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Abstract

The characteristics like density of objects, their con-
trast with respect to surrounding background, their occlu-
sion level and many more describe the context of the scene.
The variation of the context represents ambiguous task to be
solved by tracker. In this paper we present a new long term
tracking framework boosted by context around each track-
let. The framework works by first learning the database of
optimal tracker parameters for various context offline. Dur-
ing the testing, the context surrounding each tracklet is ex-
tracted and match against database to select best tracker
parameters. The tracker parameters are tuned for each
tracklet in the scene to highlight its discrimination with re-
spect to surrounding context rather than tuning the param-
eters for whole scene. The proposed framework is trained
on 9 public video sequences and tested on 3 unseen sets. It
outperforms the state-of-art pedestrian trackers in scenar-
ios of motion changes, appearance changes and occlusion
of objects.

1. Introduction
Multi-object tracking (MOT) is essential to many ap-

plications in computer vision. As so many trackers have
been proposed in past one would expect the tracking task as
solved. It is true for scenarios containing solid background
with low number of objects and few interactions. However
scenarios with appearance changes due to pose variation,
abrupt motion changes and occlusion still represent a big
challenge.

The object occlusion is one of the most difficult aspects
of pedestrians tracking. Several MOT frameworks have
been proposed in the past to solve this issue. These frame-
works consist of two parts the object detection followed by
the data-association based tracking. The data association is

found across the batch of frames which enable the ability to
better deal with noisy object detection such as missed/false
detection and occlusion. Depending on the length of the
batch there are two types of association local and global.

Very popular method for local data association is the
bipartite matching. The exact solution can be found via
Hungarian algorithm [11, 2]. These methods are compu-
tationally inexpensive, but can deal only with short term
occlusion. An example of global method is extension of
the bipartite matching into network flow [16, 3]. Given the
objects detections at each frame, the direct acyclic graph
is formed and the solution is found through minimum-cost
flow algorithm. The algorithms reduce trajectory fragments
and improves trajectory consistency but lack of robustness
to identity switches of close or intersecting trajectories. To
overcome the ID switches, the paper in [15] proposes global
data association using a model which is close to the real
world tracking scenario. It incorporates both motion and ap-
pearance features into generalized minimum clique graph.
They form a k-partite graph, where all the pairwise relation-
ships between detections in the video is considered. The
track of a person forms a clique and MOT is formulated
as constraint maximum weight clique problem. In order to
globally optimize the tracks, entire sequence must be pro-
vided beforehand. The weights to balance motion and ap-
pearance feature are set manually. The algorithm overcome
the identity switch for intersecting trajectories however if
the appearances of pedestrians walking in same direction
are similar, the ID-switch remains.

Another set of methods for MOT is online parame-
ter adaptation [14, 4]. They tune the tracking parameters
based on the context information. While methods mention
above uses one appearance and/or one motion feature for
the whole video. The online methods typically use set of
features. These features are weighted for new frame based
on context information accumulated up to the present mo-
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Figure 1. Our proposed framework.

ment. The [14] runs multiple trackers at time. The tracker
interaction is conducted based on the transition probabil-
ity matrix (TPM). The TPM updates are computed by in-
vestigating each tracker’s reliability. The single tracker is
responsible for one feature. Therefore, this method concen-
trates rather on trackers integration than feature combina-
tion. It has strong limitations on self-adaptability to scene
variations characterized by more than one feature (appear-
ance versus motion). Also ruining multiple trackers intro-
duce high computational load and restrict the usage of the
method in real time. The [4] learns the parameters for the
scene context offline. In online phase the tracking parame-
ters are selected from database based on the current context
of the scene. These parameters are applied to all objects
in the scene. Such a concept assumes discriminative ap-
pearance and trajectories among individuals, which is not
always the case in real scenarios.

The limitation of the data association methods is identity
switching when occlusion appears. The online parameter
adaptation methods try to overcome the issue by tuning the
parameters for the video context. However they ignores the
individuality of the objects and use same set of features to
all objects. In this paper, we try to overcome these limita-
tions by proposing a new long term tracking framework. It
combines short data association and online parameter tun-
ing for individual tracklets. This framework has several
dominant contributions as follow:

• We introduce new long term tracking framework
which combines short data association and the online
parameter tuning for individual tracklets. In contrast to
previous method that used same setting for all tracklets
(section 3).

• We show that large number of parameters can be
efficiently tuned via multiple simulated annealing.
Whereas previous method could tune only the limited
number of parameters and fix the rest to be able to do

exhaustive search (section 3.2).

• We define the surrounding context around each tracklet
(section 2.2) and similarity metric among tracklets al-
lowing us to match learned context with unseen video
set(section 3.3).

2. The Proposed Framework
Figure 1 illustrates proposed framework. It highlights

the all steps done in the offline and online phases. The ob-
jective of the offline phase is to learn a database of track-
lets with optimal tracker parameters for various tracklet
surrounding contexts. The database is then used in online
phase for parameter selection for each tracklet based on its
surrounding context in the scene.

2.1. Definitions

Video segment context characterizes the relationship of
the object in the scene. We follow the definition of the
video segment context from [6]. The video segment con-
text is viewed as set of six code-books described for six
video context features: density of mobile objects, their oc-
clusion level, their contrast with regard to the surrounding
background, their contrast variance, their 2D area and their
2D area variance.

Tracklet Tri is defined as a chain of tracked objects
called node Ni in consecutive frames < m,n > where
i represents the ID of object and N represents the object
bounding-box.

Tri = {Nm
i , N

m+1
i , ..., Nn−1

i , Nn
i } (1)

Detection anomaly correction
Detection anomaly is defined as a node belonging to

tracklet whose features are not consistent compared to other
nodes(For example, the distance of 2 bounding-boxes in 2
consecutive frames is larger than threshold or object color
change remarkably in 2 consecutive frames). To make
tracklet more reliable, this node should be removed and we
use the linear interpolation method to fill it.

Tracklet feature and tracklet feature similarities
Tracklet features Fi are extracted from features of nodes

Ni belonging to tracklet. The feature pool Fi of each track-
let Tri is divided into 2 feature pools Fi = {FO

i , F
OE
i }:

• FO
i (individual features) represents the pool of features

that are computed using only the data of the tracklet.
FO
i includes 6 features including 2D Shape ratio, 2D

Area, Color histogram, Dominant color, Color Covari-
ance and motion model. These features and their sim-
ilarity computation are defined in [11].

• FOE
i (surrounding features) represents the pool of fea-

tures that are computed based on the interaction of



tracklet to surrounding environment defined by outer
bounding box (OBB). The size of OBB is determined
by 1.3 times of object bounding-box size on width and
height dimensions. Any tracklet appears in the OBB is
considered to interact with tracklet Tri and these fea-
tures are computed. Three features are defined in the
OBB:

- Occlusion: The occluded level of given tracklet Tri
caused by other surrounding tracklets. The value is in
the range < 0, 1 >, 0 is non-occluded and 1 is full-
occluded.

- Mobile object density: The number of other tracklets
inside the outer bounding-box of given tracklet Tri.

- Contrast: is defined as the color histogram difference
between the bounding-box and the outer bounding-
box.

Tracklet feature F k
i ∈ Fi is represented by the weighted

mean µ(F k
i ) and the weighted standard deviation σ(F k

i )
over time t which are computed as follow:

µ(F k
i ) =

∑n
t=m w(t) ∗ F k

i (t)∑n
t=m w(t)

(2)

σ(F k
i ) =

√∑n
t=m w(t) ∗ (F k

i (t)− µ(F k
i ))

2∑n
t=m w(t)

(3)

where w is the weight function which is used to de-
crease the impact of the interpolated features while relying
on the directly extracted features from object detection. The
weight function is defined by:

w(t) =

{
wI if F k

i (t) is interpolated
wE if F k

i (t) is directly extracted
wE and wI satisfy:{
NbE ∗ wE +NbI ∗ wI = 1

wI = α ∗ wE

f tp stands for object feature p at time t, α is a coeffi-
cient which determines the reliability of interpolated fea-
tures compared to directly extracted features. Supposed
that NbI and NbE are numbers of interpolated nodes and
real tracked nodes, correspondingly, α is determined by
α = NbI

NbI+NbE
.

2.2. Tracklet representation

Surrounding tracklet set Trci s is figured out as a set
of surrounding tracklets Trci which are inside the outer
bounding-box of tracklet Tri.

As shown in Figure 2, the tracklet represented by red
bounding-box in (a) is discriminated to its surrounding

Figure 2. Tracklet representation {Tri, T rci s} and tracklet repre-
sentation matching. Tracklet Tri is presented by color ”red” and
fully covered by the outer bounding-box ”black”. The other colors
are presented for surrounding tracklets.

tracklet by color feature while the tracklet represented by
red bounding-box in (b) is discriminated to its surrounding
tracklet by movement. Then, they should be in different
contexts. In order to characterize a tracklet in particular
context, we define the representation of tracklet Tri is the
combination of the features’ information of Tri and Trci s.
Based on the tracklet representation, the discriminate track-
let features are selected to characterize tracklet.

The representation of tracklet is deployed in detail as fol-
low:

{Tri, T rci s} = {Fi, [F
c
i ]M} (4)

whereM is the size of surrounding tracklet set Trci s and F c
i

is feature pool of each surrounding tracklet Trci ∈ Trci s.

2.3. The framework flows

The framework flows are shown in Figure 1.
In offline phase, firstly, video is segmented by con-

text. In particular, the video is split into segments of fixed
size. Each segment is processed with object detection al-
gorithm [10] and tracker [5](flow 1). All tracklets extracted
for each video segment are assigned with context via code-
book model(flow 2). If two or more consecutive segments
have same context, they are merged to form a video chunk.
Next step is the optimal parameter learning. The video
chunks (video segments with same context) and its track-
lets are passed to simulated annealing (flow 3). In this step,
the representation of each tracklet is determined. The op-
timal parameters P ∗

i for each tracklet representation are
learned (flow 5) based on the performance evaluation of
tracker (flow 4) against the ground truth information. Fi-
nally, tracket representation combined with its optimal pa-
rameter set is stored in database. The learned data is for-
malized as follow: ({Tri, T rci s}, P ∗

i ).
More details on optimization of parameters P ∗

i is pro-
vided in section 3.2.



In online phase the same object detector and tracker are
applied on fixed size time-window(in our case is 20 frames)
to extract tracklets (flow 6). The extracted tracklets are
matched against the learned database (flow 7). Tracker pa-
rameters are tuned for each extracted tracklet by parameters
of closest tracklet match. The distance of one tracklet with
a learned tracklet via tracklet representation is provided in
section 3.3. Finally, tracker with parameters tuned for each
tracklet is applied on the current time-window (flow 8) and
then tracklets are updated.

3. Tracker parameters tuning
3.1. Hypothesis

In order to select the best tracker parameters for each
tracklet, the proposed approach relies on a hypothesis that
if representations of two tracklets are close enough, the
learned optimal tracking parameter values of one tracklet
could be applied effectively for the other one. The hypoth-
esis is formalized as follow:

(5)
If (‖{Trj , T rcjs} − {Tri, T rci s}‖< ε1)

and (Q(=({Tri, T rci s}, P ∗
i ), GT ) > θ)

⇒ Q(=({Trj , T rcjs}, P ∗
i ), GT ) > θ + ε2

where ‖{Trj , T rcjs} − {Tri, T rci s}‖ is the tracklet rep-
resentation distance (provided in section 3.3) of two track-
lets Tri and Trj , Q is the tracking performance of tracking
algorithm =, GT stands for tracking ground-truth and P ∗

i

is the optimal parameter set of tracklet Tri. In this work,
we use the Mostly-Track(MT) metric (detailed in experi-
ment part) and the tracking time metric in [9] to evaluate
the tracking performance Q.

The purpose of hypothesis is that if the representation
{Trj , T rcjs} of extracted tracklet Trj in online phase is
matched against any record in the database {Tri, T rci s}, the
tracker could gain the optimal performance for the extracted
tracklet when applying the according learned parameter set
P ∗
i . Besides that, this hypothesis is also applied in training

phase. If tracklet Trj’s representation is closed enough to
previous learned tracklet Tri, they could use the same op-
timal parameters. The reliability of the hypothesis will be
validated in the experiment part.

3.2. Offine tracking parameter learning

We have a training video segmented by context and now
we want to learn the best parameters for each tracklet and
save it in database. For learning, we are using simulated
annealing (SA). This methods helps in cases where exhaus-
tive search is impossible. SA is an alternative to gradient
descent that can stuck in local optimization. The method is
meta-heuristic and approximate the global optimum in large
searching space.

Simulated annealing based optimizer model The
tracking parameters are tuned based on the tracker perfor-
mance which is evaluated against the ground truth informa-
tion. Therefore, the objective function is defined by finding
the optimal tracker parameter set to maximize the tracking
performance Q(=({Tri, T rci s}, Pi). Then, the objective
function is determined:

P ∗
i =Pi

Q(=({Tri, T rci s}, Pi), GT ) (6)

We apply the multiple-SA method to find the optimal pa-
rameter setting. Running multiple optimizers in parallel in-
creases the searching speed. The starting points are selected
by dividing the searching space into subsets and selecting
the middle point of each subset. Therefore, the best per-
formance of optimizers will approximate more accurately
the global optimized values. Learned parameter values ac-
cording to the optimizer getting the highest performance are
accepted as the optimal tracker parameter set.

3.3. Online parameter tuning

In the testing phase, tracker is firstly applied for each the
video segmented by time-window to extract tracklets and
their surrounding contexts. Then, the extracted tracklet is
matched to closest learned tracklet to get the optimal pa-
rameters. The tracklet representation distance are computed
to compare two tracklets. Finally, the tracker with tuned pa-
rameters is applied for each tracklet on current time-window
and tracklets are updated.

Tracklet representation distance In order to match
two tracklets, we focus on the discriminative features of
tracklet. Two tracklets need to have similar surrounding
features. Therefore, the tracklet representation distance
‖{Trj , T rcjs}−{Tri, T rci s}‖ shown in Equation 5 is com-
puted relying on the distance of individual feature discrim-
inative level and the similarity of surrounding features be-
tween these tracklets compared to their corresponding sur-
rounding tracklets. This distance is formalized as follow:

‖{Trj , T rcjs} − {Tri, T rci s}‖

' β × ‖DiscF
O
j (Trj , T r

c
js)−DiscF

O
i (Tri, T r

c
i s)‖

+ (1− β)× Simi(FOE
j , FOE

i )
(7)

whereDiscF
O
i (Tri, T r

c
i s) andDiscF

O
j (Trj , T r

c
js) are the

discriminative levels of tracklets Tri and Trj with its sur-
rounding tracklets, respectively. Simi(FOE

j , FOE
i ) is sur-

rounding feature similarity of Tri and Trj . The weight β
shows the reliability of discrimination of feature pool FO

over the similarity of FOE . We set β values by 0.7. Define
that p ∈ {i, j}, N is the size of FO

p , DiscF
O
p (Trp, T r

c
ps)



and Simi(FOE
j , FOE

i ) in equation 7 are deployed by:

DiscF
O
p (Trp, T r

c
ps) =

∑N
k=1 ω

k
i ×Disck(Trp, T rcps)∑N

k=1 ω
k
i

(8)

(9)Simi(FOE
j , FOE

i ) =

∑N+3
k=N+1 γ

k × Simi(F k
j , F

k
i )∑N

k=1 ω
k
i

Disck(Trp, T r
c
ps) = 1− X̃(Simi(F k

p , (F
c
p )

k)) (10)

By equation 8, the discriminative level
DiscF

O
p (Trp, T r

c
ps) is computed by the weighted av-

erage of all tracklet individual features’ discrimination
Disck(Trp, T r

c
ps) of tracklet Trp to its surrounding

tracklet set Trcps. Tracklet feature’s discrimination
Disck(Trp, T r

c
ps), shown in equation 10, is inversely

proportional to the median X̃ of their feature similarities.
The surrounding feature weights γk are set by values 0.5,
0.2, 0.3 to occlusion, mobile object density and contrast
features, respectively. The assignation means that occlusion
context is the most focused on and need to be fit as much as
possible to learned tracklet. The way to compute tracklet
feature similarities is provided in section 2.1.

Since the reliability of tracklet features is influenced by
context, the individual feature weights ω need to be set and
tuned along change in context. Therefore, tracker parame-
ters P ∗ defined in section 2.3 in this approach represents for
features weight ω.

4. Experiments
In this part, we evaluate the performance of the proposed

framework. The baseline tracker [5] is extended in [6] by
tracker parameter tuning for the whole context. We further
extended methods from [5, 6] in the framework by param-
eter tuned for each tracklets. All mentioned methods are
compared against five state of the art methods.

4.1. Training phases

The proposed approach is trained on nine video se-
quences: six videos from CAVIAR dataset1 and three
from ETISEO dataset2. The videos are selected such that
they represent a variety of tracking contextual information
(e.g..low/high density of object in the scene, strong/weak
object contrast). The offline training phase requires the
ground-truth of object tracking as input. From the hypothe-
sis shown in equation 5, some tracklets are close to each oth-
ers then we use only representative tracklet. Therefore, 284
tracklet representations are learned after training 780 sam-
ples. This learned tracklet database is used as reference to
automatically tune parameters for tracklets in online phase.

1homepages.inf.ef.ac.uk/rbf/CAVIAR/
2www-sop.inria.fr/orion/ETISEO/

Figure 3. TUD-Stadtmitte dataset: Tracklet ID8 represented by
color ”green” matches to closest tracklet in learned dataset to re-
cover mis-detection caused by occlusion.

4.2. Testing phases

The proposed framework is evaluated on 3 video se-
quences in 2 public datasets (PETs2009 and TUD). For all
these videos, the observed scenes are different from the ones
of training videos. Upon concatenating the video over 20
frames, the tracker parameter tuner in proposed approach
adapts the tracklet feature weights to the change of its sur-
rounding context based on learned database.

Metrics The performance of the tracker is compared
with respect to two metrics defined in [7]: Multi-
object tracking precision(MOTP ) and multi-object track-
ing accuracy(MOTA). In addition, some other metrics
are proposed to use. Let GT be the number of trajec-
tories in ground-truth of the testing video. MT (Mostly
Track) shows the ratio of mostly tracked trajectories, ML
(Mostly Lost) represents the ratio of mostly lost trajecto-
ries and PT (Partially Track) is the ratio of partially tracked
trajectories(PT = GT −MT −ML).

PETs 2009 dataset The sequence S2 L1, camera view
1, is selected for testing because this sequence is used for
evaluation in several state of the art trackers. It consists of
794 frames with 21 mobile objects with different degrees of
inter-person and person-object occlusion.

As visualized in figure 2, we choose two learned tracklet
representations from CAVIAR dataset and testing tracklet
from sequence S2˙L1, view 1. The color of testing track-
let represented by red bounding-box has not much different
to its surrounding tracklet (represented by blue bounding-
box) but they move with inverse direction. Therefore, the
motion feature is important to discriminate this tracklet to
others. Linked to explanation in section 2.2, tracklet con-
text (b) also focuses on motion to discriminate tracklets.
Therefore, based on the tracklet representation distance, the
tracklet in online phase is more closed to context (b) than
(a) and tracker uses the optimal tracker parameters tuned for
tracklet context (b) to control feature weights for tracklet in
online phase.

TUD datasets The second test is conducted with the
TUD dataset(including TUD-Stadtmitte and TUD-Crossing
sequences). Both of these sequences are quite short, with



Dataset Method MOTA MOTP GT MT PT ML
PETS2009 - S2L1˙View1 Shitrit et al. [12] 0.81 0.58 21 – – –

Bae et al.-global association [2] 0.73 0.69 23 100 0 0.0
Chau et al. [5] 0.62 0.63 21 – – –

Chau [6]( [5] + parameter tuning for whole video context) 0.85 0.71 21 – – –
Ours ( [5] + Proposed approach ) 0.86 0.73 21 76.2 14.3 9.5

TUD-Stadtmitte Andriyenko et al. [1] 0.62 0.63 9 60.0 20.0 10.0
Milan et al. [8] 0.71 0.65 9 70.0 20.0 0.0
Chau et al. [5] 0.45 0.62 10 60.0 40.0 0.0

Chau [6]( [5] + parameter tuning for whole video context) – – 10 70.0 10.0 20.0
Ours ( [5] + Proposed approach ) 0.47 0.65 10 70.0 30.0 0.0

TUD-Crossing Tang et al. [13] – – 11 53.8 38.4 7.8
Chau et al. [5] 0.69 0.65 11 46.2 53.8 0.0

Ours ( [5] + Proposed approach) 0.72 0.67 11 53.8 46.2 0.0

Table 1. Tracking performance. The best values are printed in red.

more or less than 200 frames, but they contain challenges
for trackers due to heavy and frequent object occlusions.
Figure 3 shows a snapshot of the tracking performance of
the proposed algorithm. Testing tracklet with low light in-
tensity, its appearance color is not discriminative with sur-
rounding tracklets but it moves in different direction to oth-
ers. It is closest to learned tracklet represented by color
”red”, therefore, the parameters tuned for this tracklet have
values: 0.512 for motion feature while 0.215 for color his-
togram and 0.193 for color covariance. Thanks to tuned pa-
rameters, the testing tracklet’s mis-detections are recovered
correctly.

Comparison is shown in Table 1 over three testing video
sequences. In most cases, our proposed approach has equal
or better results compared to state-of-the-art trackers, the
baseline tracker [5] as well as parameter tuning method [6].

In particular, in PETS2009 dataset with S2L1-View1 se-
quence, the proposed approach performance has higher re-
sult than state of the art trackers [12, 2] and parameter
tuning method for whole context [6] which uses the same
baseline tracker [5] over MOTA and MOTP metrics. Es-
pecially, thanks to the proposed parameter tuning method,
the baseline tracker [5] is improved significantly, from 0.62
to 0.86 for MOTA value and from 0.63 to 0.73 for MOTP
value. Metrics MT and ML which are evaluated by per-
centage of ground-truth objects whose trajectories are cov-
ered by tracking output (at least 80% for MT and less than
20% for ML). Comparing our tracker to tracker [2] in case
of global association method, two methods use different
ground-truth. In particular, when objects leave the scene
and come back, our ground-truth labels these objects as the
same but other considers these objects as different. Further-
more, the object detector we use loses three objects. Then
comparing by trajectory information between these trackers
is not reasonable.

On both TUD sequences (TUD-Stadtmitte and TUD-
Crossing), our approach does not lose any object. The met-

ric MT are also on the top compared to other referenced
methods from state of the art. We have lower performance
compared to tracker [1, 8] on the sequence TUD-Stadmitte
in MOTA metric because this metric relies remarkably on
the overlap between grounth-truth boundingbox and detec-
tor output. In the case we would have a better detector, our
performance should be significantly improved and compa-
rable with other one.

5. Conclusions and future works
This paper proposes a new framework which online

tunes tracker parameters to adapt tracker to video context
variation. It tunes parameters for each tracklet instead of
for the whole video to ensure that tuned parameters charac-
terize the context around each tracklet. A new way to repre-
sent tracklet’s surrounding context is proposed to highlight
its discrimination to other tracklets. Moreover, this frame-
work can tune any number of tracking parameter and could
be flexibly applied for other trackers with different tracker
parameter set. The experimental results show the signifi-
cant performance improvement of our approach compared
to tracker using static parameter values, some parameter
tuners as well as some state of the art trackers over three
public benchmark datasets. The more characterized track-
lets are learned, the higher accuracy the multi-object tracker
reaches. In the future work, to reduce the reference time to
find the best learned tracklet in a huge learned database, we
will propose a method to index learned tracklets.
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