

Scalable Video Transmission for a Surveillance System

Tomi Räty
VTT Technical Research

Centre of Finland

Lassi Lehikoinen
VTT Technical Research

Centre of Finland

Francois Bremond
Institut National de

Recherche en Informatique
et en Automatique

Abstract
The Area of Interest (AoI) is a distributed scalable video
transmission subsystem, for a surveillance system, which
concentrates on decrementing the amount of video
information transmitted to the end-user equipped with a
mobile device. The video information is processed by the
Video Surveillance Intelligent Platform (VSIP) to
discriminate the essential images of the indoor area under
stationary video surveillance. The AoI system analyzes the
output of the VSIP’s images and eXtended Markup
Language (XML) image information. The AoI system is
able to define and extract the essential information, e.g., a
tracked individual, and it transmits only this image to the
end-user. First, the AoI transmits the entire image of the
indoor area to the mobile device of the end-user. Then,
the AoI system transmits only the secluded tracked
objects’ images to the mobile device. The end-user’s
device portrays the scaled portrait images of the targeted
object on top of the background image. The AoI system
endeavors to decrease the size of the video images
transmitted to a smart phone over a wireless network and
to retain the comprehension of a tracking situation. The
operability of the constructed prototype indicates that this
endeavor is attained. The research is based on the
constructive method of the related publications and
technologies and the results are derived by the
implemented AoI system.

Key Words- Multimedia communication, cooperative
information systems, intelligent sensors, mobile
communication, and multimedia systems.

1. Introduction

Video surveillance has become a ubiquitous aspect of
the modern urban landscape [1]. Video surveillance is a
significant market [2]. The systems must be network-
connected, entail multiple cameras, and the complete
system has to be reliable and robust [2]. Video
surveillance applications must be real-time, which entail
low delay and timing constraints for processing [2].
Target detection and tracking is a fundamental technology
to develop real-world computer vision systems [3].

The Area of Interest (AoI) system comprises of the
AoI server and the AoI client. The AoI server resides in a
desktop and the AoI client resides in a surveillance
personnel’s mobile device. The AoI server utilizes images
and eXtended Markup Language (XML) files, containing
image information, that are received from Video
Surveillance Intelligent Platform (VSIP). The images are
snap-shots from a stationary camera of a surveyed indoor
area. The XML files contain information about the
tracked entities of the surveyed indoor area. This
information includes the location of the tracked entity on
the snap-shot image. During the initial transmission from
the AoI server to the AoI client, one entire image of the
surveyed indoor area is transmitted. This image is utilized
as a background image by the AoI client and it is
displayed on the security personnel’s end-device. After
the first image transmission, the AoI server distinguishes
the tracked image from each image received from the
VSIP. The AoI server extracts the tracked object from
each image and the extracted image is transmitted to the
AoI client. Upon reception of an extracted image, the AoI
client displays the extracted image on the correct location,
i.e., where the tracked object actually resides, of the
background image. This procedure of extracting the
tracked object by the AoI server, transmitting it to the AoI
client, and displaying the extracted image at the correct
location of the background image is conducted until the
AoI system is shut down. By extracting the tracked object
from the image and forming an extracted image decreases
the amount of information required to be transmitted to
the end-device.

The intent of the AoI system is to ultimately abate the
quantity of information required to be transmitted to the
security personnel while retaining all the required
information for the security personnel to be fully
cognizant about the surveyed indoor area. The operability
of the constructed AoI system prototype indicates that this
endeavor is attained.

The structure of this paper is the following. First a
general overview of contemporary video monitoring is
presented. Then a concise presentation of the VSIP is
rendered. This is followed by a presentation of the
implemented AoI system, containing detailed information
regarding the structure of the AoI system and the

transmission paradigm of the AoI system. The conclusion
denotes the image subsidization in examples and
summarizes the paper.

2. Video monitoring

Video monitoring typically deploys multiple video
cameras, channeling video signals to a central monitoring
room, where multiplexing is utilized to render a subset of
the images to security personnel [1]. Modern video-based
surveillance systems utilize real-time image analysis
techniques for efficacious image transmission and event-
based attention focusing [4].

Object tracking is an essential task for many
applications in the region of video surveillance. Every
detected object is tracked and their trajectories are
analyzed to derive their movement in the scene. Detected
objects are recognized and their behavior is analyzed to
verify if state is potentially dangerous or normal. [5]

2.2. Situation awareness

The key factor to security is situation awareness,
which requires information and spans multiple scales of
space and time [6]. Multi-scale techniques evoke a
completely novel region of research, in addition to
challenges in performance modeling and evaluation [6].
Visual surveillance in dynamic scenes endeavors to detect
and track certain objects from image sequences, and to
understand object behaviors [7]. The goal of visual
surveillance is to achieve the plenary surveillance task as
automatically as possible [7].

2.3. Middleware

Enabling a group of video surveillance algorithms to

cooperate in the monitoring of a large surveillance
network presents substantial challenges [8]. Middleware
can assist with the general aspects of video surveillance
network construction, containing support for
communication and computation [8]. The drawbacks in
many current video surveillance systems contain lower
Quality-of-Service (QoS) in video transmission. [9]

Researchers concentrate mainly on the vicissitude of
content comprehension, e.g., detecting and tracking. They
have not heeded the scalability of video surveillance
systems. They typically utilize a centralized architecture
and posit the required system resources. [10]

Digital surveillance systems disclose restrictions
regarding delay and visual quality that pose demands on
the video codec. Flexible composition of the compressed
video data is required. In a large surveillance system, the
digital network enables interconnected LANs with distinct
bandwidths and QoS. [11]

3. Video Surveillance Intelligent Platform

A demanding problem in the domain of computer
vision and artificial intelligence is video comprehension.
The first step utilizes typically extensive usage of
methods for data analysis while the second step conducts
structural analysis of the symbolic data collected at the
antecedent step, as Figure 1 illustrates. [12]

Figure 1. A generic architecture of a video
comprehension system. [12]

This approach is available as a platform for image

sequence comprehension named VSIP. VSIP has been
developed by the research group ORION at INRIA
(Institut National de Recherche en Informatique et en
Automatique), Sophia Antipolis. VSIP is a generic
environment for amalgamating algorithms for processing
and analysis of videos which enables to combine and
exchange miscellaneous techniques at different stages of
the video comprehension process. VSIP is oriented to
assist developers depicting their own scenarios and
systems capable of monitoring behaviors, dedicated to
specific applications. [12]

VSIP elicits primitive geometric features, such as areas
of motion. Objects are then recognized and tracked. At
the second level the events, in which the detected objects
participate, are discriminated. To perform this task, an
event description language is used. [12]

4. Area of Interest system

The intention of the AoI (Area of Interest) system is to
transmit merely the important dynamic video image
information, gathered from a surveillance point by a
stationary camera, to a mobile device. The static
information, a.k.a. the environment background of the
video images, is transmitted only once during inception.
The system sequesters the essential objects from .jpg
images and sends the separated objects to a mobile
device. In the Figure 2, a moving object is traced from a

surveillance camera perspective. The traced object is
extracted from the background as depicted in the Figure 3.
Finally, the traced object and its deployment pixel
coordinates, meaning the coordinates of the traced object
in the whole image, are transmitted to a mobile device
which displays it at the right location on the screen. The
end-device view of the extracted image placed on the
background image is presented in Figure 4. When the AoI
system is executing, the outcome at the mobile device is a
continuous video stream in which only the traced dynamic
areas are received from the server via a network
connection and merged into the background. The mobile
device is the Nokia N95 phone, equipped with S60 3rd
Edition SDK for Symbian OS 9.2, Supporting Feature
Pack 1. The server’s software is implemented in Windows
XP OS utilizing Microsoft .NET Framework SDK v2.0.

Figure 2. A traced dynamic object segregated by
a square.

Figure 3. A traced dynamic object extracted from
the static background.

Figure 4. View from the end-device. The object

images are placed on the background image.

4.1. The server structure of the AoI system

The software components of the AoI server are
delineated in Figure 5. The main components are the
following: 1) AoIMain, 2) ImageSender, 3) XMLParser
and 4) ImageProcessor. The AoIMain component is the
main executable, which has the responsibility of
controlling all the components. The ImageSender
component is employed for establishing TCP/IP socket
communication with AoI client(s) and sending images
through the connection. The XMLParser component is

responsible for parsing the .xml file containing object
tracing information. The ImageProcessor component has
the responsibility of separating traced objects from the
background environment. The separation is exerted with
the .jpg images.

Figure 5. The component diagram of the AoI
server.

After the activation of the AoI server, initialization
procedures are executed. All the appropriate class
instances are created and a listening socket is established
for a remote client connection. Once a client has
connected to the server, the server’s ‘Start’ method is
called and the main functionalities begin. If the server is
transmitting objects for the first time, the environment
background image is sent by the server. The server parses
the frame elements from the .xml file, which contains the
object tracing data. After that, the image objects are
respectively separated from an image file. Next, the
separated objects are transmitted to the client through the
socket connection. This procedure is repeated until the
.xml file is processed completely. When the file is
processed to the end, the AoI server is suspended and de-
initialized.

4.2. The client structure of the AoI system

The software components of the AoI client are rendered
in Figure 6. The main components are the ensuing: 1) UI,
2) ImageConverter, 3) ImageViewer and 4)
SocketCommunicator. The UI component is used for user
interactions. Additionally, the UI component controls the
ImageConverter, ImageViewer and SocketCommunicator.
The ImageConverter converts the 8-bit image descriptors,
received from the server, into bitmaps which are
displayable on the end-device’s screen. The ImageViewer
component is responsible for joining the bitmaps of the
separated image objects and the background environment
bitmap into one merged view, which may be displayed on
the screen of the end-device. The SocketCommunicator
component is employed in receiving images and control
messages from the AoI server via TCP/IPv4 socket
connection.

Figure 6. The component diagram of the AoI
client.

After the launch of the AoI client application,
initialization procedures are exerted. All the appropriate
class instances are created and a socket connection to the
AoI server is formed. Once the client has connected to the
server, it receives a background image and an instruction
message indicating if the background was successfully
transmitted. Then the background is displayed on the
screen. Next, the client receives separated image objects
and coordinate instruction messages from the server. The
separated images are displayed on top of the background
image. When the client receives an instruction message
indicating the frame was sent successfully, the client
clears the screen from the previous separated objects, and
the client prints the background image again to the screen.
If a human user presses the “Exit” button from the user
interface, the application exits, de-initializes and shuts
down.

4.3. The AoI server’s main execution sequence

The AoI server reads the .xml file, separates traced
dynamic objects from the images and transmits objects to
the AoI client. See Figure 3 for an example of a
transmitted object. As preconditions to the AoI server
execution sequence, the AoI client has already connected
to the server and the AoI server has XML file with the
object tracing data and the corresponding .jpg image files.
Description of sequence’s events, illustrated in Figure 7:
1. The Start() function is called when an AoI client has
connected to the server.
1.1 The OpenXMLFile() function opens the .xml file for
reading operations.
1.2 The ParseNextXMLFrameContent() function parses
next frame element from the .xml file and stores the
content to a CXMLFrameContent object.
1.2.1 The CXMLFrameContent object reference is
returned.
1.3 The SeparateObjectsFromImage() function is called.
The function secludes traced dynamic objects from a .jpg
image. The function receives the CXMLFrameContent
object reference as a function parameter.
1.4 The SendObjectsToClient() function transmits
separated dynamic objects images to the AoI client.
Additionally, after transmitting an image, the server
transmits a deployment coordinate instruction to the
client. When all the objects and coordinate instructions
are transmitted, the server sends an instruction to the
client denoting that all the objects of the frame are sent.

Figure 7. The AoI server execution sequence
diagram.

The outputs of the AoI server are the image files of the
separated dynamic objects. The separated image files are
deleted from the AoI server’s file system after the sending
has executed successfully. There are two notable
exceptions regarding: 1) an addition to the step 1.4, when
transmitting image objects for the first time to the AoI
client, the background environment image and a
notification instruction of successful sending are sent.
After the first time, the background is not sent; and 2) if
the .xml file in not processed completely, sequence
restarts from the step 1.2 after the execution of step 1.4. If
the .xml file is processed entirely, Start() method returns.

4.4. The AoI server’s main execution sequence

The AoI client receives TCP packets from the AoI server.
The packets are parsed and addressed appropriately. First,
a background image is received. Then an arbitrary amount
of separated images are received. In the steps 1 – 2.1.2, a
background image is received from the AoI server. These
steps are performed only once. In the steps 3 – 4.1.2, the
separated image objects are received from the server with
appropriate coordinate instruction messages. These steps
are looped until the AoI server stops, i.e., the xml file has
been read to the end. As a precondition to the AoI client
execution sequence, the AoI server is running.

Description of sequence’s events, illustrated in Figure 8:
1. The MessageReceived() callback is called by the
CCommunicator class instance when a message is
received from the connected socket. When receiving
messages for the first time, the content of the message is
added to the background image buffer. Since the
background image can be large, the MessageReceived()
function is called often before the whole image is
completely in the image buffer. The AoI server transmits
a notification when the background image is successfully
sent to a client. Upon reception of the notification, step
1.1 is executed.

1.1 The ConvertDesL() function is called to convert the
serialized 8-bit background image buffer into bitmap
image which can be displayed on the devices screen.
2. The ConversionComplete() function is called after the
image conversion is ready.
2.1 The SetBitmap() function sets the converted bitmap
for the CAoIAppView object.
2.1.1 The Draw() function is called. It displays the
converted bitmap, in this case the background image, on
the end-device’s screen. Now the background is displayed
successfully on the screen. Then the server begins to send
the separated image objects.
3. The MessageReceived() callback is called by
CCommunicator class instance. It is called as many times
as required until the whole separated image is stored into
the image buffer. When the AoI server has transmitted the
whole separated image, it transmits a coordinate
instruction message to a client. This message contains the
deployment coordinates for the separated images and the
image length for a validation check at the client side.
3.1 The ParseXCoordinate() is called to parse the X
coordinate from the coordinate instruction message. This
value is stored into a variable.
3.2 The ParseYCoordinate() is called to parse the Y
coordinate from the coordinate instruction message. This
value is stored into a variable.
3.3 The ParseImageLength() is called to parse the image
length from the coordinate instruction message. This
value is stored into a variable.
3.4 The SetImageTopLeftX() function is called to set the
X coordinate value for the CAoIAppView class instance.
3.5 The SetImageTopLeftY() function is called to set the
Y coordinate value for the CAoIAppView class instance.
3.6 The ConvertDesL() function is called to convert the
serialized 8-bit image buffer into a bitmap image which
can be displayed on the devices screen.
4. The ConversionComplete() function is called after the
image conversion is ready.
4.1 The SetBitmap() function can be called now, when the
coordinates of the separated image has set to the
CAoIAppView class instance.
4.1.1 The Draw() function is called. It draws the separated
image object at the correct coordinates. The image is
added onto the background image.

Figure 8. The AoI client execution sequence
diagram.

There are two notable exceptions regarding: 1) if the AoI
server is not running, then the client initialization fails and
application does not start; and 2) in step 3, if the AoI
client receives an instruction message indicating that a
whole frame content has been transmitted, the background
image is printed on the display again before adding the
separated objects into it. In this manner, the screen is
“cleared” from the previous separated objects.

5. Conclusion

Video surveillance is an important branch in the field
of surveillance. With the utilization of advanced video
surveillance tools, such as VSIP, it is possible to
distinguish images of tracked objects. By abating the
amount of image information that needs to be transferred,
the images can be transmitted faster to the end users, e.g.,
surveillance personnel. We have illustrated the
implemented design and communication how this
endeavor is attained with the AoI system.

The information and structure of the AoI system was
modeled on recent journals and conference papers
regarding video surveillance and monitoring. There are
theories demanding real-time reactivity, low delay and
timing constraints from Desurmont et al. and the
importance of situation awareness according to Hampapur

et al. which includes challenges in performance modeling
and evaluation. The AoI system attempts to reduce the
real-time challenges by subsiding the amount of image
information that needs to be transmitted. May et al. deem
that there is a requirement for the flexible composition for
the compressed video data, the AoI system decreases the
amount of image information transmitted. The AoI
applies to the May et al.’s restrictions of surveillance
applications regarding delay, complexity, security, visual
quality and QoS predicaments by scaling the image size.
This also applies to the drawbacks of lower QoS in video
transmission declared by Yan et al. Korshunov et al. state
that enough research hasn’t been contributed on
scalability of video surveillance systems. These typically
utilize a centralized architecture and posit availability of
all the required system resources, such as computational
power and network bandwidth. The AoI system endeavors
to transmit as little image information as possible while
retaining the quality of the prominent image information.

The AoI system comprises of the AoI server and the
AoI client. The AoI server processes the images received
from the VSIP tool and accompanied with the VSIP tool’s
XML an extraction of the tracked object is performed.
The AoI server transmits the images of the tracked objects
to the AoI client. The AoI client receives the entire
background indoor image in the first transmission from
the AoI server. After the first transmission, the AoI server
only transmits the images of the tracked objects. The AoI
client updates the tracked object image onto the initially
received background image. The image sizes of the
transmitted tracked objects are subsided in comparison to
their entire and original image sizes. For instance, the
entire size of Frame003 is 21 814 bytes and the size of the
images containing the extracted objects are 924 and 690
bytes. In Frame103, the size of the complete image is 21
834 bytes and the size of the image containing the
extracted objects is 624 bytes. In Frame186, the size of
the complete image is 21 994 bytes and the size of the
images containing the extracted objects are 498, 644, and
736 bytes respectively.

The intent of the AoI system is to ultimately subside
the quantity of information required to transmit the
security personnel while retaining all the required
information for the security personnel to be fully aware
about the surveyed indoor area. The operability of the
constructed AoI system prototype indicates that this
endeavor is attained.

6. Acknowledgement

We would like to sincerely thank the EU-CAVIAR
project for the utilization of the images and XML files
that were employed in this publication.

12. References

[1] Makris, D. and Ellis, T.: Learning Semantic Sense Models
from Observing Activity in Visual Surveillance, IEEE
Transactions on Systems, Man, and Cybernetics-Part B:
Cybernetics, Vol. 35, No. 3, June 2005, pp. 397-408.

[2] Desurmont, X., Bastide, A., Chaudy, C., Parisot, C.,
Delaigle, J.F., and Macq, B.: Image analysis architectures and
techniques for intelligent surveillance systems, IEE Proc.-Vis.
Image Signal Process., Vol. 152, No. 2, April 2005, pp. 224-
231.

[3] Matsuyama, T. and Ukita, N.: Real-Time Multitarget
Tracking by a Cooperative Distributed Vision System,
Proceedings of the IEEE, Vol. 90, No. 7, July 2002, pp. 1136-
1150.

[4] Foresti, G.L., Micheloni, C., Snidaro, L., Remagnino, P., and
Ellis, T.: Active Video-Based Surveillance System, IEEE Signal
Processing Magazine, March 2005, pp. 25-37.

[5] Micheloni, C., Foresti, G.L., and Snidaro, L.: A Network of
Co-operative Cameras for Visual Surveillance, IEE Proc.-Vis.
Image Signal Process., Vol. 152, No. 2, April 2005, pp. 205-
212.

[6] Hampapur, A., Brown, L., Connell, J., Ekin, A., Haas, N.,
Lu, M., Merkl, H., Pankanti, S., Senior, A., Shu, C.-F., and Tian,
Y.L.: Smart Video Surveillance, IEEE Signal Processing
Magazine, March 2005, pp. 38-51.

[7] Hu, W., Tan, T., Wang, L., and Maybank, S.: A Survey on
Visual Surveillance of Object Motion and Behaviors, IEEE
Transactions on Systems, Man, and Cybernetics – Part C:
Applications and Reviews, Vol. 34, No. 3, August 2004, pp.
334-352.

[8] Detmold, H., Dick, A., Falkner, K., Munro, D.S., van den
Hengel, A., and Morrison, R.: Middleware for Video
Surveillance Networks, MidSens’06, November 27-December 1,
2006, Melbourne, Australia.

[9] Yang, H., Xie, L., and Xie, F.: Research on Cluster Remote
Video Surveillance System, 2006 IEEE International
Conference on Industrial Informatics.

[10] Korshunov, P. & Ooi, W.T.: Critical Video Quality for
Distributed Automated Video Surveillance, MM’05, November
6-11, 2007, Singapore.

[11] May, A., Teh, J., Hobson, P., Ziliani, F., and Reichel, J.:
Scalable Video Requirements for Surveillance Systems, 2004,
The Institution of Electrical Engineers, printed and published by
the IEE, Michael Faraday House, Six Hills Way, Stevenage,
SG1, 2AY.

[12] Bremond, F., Thonnat, M., and Zuniga, M.: Video
Understanding Framework For Automatic Behaviour
Recognition, Behaviour Research Methods, Volume 28, Number
3, August 2006.

