: Attention Guided Net (AG-
Net) for activity detection which is built upon temporal
convolutional networks [41]. An overview of the AGNet is
shown in Fig. 7. The input is the encoding of a video. The
AGNet has two principal components: a stacked dilated
temporal convolution network (SD-TCN) and an attention
module. In this work, the input to the base-network is
always the RGB frames. For attention module, the input
is another modality, such as 3D human poses or optical
flow. For simplicity, in the following, we consider the 3D
poses as the input to the attention module. The SD-TCN and
the attention module have both a 5-block structure. These
blocks have temporal convolution with increased dilation
rates setting, thus the receptive field increases exponentially.
The lower-blocks have smaller reception fields while the
higher blocks have larger receptive fields. For every block,
the pose-attention module generates an attention mask that
represents the temporal saliency of human activities in
a video. The main contribution is the attention module,
which utilizes 3D poses to generate the attention weights

10

at multiple temporal scales. We believe that 3D poses are
complementary to the RGB modality as they help filtering
the irrelevant context in the RGB frames and providing more
weight to the pertinent frames of the video.

Below, we detail the video encoding and the model
structure of AGNet.

4.1 Video encoding

Similar to most activity detection models [41], [42], [47], our
model processes the encoding of video segments. In this
work, we use state-of-the-art convolution model (i.e. 2D+T
CNN or (2+1) D+T GCN) to extract appearance features in
the video. The RGB encoding is extracted by a CNN such as
Inception [44] or I3D [33]. The pose encoding is extracted by
a GCN such as ST-GCN or 2s-AGCN [37]. We fine-tune the
3D convolution model on the training set of TSU to better
model the spatial information in this dataset.

Training: To fine-tune the feature extraction model, firstly,
we divide the video into 100-frame-long non-overlapping
segments. For the RGB modality, to tackle the camera fram-
ing challenge, we apply SSD [55] to extract the human crops
(i.e. bounding box) of the subject, and resize the crop into
224x224. For 3D poses, the subject would always be re-
projected at the center of the screen with a fixed scale by
using [49]. We then train the classification model [33], [37]
with the uni-sampled 16 frames for each segment. For the
RGB modality, we flip all the images in each segment with a
probability of 0.5. The inputs to the RGB or 3D pose convo-
lution model are the RGB human crops and corresponding
skeleton of a segment respectively. We optimize the multi-
label binary cross-entropy loss [56] to learn the parameters.
Feature extraction: To extract the features, a video is divided
into T' non-overlapping segments, each segment consisting
of 16 frames. These segments of RGB human crops or
pose sequences are sent to the fine-tuned spatio-temporal
model to extract the segment representation. We stack the
segment-level features along the temporal axis to form a
T x Cjy, dimensional video representation where 1 x Cj,
is the feature shape per segment. This video representation
denoted as Fj, is further input to the RGB or pose stream in
our architecture.

4.2 Model structure

In this section, we present the structure of the AGNet.

Our stacked-dilated temporal convolution network (SD-
TCN) is a TCN-based network. This network has 5 blocks,
each block has one 1-dimensional convolution layer, one
Hadamard product with the attention weights from the
attention module and a residual link. For different blocks,
we give different dilation rates to the convolution layer.
With these different settings in dilation, we can model local
context in the lower block and global context in higher
blocks. In our experiment, we set the kernel size (k) to 3
for all convolution layers, dilation (d;) and padding rate to
21~ thus the reception field is up to 2¢ + 1 for the i*" block.

In parallel to the SD-TCN, the attention module is
another TCN-based model. The attention module has a
similar 5-block structure as the SD-TCN, and also the same
kernel and dilation setting for the convolution inside the
block. Thus, the attention module has the same receptive
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In each block, k is the kernel size and d is the dilation.

field as the SD-TCN for each block. However, this module
uses significantly lower channel capacity to generate the
attention weights. For each convolution layer, it has a ratio
of B (8 < 1) channels for the SD-TCN. The typical value
is # = 1/8 in our experiments, which is much lower than
the SD-TCN. In the attention module, after the convolution
layer, we generate the attention map A;. A bottleneck layer
is applied as a transformation to match the channel size to
the SD-TCN. Normalizing the high number of T attention
weights with softmax leads to extremely low values, which
can hamper their effect. To avoid this, we use sigmoid
activation to generate the final attention map.

As shown in Fig. 7, the input RGB and pose encoding are
firstly fed to the bottleneck layers. The output channel size
from the bottleneck layers is Cy and BCy, corresponding
to the SD-TCN and attention module respectively. Then 5
blocks are stacked, the set of operations in each block can be
formulated as follow:

Ffu = FiA + ReLU(COTwlD(FiA7 k,di)) M
Ai = Sigmoid(W; ReLU (Convl1D(F;* k,d;))) @)

FE, = FP + ReLU(Conv1D(FE  k,d;)) o A; 3)

where FP and F/ indicates the input feature map of the
i" block of the SD-TCN and attention module respectively.
A; is the attention mask generated from the ‘" block. o
indicates the Hadamard product. W; € RY*AC2 are the
weights of the bottleneck convolution in attention module.

Finally, we compute the per-frame binary classification
score for each class (i.e. prediction logits). The classifier is on
top of the SD-TCN, which is another bottleneck convolution
with sigmoid activation:

P = Sigmoid(W FP) (4)

where P € RTX% are the prediction logits and W oe
RC*C2 are the weights of the bottleneck convolution, Cs
corresponds to the number of activity classes. To learn
the parameters, we optimize the multi-label binary cross-
entropy loss [56].

5 EXPERIMENTS

The goal of these experiments is to verify that the
TSU dataset provides novel challenges that are not yet
addressed by the other state-of-the-art datasets. For that,
we show that the state-of-the-art detection methods perform
poorly on TSU and that our AGNet significantly improves
the results on TSU as it is designed to address the tar-
geted real-world challenges. To evaluate the effectiveness
of the AGNet, we compare it on TSU dataset with 9 detec-
tion methods, which represent the state-of-the-art on other
densely-annotated datasets [9], [13]. We also perform a com-
parative study between TSU and the challenging Charades
dataset for the activity detection task to better highlight how
real-world challenges are addressed by both datasets.

5.1 Implementation details
5.1.1 Video encoding

We use three types of encoders to extract the encoding of
the input videos. As described in section 4.1, AGCN [37]
and I3D [33] are fine-tuned on TSU and then the features
are extracted. Moreover, we also evaluate this dataset on
per-frame features. We use Inception V1 [44] pre-trained on
ImageNet [57] to extract the features. The channel size of
I3D and Inception is 1024, the channel size of AGCN is 256.

5.1.2 State-of-the-art methods

Nine activity detection methods are evaluated on our
dataset: bottleneck, Non-local network [39], LSTM [58],
Bidirectional-LSTM [59], Dilated-TCN [41], R-I3D [34], Su-
per event [42], TGM [47] and MS-TCN [43]. Bottleneck
has only one dropout layer (with dropout probability 0.5)
and a bottleneck layer as the classifier. Non-local [39] has
one non-local block applied on the features of the whole
video before the classifier. LSTM [60] has one LSTM layer
with 512 hidden units and one dropout layer (with dropout
probability 0.5). Similarly, for Bidirectional-LSTM [59], we
have two opposite direction 512 hidden units LSTM layers.
The features are concatenated before the classifier. R-I3D [61]
uses I3D [33] as its base network. We set the anchor scale
value to [0.3, 0.6, 1.0, 1.5, 2, 2.5, 2.75, 3, 3.5, 4, 4.5, 5, 5.5,
6,6.5,7,75, 8,10, 12, 14, 16, 18, 20, 24, 28, 32, 38, 42, 50,
58, 66, 78, 84, 90, 96]. For TGM [47], we add one layer



to have a 4-layer structure. All the methods use the same
video encoding as the AGNet and they are trained with
binary cross-entropy loss with sigmoid activation [56]. The
unspecified parameters are similar to the original papers.

5.1.3 AGNet

We set N = 6 blocks. For I3D and Inception features, the
channel size is 1024, for AGCN pose features, the channel
size is 256. C'y is 512 and 3 is 8. We use Adam optimizer [62]
with an initial learning rate of 0.001, and we scale it by a
factor of 0.3 with a patience of 10 epochs. The network is
trained on a 4-GPU machine for 300 epochs with a mini
batch of 32 videos for Charades and 2 videos for TSU.

5.2 Comparative study on TSU

Table 3 provides the results of the considered activity detec-
tion methods on the fine-grained version of TSU. To be no-
ticed, the Bottleneck used for comparison is a Bottleneck on
top of the segment-level features. Unlike the other methods,
Bottleneck does not have further temporal processing after
the video encoding part. Thus, this method cannot model
long temporal information, which is crucial for activity
detection. In contrast, the other activity detection baselines
focus on the temporal processing. The improvement over
the Bottleneck reflects the effectiveness of modeling tempo-
ral information.

TABLE 3: Per-frame mAP (%) on the Fine-

grained TSU dataset.

cS Cv
o = AGCN+Bottleneck [37] 10.1 126
g A | AGCN+LSTM [60] 170 14.8
« AGCN+SD-TCN 262 224
Inception+Bottleneck [44] 115 52
8 | Inception+LSTM [60] 132 53
Inception+SD-TCN 223 121

R-I3D [61] 8.7 -
I3D(Trimmed)+Bottleneck [33] 74 4.3
13D+Bottleneck [33] 157 9.2
E‘S I3D+Non-local block [39] 16.8 9.6
~ = I3D+Super event [42] 172 109
A | BD+LSTM [63] 26 129
o I3D+Bidirectional-LSTM [59] 245 15.1
13D+Dilated-TCN [41] 251 139
I3D+MS-TCN [43] 259 13.1
I3D+TGM [47] 26.7 134
I3D+SD-TCN 29.2 183
RGB+Pose | AGNet 33.2 232

5.2.1 Ablation & Data modality on Fine-grained TSU

In this section, we conduct the ablation and data modality
analysis on the fine-grained version of the TSU. In Table 3,
we firstly compare the three different video encodings:
AGCN pose features, inception RGB features and I3D RGB
features. We conduct the experiments on the Bottleneck,
LSTM and the AGNet. The AGNet is the SD-TCN (RGB)
guided by a attention module (pose). On one hand, we
observe that using I3D RGB features improves the detec-
tion results by up to 11.1% w.r.t. the same method using
Inception features. This improvement is intuitive because
of the higher ability of the 3D convolutional operations
to capture spatio-temporal relations using several datasets
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TABLE 4: Event-based mAP (%) for different IoU
thresholds for the Fine-grained TSU dataset. The
AGNet utilizes both pose and RGB modalities and
the other methods utilize only RGB.

CS Ccv
IoU Threshold (0) 03 [ 05 (07| 03 |05]07
Bottleneck [33] 5.0 25 | 05 23 | 1.1]02
Non-local block [39] 49 22 | 0.6 16 | 07 | 0.1
Super event [42] 57 | 28 [ 07 ] 1.8 | 09| 0.1

LSTM [60]
Bidirectional-LSTM [59]

116 | 64 | 22| 60 | 3207
133|179 | 35| 90 | 54|12
Dilated-TCN [41] 128 | 69 | 3.0 | 58 | 3308
MS-TCN [43] 132 | 76 |30 | 53 | 31|04
TGM [47] 151 | 94 | 42 || 55 | 32|04

AGNet 227 [ 153 [ 6.0 [ 125 [ 7.8 | 2.9

for pre-training. On the other hand, we find that, while
using the same method, 2D+T RGB features perform better
than pose features in Cross-Subject protocol. However, pose
features perform better than RGB features in Cross-View
protocol (+4.1% for SD-TCN). This reflects that 3D skeleton
is more stable while changing viewpoints, which is very
helpful in multi-view settings as in TSU. Finally, for the
AGNet: SD-TCN (RGB) guided by pose attention module,
outperforms RGB and pose SD-TCNs for both CS and CV
protocol (+4.0% and +4.9% w.r.t RGB SD-TCN for CS and
CV protocol respectively).

We then show that the method trained on the trimmed
version (i.e. I3D(Trimmed)+Bottleneck) fails to generalize to
the untrimmed version. Firstly, we train an I3D model with
the trimmed version of TSU (51 class version). Secondly,
we leverage a sliding window framework to utilize the
I3D model to predict the activity class for each window,
in which the classifier is fine-tuned for the frame-level
activity detection task. Note that I3D (Trimmed)+Bottleneck
is very close to the I3D+Bottleneck model. The difference
mainly lies in the I3D training process. For this baseline
I3D (Trimmed)+Bottleneck, I3D is trained with the clipped
activity instances, whereas 13D + Bottleneck is trained with
random snippets that may include activity instances or even
a mix of activities and background. From Tab. 3, we find
that this baseline trained on the trimmed version under-
performs in detecting activities in TSU. This is due to the
lack of contextual relationships present among the activity
instances in the trimmed version and hence the baseline fails
to generalize over the untrimmed scenario.

Inspired by Charades [13], to understand the relation
between the number of activity samples and performance,
Fig. 8 illustrates AP for each activity. In this figure, the
activity classes are sorted by the number of available sam-
ples, together with the name of best performing classes. The
number of samples in a class is primarily decided by the
universality of the activity (can it happen in any scene), and
if it is typical of household environments. It is interesting
to notice that, while there is a trend for activities with a
higher number of examples to have higher AP, it is not true
in general. Activities such as breakfast, and get water have
top-10 performance despite being represented by only few
examples.

To understand the advantages of 3D skeleton and RGB
modality, in Fig. 9, firstly, we select the top 10 activities
where 3D skeleton stream outperforms RGB stream in CV
protocol. We find that 5 out of the 8 pose-based activities
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Fig. 8: Average Precision for the activities in Fine-grained
TSU. The classes are sorted by their size. The mAP is marked
by a red line. We can see that while there is a slight trend for
smaller classes to have lower accuracy, many classes do not
follow that trend.
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Fig. 9: Frame-based mAP of the AGNet using different
modalities: (1) Top 10 activities where the 3D skeleton
stream outperforms the RGB stream for the CV protocol.
(2) Top 10 activities where the RGB stream outperforms the
3D Skeleton stream for the CS protocol.
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that we defined in Fig. 4 (4) are in these top 10 activities. This
confirms that 3D skeleton stream has filtered the unneces-
sary context information in the image, resulting in a better
model for the posed-based activities. Secondly, we select the
top 10 activities where RGB stream outperforms 3D skeleton
stream in CS protocol. We find 7 out of 10 activities are
the similar activities with different objects that we defined
in Fig. 4 (5). This confirms that RGB stream provides the
object information lacking in 3D skeleton, which is critical
to detect the activities highly correlated with objects. Finally,
we show that, while using our attention-based baseline,
we can handle both challenges of pose-based activities and
similar activities involving different objects.

In Fig. 10, we present the attention map of the attention
module for 5 layers (on top), and the corresponding ground
truth vs. activity detection results (on the bottom). On the
one hand, in area (A), while detecting short activities, the
attention module allocates high attention weights at the
lower layer, corroborating that the lower layer is particularly
sensitive to short activities. On the other hand, in area (B),
with long activities (e.g.Read book), only the higher layers
allocate high attention weights to the frames in the kernel.
This reflects that the higher layers are more sensitive to long-
term activities.

In summary, we find that the available modalities in
TSU are complementary. The AGNet leverages these modal-
ities to address the challenges in TSU such as multi-views,
pose-based activities and similar motions.

5.2.2 Analysis on Balanced TSU

For Balanced TSU, we evaluate the performance of SD-
TCN in per-frame mAP with Cross Subject split. In table 5
we find that for the three baseline methods, the model
trained with the Balanced annotation can achieve higher
performance compared to the fine-grained version. This en-
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Fig. 10: Qualitative analysis of the detection result and the
attention map. On the top, we visualize the attention map
A; for 5 layers. On the bottom, we present the corresponding
ground truth and detection performance for an example
video.
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Fig. 12: We compare the AGNet against the Bottleneck ap-
proach across three different activity properties using both
RGB and Pose modality. Evaluation is provided on frame-
based mAP on TSU-CS. The Bottleneck performs poorly on
all these types of activities, whereas the AGNet improves
the performance on all of them.

courages the network to learn the pertinent motion patterns
relevant for an action rather than the fine-grained details
(like low resolution objects involved) from small number of
action instances.

5.2.3 Analysis on Joint-view TSU

With the synchronized video pairs, we study the effect of ac-
cessing synchronized multi-view videos towards improving
the activity detection performance. Firstly, we utilize 13D
to extract the spatio-temporal features of the videos, then
SD-TCN is applied on top of those 13D features to perform
activity detection. View 1 and View 2 indicate the two views
for the synchronized videos. Figure 13 shows the experi-
mental design. On the top, we show the baseline of the
mixed-view activity detection: SD-TCN is trained with a
mixture of the synchronized videos for the activity detection
task for both training and testing. On the bottom, we show
the joint-view activity detection baseline: both videos from
the synchronized video pairs are fed to two SD-TCNs, then
the prediction scores are fused to have the prediction for
combined views. The number of training videos is the same
as the mixed-view activity detection. The difference is that
the joint-view baseline inputs two synchronized videos at
a time. Moreover, we adopt the proposed baseline AG-Net



TABLE 5: Balanced TSU. Evaluation for the cross-subject split
with per-frame mAP.

Fine-grained TSU  Balanced TSU
I3D+Bottleneck [33] 15.7 17.1
I3D+TGM [64] 26.7 29.0
I3D+SD-TCN 29.2 35.8
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Fig. 13: Joint-view activity detection. Each colorful small
dots indicates an I3D feature representation of an
untrimmed video. A red and a blue dots form a pair of
synchronized videos.

for the joint-view activity detection. In this experiment, the
inputs to AG-Net are the synchronized videos with the same
modality. In table 6, we find that training the network with
joint-views can boost the performance with a large margin
(+ 3.4%, +4.6% w.r.t. mixed-view baseline), especially for the
AG-Net baseline.

5.2.4 State-of-the-art comparison

In Table 3, we compare the performance of the 9 con-
sidered methods on Fine-grained TSU. The comparative
study is conducted with the I3D RGB features. The first
method is a proposal-based method that adopts R-C3D [61]
with I3D base network (we call this method R-I3D). This
method fails to generate precise proposals for long activities
with dense labels due to high computational cost. Conse-
quently, it yields the worst detection performance on Fine-
grained TSU. The second and the third methods are the
Bottleneck [33] and the Non-local block [39]. We find that
the non-local block can provide the information of one-
to-one temporal dependency to the local features (+ 0.9%
w.r.t. Bottleneck on TSU-CS), however, Non-local block is
not effective enough. Similarly, Super-event [42] utilizes
temporal structure filters to model latent representation of
composite activities and then compute their affinity with
each frame (+ 4.2% w.r.t. Bottleneck on TSU-CS). However,
videos in Fine-grained TSU are long and complex, thus it is
hard to model latent representation of composite activities
in this dataset. We need the temporal filter to gradually
embed the information of the local frames to the current
frame. LSTM [60] and Bidirectional-LSTM [59] are RNN
based methods. These methods can model short temporal
relations (up to +8.8% w.r.t. Bottleneck on TSU-CS), but fail
to model the long temporal relationships in the complex
activities of TSU. Dilated-TCN [41], TGM [47], MS-TCN [43]
use temporal Gaussian/Convolutional filters which better
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TABLE 6: View 1 and View 2 indicate the two views
for the synchronized videos. Different settings are
evaluated by SD-TCN with per-frame mAP in Cross-
Subject split.

Setting Input mAP
Mixed view View 1, View 2 35.5
Joint View - Late Fusion View 1, View 2 38.9
Joint View - AG-Net View 1, View 2 40.1

capture the temporal relationships in long activities (up to
+13.5% w.r.t. Bottleneck on TSU-CS). Thanks to the effect
of temporal filters, these methods can process long-term
temporal relations. Similarly, our proposed method lever-
ages 3D poses to generate the attention weights at multiple
temporal scales, which help to detect the activities with
variable temporal length and from multi-views. As a result,
the AGNet outperforms all the state-of-the-art methods by
a significant margin (+17.5% w.r.t. Bottleneck on TSU-CS).

In Fig. 11, we show qualitative visualization results of
three model predictions. In this video, there are one com-
posite long activity and 5 elementary activities. We notice
that our AGNet can better tackle the long-term temporal
relations, detecting the composite activity and the related
elementary activities simultaneously. Additionally, the AG-
Net provides better detection for both elementary (e.g. wipe
table) and composite activities (e.g. Clean dishes) compared to
I3D and LSTM. However, the detection precision is not suffi-
cient, more work is needed to design better models to detect
both composite and elementary activities in untrimmed
videos.

In Fig. 12, we compare the performance across 4 differ-
ent activity properties of the AGNet and Bottleneck using
both RGB and pose modalities (i.e. I3D+AGCN). Bottleneck
layer is the baseline reflecting the quality of the feature
without temporal processing. Thus, the comparison with the
Bottleneck can reflect the improvement from our proposed
methods and the remaining open issues on Fine-grained
TSU. In Fig. 12 (1), we observe that the AGNet significantly
improves the detection of pose-based activities compared
to Bottleneck. However, the AGNet does not tackle so well
similar motion and subtle motion activities. In Fig. 12 (2),
we show that longer activities are easier to recognize than
shorter ones, similarly to [65]. The consistent performance
gain of the AGNet for activities with different temporal
duration corroborates its effectiveness to adapt to temporal
dynamics. Finally, we show for the AGNet the improvement
in the detection of all activities, even of the ones with small
numbers of training samples. We are not applying specific
measures in the AGNet to handle this issue. Adopting
strategies like class-weighting, optimizing through focal loss
could be explored in future work.

In table 4, we present the event-based evaluation of
the detection methods. The AGNet provides more precise
predictions than the state-of-the-art methods. However, all
these performances are relatively low, indicating that cur-
rent methods are far from addressing real-world conditions.

5.3 Comparative analysis between TSU & Charades

The results of the activity detection methods on different
datasets provide us valuable insights into the key prop-
erties of the datasets themselves. Closely related to TSU,



Fig. 14: SSD & Center crops

TABLE 7: Address the camera framing challenge

Fine-grained TSU-CS Charades

Human Center Human Center
I3D + Bottleneck [33] 15.7 10.8 15.8 15.6
I3D + Super event [42] 17.2 12.1 18.4 18.6
13D + AGNet 33.2 26.9 22.9 22.8

we choose the Charades dataset to perform a comparative
study. Both datasets focus on daily living activities. They
are densely annotated containing many concurrent activities
and object-based activities. However, these datasets differ
on several points. (1) In Charades, due to the self-recorded
video settings, the activities are fast and the camera framing
is high, and as a consequence, the subject is always in the
center of the camera view. In contrast, in TSU, the subjects
performing the activities have high spontaneity leading to
higher intra-class variability and lower camera framing (see
Section 2.1). (2) In Charades, the larger number of activity
classes originates from the combination of only 33 verbs
with different objects (e.g. “holding some food”, “holding a
sandwich”). In comparison, the 51 activities in Fine-grained
TSU originate from 35 different semantic verbs. Therefore,
the Charades dataset has more activity classes relative to
objects while having less semantic verbs of daily living
activities. (3) TSU has longer videos (20 mins on average),
compared to the on average 30 second clips in Charades.
As a result, Charades does not have long activities, and the
temporal variance of activity instances is low in this dataset.
Fig. 15 presents the temporal duration of activity instances
in Charades and Smarthome. We find that Smarthome has
larger scope and higher temporal variance for the activity
duration.

To first quantify the level of camera framing in TSU as
compared to Charades, we evaluate three baseline methods
trained /tested using crops around the human body or crops
in the middle of the images (Fig. 14). The crops around
the human body are extracted using SSD [55]. The results
are reported in Table 7. To evaluate the performance on
Charades, we measure the frame-based mAP for activity
detection [42], [47], [54] using the settings described on the
dataset’s website. For Charades, the methods using human
crops and center crops obtain similar results, suggesting that
Charades has high camera framing—that is, the subject in
the videos is usually centered within the frames. On the
other hand, in TSU, the use of human crops improves per-
formance significantly (nearly +6%). Indeed, TSU has low
camera framing—that is, subjects often perform activities at
the image borders.

We also compare our Attention Guided Net with the
state-of-the-art on Charades. Note that, as poses are not
provided, we utilize optical flow as the input of the at-
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104 Charades
Smarthome

Fig. 15: Histogram of activity instance duration in
Smarthome and Charades. X axis represents the duration,
Y axis represent the number of instances in log scale.

tention module. Table 8 shows that our proposed method
outperforms the other methods (+ 0.6% w.r.t. TGM + Super
event using both RGB + Flow). However, due to the different
properties between TSU and Charades, the improvement of
our multi-temporal scale attention mechanism on Charades
is not as significant as on TSU. Firstly, the unnatural low
variance of the activity duration in Charades limits the need
for the multi-temporal scale structure of SD-TCN. Secondly,
there are many activity classes with a similar motion with
different object information in Charades. The attention mod-
ule utilizes complementary modality information to guide
the SD-TCN. The pose or optical flow can provide salient
motion patterns, but not the object details, which limits the
improvement yielded by the attention module.

To summarize, both Charades and TSU are challenging
datasets. Their challenges are complementary. Charades
dataset focuses more on the environment diversity, whereas
TSU focuses on the spontaneity of activities (increasing
the intra-class variance) and on the temporal relationships
between composite and elementary activities (increasing the
activity complexity).

TABLE 8: Per-frame mAP (%) on Charades, eval-
uated with the Charades localization setting.
Note: cited papers may not be the original paper
but the one providing this mAP results.

Modality mAP
RGB + Flow 8.9
RGB + Flow 9.6

Two-stream [54]
Two-stream+LSTM [54]

R-C3D [61] RGB 12.7
Asynchronous Temporal Fields [54] RGB + Flow  12.8
13D [42] RGB 15.6
13D [42] RGB + Flow  17.2
I3D + 3 temporal conv.layers [47] RGB + Flow 175
TAN [66] RGB + Flow  17.6
I3D + WSGN (supervised) [67] RGB 18.7
13D + Stacked-STGCN [68] RGB 19.1
I3D + Super event [42] RGB + Flow 194
13D + 3 TGMs [47] RGB + Flow  21.5
I3D + 3 TGMs + Super event [47] RGB + Flow 223
13D + SD-TCN RGB 21.6
13D + AGNet RGB + Flow 229

6 CONCLUSION

In this paper, we propose the Toyota Smarthome
Untrimmed dataset, a novel untrimmed video dataset, that



features spontaneous behaviours and several other real-
world challenges for activity detection. This dataset includes
three versions: (1) Fine-grained TSU, (2) Balanced TSU
and (3) Joint-view TSU. Each version addresses a specific
interest regarding the targeted activity detection task. We
conduct a comparative study with other activity detection
datasets, and highlight the added value of TSU dataset,
w.rt. activity diversity, camera framing, dense annotation
at two levels (i.e. composite and elementary activities) and
high variation of activity duration. For instance, regarding
activity diversity, TSU contains a balanced number of activi-
ties characterized by specific poses, by complex interactions
with objects, by subtle and similar motions. Moreover, the
appearance of these activities can vary a lot according to the
subject behaviour, the camera view point, occlusion level
and type of environment. We provide a set of statistics to
better quantify TSU contributions.

We also propose a baseline method to address some
of these real-world challenges. For instance, for dealing
with low camera framing, we use human crops to extract
features that are more relevant to the activities. For deal-
ing with large temporal variance, the attention module
generates attention masks at different temporal scales to
help detect activities with different temporal lengths. For
multi-view challenge, we use both RGB and 3D skeleton
to better tackle the view variance problem. We show that
our baseline significantly outperforms the state-of-the-art
on all the evaluation protocols of TSU. We evaluate the
proposed method on the Charades dataset, showing that
also on this dataset, our baseline achieves state-of-the-art
results, thus confirming its effectiveness. The fact that the
overall performance on TSU is still rather low, indicates that
some of the issues related to real-world conditions are still to
be tackled and that there is still room for improvement. As
future work, we plan to leverage the multiple modalities
in the training phase while using only RGB at inference
time. We also plan to investigate the long-tail distribution
challenge. Besides, we plan to explore the relations between
composite and elementary activities. For example, we envis-
age to train with composite activities in order to predict the
elementary activities in a weakly supervised manner. The
TSU dataset has just been released to public for academic
research purposes!. This will allow researchers to develop
novel approaches to promote activity detection in the wild.
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