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Challenges

Commercial vision-based systems
Average performance
Relying on human operators
Different kinds of contexts, scenarios and applications
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General representation of video-based systems
Challenges

Main issues with state of the art tracking algorithms

Challenges
Parameter tuning
Adapt tracking to new situations: detection and tracking of
one specific type of object in one specific type of environment
Error management: difficulties to detect and manage
erroneous input data

Optimizing people tracking for a video-camera network Julien Badie 8 / 51



Introduction
Global Tracker

Online evaluation of tracking results
Tracklet matching over time
Conclusion and future works

General representation of video-based systems
Challenges

Tracking algorithms: state-of-the-art

Trackers Approaches Limitations
Multi-target tracking by on-line
learned discriminative appearance
models [Kuo et al., CVPR 2010]

Online learning of
people appearance

Very sensitive to
detection errors

Multi-features tracker[Chau et al.,
ICDP 2011]

Computes context and
tunes parameters

according to its changes

Heavy offline learning -
Sensitive to detection

errors
Detection- and Trajectory-Level

Exclusion [Milan et al., CVPR 2013]
Conditional random

field
Does not handle

long-term occlusions

Robust Online Multi-Object Tracking
[Bae et al., CVPR 2014]

Tracklet confidence
computation and online

discriminative
appearance learning

Requires confidence
data from detection -

Important number of ID
switches compared to
the state-of-the-art

Target Identity-aware Network Flow
for Online Multiple Target Tracking

[Dehgha et al., CVPR 2015]

Discriminative learning
and global data
association

Requires manual
annotation for
initialization
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General representation of video-based systems
Challenges

Global tracking algorithms: state-of-the-art

Trackers Approaches Limitations
Hybridboosted multi-target tracker [Li

et al., CVPR 2009]
Trajectories association
+ AdaBoost variant Offline process

GMCP-tracker [Zamir et al, ECCV
2012]

Computes cliques on a
graph of detections

Very slow (4.4s/frame)
with a good setup (4
cores) - Complexity
grows exponentially
with the number of

detections
Multiple Object Tracking by efficient
Graph Partitioning [Kumar et al.,

ACCV 2014]
Graph partitioning

Does not handle wrong
tracklets (mixing two

people)
CRF-based Multi-Person Tracking
[Heili et al., Transactions on Image

Processing 2014]

Conditional random
field

Does not handle
long-term occlusions

GMMCP Tracker [Dehghan et al.,
CVPR 2015]

Computes cliques on a
graph of detections +
models occlusions and
missed detections

4 empirically defined
parameters -

Complexity grows
exponentially with the
number of detections
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Definitions

Definitions
Context: all elements that can influence the vision-based
system such as illumination, indoor/outdoor scene,
entrance/leaving areas, background obstacles, etc.
Error: significant difference between a result given by the
detection or tracking algorithm and the Ground-Truth. The
border between an error and an acceptable result is defined by
a metric.
Anomaly: variation of feature larger than usual; considered as
a potential error.
Tracklet: segment of trajectory representing one tracked
object. Result given by the tracking algorithm.
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Assumptions

Assumptions
Fixed cameras: the vision-based system is composed of one
or multiple overlapping or non-overlapping fixed cameras.
Limited prior knowledge: prior knowledge about
scene/context is not required but can be used if available.
No Ground-Truth available: due to online constraint.
Near real-time
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Approach

Contributions
Tracking quality estimation:

Estimate the quality of the tracking algorithm by analyzing
tracking results (tracklets) without using Ground-Truth.
Identify potential errors (anomalies) and classify them (real
errors, natural phenomena)

Tracking results improvement:
Correct the errors, either by repairing them directly or by
sending feedback to detection or tracking modules.
Improve overall tracking results by merging segments of
trajectory representing the same object.
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Different methods of tracking performance evaluation

Types of performance evaluation1

1E. Maggio and A. Cavallaro. Video tracking: Theory and practice. Wiley, 2010.
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Empirical methods with Ground-Truth

Required data
Objects tracked by algorithm
Ground-Truth defined by human
Metrics (VACE1, CLEAR2, trajectory-based3, ETISEO4, ...)

1R. Kasturi, D. Goldgof and P. Soundararajan. PAMI 2009.
2K. Bernardin and R. Stiefelhagen. EURASIP Journal on Image and Video Processing 2008.
3B Wu and R Nevatia. CVPR 2006.
4A. T. Nghiem, F. Brémond, M. Thonnat and V. Valentin. AVSS 2007.
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Metrics

Projects Metrics

VACE Sequence Frame Detection Accuracy (SFDA)
Average Tracking Accuracy (ATA)

CLEAR Multiple Object Tracking Accuracy (MOTA)
Multiple Object Tracking Precision (MOTP)

Trajectory-based
Mostly Tracked (MT)
Partially Tracked (PT)

Mostly Lost (ML)

ETISEO
Tracking time
ID persistence
ID confusion
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Tracking result: tracklets

time window of size [t −∆, t]

each tracklet is defined on an interval [T i
start ,T

i
end ]

one object detected on one frame corresponds to one node C it
each node contains a pool of features F i

t
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Feature pool

F i
t = {FO,i

t ,FOO,i
t ,FOE ,i

t }

FO,i
t Object alone

FOO,i
t Object vs Object

FOE ,i
t

Object vs
Environment
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Feature pool - Object alone

Feature pool Feature description

FO

bounding box dimension
trajectory (direction + speed)

color histogram
covariance matrices
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Feature pool - Object vs Object

Feature pool Feature description

FOO
density with other objects

spatial overlap level with other objects
frame-to-frame overlap with other objects
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Feature pool - Object vs Environment

Feature pool Feature description

FOE object appearing/disappearing in zone
overlap level with background elements
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Tracklet quality computation using FO

Weighted mean

µ(f i ) =

∑T i
end

t=T i
start

w(t) ∗ f it∑T i
end

t=T i
start

w(t)

f it : feature value at frame t
from FO,i

t

w : weight function (linear or
exponential)

Weighted standard deviation

σ(f i ) =

√√√√√√
∑T i

end

t=T i
start

w(t) ∗ (f it − µ(f i ))2∑T i
end

t=T i
start

w(t)
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Tracklet coherency computation

Coefficient of variation

c(f i ) =
σ(f i )

µ(f i )

Tracklet coherency

δit =

∣∣∣∣1− c(f i )t
c(f i )t−1

∣∣∣∣
δit ∈ [0, ε] =⇒ no anomaly detected
δit ∈ [1− ε, 1] =⇒ anomaly detected
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Anomaly classification

Anomaly classification is performed using the remaining feature
pool FOO and FOE .

Error Natural phenomenon
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Error recovering strategies

Basic approach
Erroneous nodes of the tracklets are removed.
Replaced with the interpolation of the nodes before and after.

Feedback-based approach
Feedback sent to the tracking algorithm to tune its parameters.
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Evaluation protocol of the online evaluation

Tracking algorithms used

Tracker 1 [Chau et al., ICDP 2011]: multi-feature tracker using 3D position, shape, dominant
color and HOG descriptors. Provides short but reliable tracklets.

Tracker 2 [Kumar et al., ACCV 2014]: based on graph partitioning.
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Online evaluation errors

Trackers Errors from GT TP (%) FP (%) FN (%)
Tracker 1 306 65.60% 6.86% 34.4%
Tracker 2 165 60.61% 9.09% 39.39%

Percentage of errors found with the online evaluation compared to
the errors given by the Ground-Truth evaluation for sequence S2.L1
of PETS2009
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Detection of easy errors

ID2 is occluded by the pole and by ID1.
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Limitations of the online evaluation

Non-detected objects and consistent errors over a long time interval
cannot be detected.
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CLEAR metrics on PETS2009 dataset

Methods MOTA MOTP
[Henriques et al., 2011] 0.85 0.69
[Zamir et al., 2012] 0.90 0.69
[Milan et al., 2013] 0.90 0.74

Tracker 1 0.62 0.63
Tracker 1 + online

evaluation (basic recovery) 0.85 0.71

Tracker 1 + online
evaluation (feedback

recovery)
0.88 0.72

Tracker 2 0.85 0.74
Tracker 2 + online

evaluation (basic recovery) 0.90 0.74
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Results on CAVIAR dataset

Methods MT (%) PT (%) ML (%)
[Li et al., 2009] 84.6 14.0 1.4
[Kuo et al., 2010] 84.6 14.7 0.7
Tracker 1 alone 78.3 16.0 5.7

Tracker 1 + online
evaluation (basic

recovery)
82.6 11.7 5.7

Tracker 1 + online
evaluation (feedback

recovery)
83.8 10.3 5.9

ML: Mostly tracked (more than 80% of the trajectory is tracked)

PT: Partially tracked (between 20% and 80% of the trajectory is tracked)

ML: Mostly lost (less than 20% of the trajectory is tracked)
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Lost tracklets on mono camera

ID change due to tracking
errors (occlusions, missed

detections)

ID change due to the person
reentering the scene
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Key frames selection

Mean

µ(f i ) =

∑
t∈[T i

start ,T
i
end ]

f it

|[T i
start ,T

i
end ]|

Standard Deviation

∀t ∈ [T i
start ,T

i
end ] : σ(f it ) =

∑
f it ∈F i

t
|f it − µ(f i )|
|F i

t |

Energy Function

E (C i ) =
5∑

g=1

σ(f itg ) =⇒ min
tg=[1,...,5]∈[[T i

start ,T
i
end ]]

(E (C i )) gives 5 key frames
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Key frames selection

Selection of the 5 key frames that are the closest to the mean value
of the features
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Visual signature computation

Mean Riemannian Covariance Grid (MRCG) descriptor [S. Bak at al.,
AVSS 2011]

Shows very good results on the classical re-identification challenge

Multi-shot approach

Holds information on feature distribution, their spatial correlations
and their temporal changes throughout the tracklet
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Two lists of distances between tracklet pairs

Unsupervised learning
Parameter p: number of impossible matches used to validate
the possible matches
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Merging tracklets corresponding to the same person

Constrained clustering algorithm
Must Link Constraint: tracklets representing the same object
must be in the same cluster
Cannot Link Constraint: given by the impossible matches list

Mean-shift based constrained clustering algorithm
Computes distance threshold Θp using the p tracklet pairs
with the smallest distances of the impossible matches list
Selects a tracklet pair with a distance below threshold Θp.
Adds the pair to the cluster if the intra-distance of the cluster
is below threshold Θp.
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Results on PETS dataset

Methods p
Correctly
merged

Incorrectly
merged

Not
merged

Visual signature
(without key frames
selection)

1 21.7% 1.6% 76.7%
5 53.5% 3.9% 42.6%
10 59.7% 12.4% 27.9%

Visual signature
(with key frames)

1 51.4% 0% 48.6%
5 71.1% 5.2% 23.7%
10 78.9% 6.5% 14.6%

A high p value increases the number of both correctly and
incorrectly merged tracklets.
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Results on CAVIAR dataset

Methods MT (%) PT (%) ML (%)
[Li et al., 2009] 84.6 14.0 1.4
[Kuo et al., 2010] 84.6 14.7 0.7
Tracker 1 alone 78.3 16.0 5.7

Tracker 1 + tracklet
matching 84.6 9.5 5.9
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Final results on PETS2009 dataset

Methods MOTA MOTP
[Berclaz et al., 2011] 0.80 0.58

[Ben Shitrit et al., 2011] 0.81 0.58
[Henriques et al., 2011] 0.85 0.69
[Zamir et al, 2012] 0.90 0.69
[Milan et al. 2013] 0.90 0.74
Online evaluation 0.90 0.74
Tracklet matching 0.83 0.68

Global Tracker 0.92 0.76
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Final results on CAVIAR dataset

Methods MT (%) PT (%) ML (%)
[Xing et al. 2009] 84.3 12.1 3.6
[Huang et al. 2008] 78.3 14.7 7
[Li et al. 2009] 84.6 14.0 1.4
[Kuo et al. 2010] 84.6 14.7 0.7

Online Evaluation 82.6 11.7 5.7
Tracklet matching 84.6 9.5 5.9

Global Tracker 86.4 8.3 5.3
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Conclusion

Global Tracker
Online evaluation: detects errors by analyzing tracklet
coherency and corrects them
Tracklet matching: improves tracking results by merging
tracklets representing the same object

Results
Tested on several datasets (PETS2009, CAVIAR, TUD, I-LIDS,
VANAHEIM), reaching or outperforming the state-of-the-art
Used in different scenarios (tracking associated with a
controller, 3D camera, camera network with overlapping or
distant cameras)
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Future works and possible improvements

Online evaluation
Characterize the origin of the errors (detection or tracking)
Investigate other tracking recovery techniques such as
re-detection, re-tracking or backtracking
Add additional features such as interest points or body parts

Tracklet matching
Design a set of visual signatures per person if the appearance
of the tracklets changes over time
Overcome the sensitivity of tracklet matching w.r.t. parameter
p and threshold Θp
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Appendix 2 : Tracklet matching results on PETS2009
dataset

Methods MOTA MOTP
[Zamir et al, 2012] 0.90 0.69
[Milan et al. 2013] 0.90 0.74

Tracker alone 0.82 0.65
Tracklet matching 0.83 0.68

State-of-the-art results do not take into account people leaving
and re-entering the scene.
State-of-the-art metrics on this dataset are not adapted to
evaluate tracklet matching performance.
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