JOURNAL OF IEEE ACCESS, SEPTEMBER 2018

How to train your dragon: best practices in
pedestrian classifier training

Remi Trichet, remi.trichet@inria.fr Francois Bremond, Francois.Bremond@inria.fr

Abstract—The present year witnesses another milestone in
Pedestrian detection’s journey: it has achieved remarkable pro-
gresses in the course of the past 15 years, and experts foresee
an everyday use of numerous stemming applications within the
next 15. Standing on the tipping point between yesterday and
tomorrow pushes to the field’s retrospect. Features, context, the
combination of approaches, and feature data are responsible
for most of the breakthroughs in pedestrian detection. If the
first three elements cover the bulk of the literature, much less
efforts have been dedicated to feature data. In many aspects,
the construction of a training set remains similar to what it was
at the birth of the domain, some related problems are not well
studied, and sometimes still tackled empirically. This paper gets
down to the study of pedestrian classifier training conditions.
More than a survey of existing training classifiers or features,
our goal is to highlight impactful parameters, potential new
research directions, and combination dilemmas. Our findings are
experimentally verified on two major datasets: the INRIA and
Caltech-USA datasets.

Index Terms—pedestrian detection, real-time, data selection,
parameter estimation, big data, dataset training

I. INTRODUCTION

Accurately detecting human beings in an image is a task
that an infant can perform at the age of one, but a computer
algorithm still can’t reliably achieve. Nevertheless, a wide
range of applications such as congestion analysis, automotive,
abnormal event detection, retail data mining, robotics, human
gait characterization have boosted the field’s progresses which
is now at the core of many computer vision advances.

In a recent study [S], features, context, feature data, and
the combination of approaches have been identified as the key
performance elements for pedestrian detection. Roughly 30%
of approaches focus on developing, combining or adapting fea-
tures, and this direction has lead to most of the breakthroughs
over the past years, such as channel features [18], or con-
volutional network [47]. Context adaptation [28], harnessing
frequent geometry [32][50] or environment patterns [48][64],
also successfully received attention from the community, but
this algorithm adaptation is often application or even dataset
dependent.

However, less progress has been stated concerning other
areas such as feature data, threshold estimation, or non-
maximum suppression. Training sets are still generated by
applying the same techniques than a decade ago: Increasing
the data variability is done by blindly mixing datasets [5], and
Bootstrapping [16][25] remains among the preferred choices
for training set generation. To the best of our knowledge,
alternatives to greedy non-maximum suppression are never
considered, and the majority of training parameters are over-
looked in short-length papers.

Consequently, lots of question have never been clearly
answered and the related approaches are often empirical. How
to augment the number of positive examples in my training set
? Is a soft-cascade always working ? What are the alternatives
to non-maximum suppression ? Should we always consider
data cleaning before training ? What is the best strategy to
set up the classifier cascade thresholds ? These details are
often understated in short-length papers. Hence, by conducting
thorough parameter evaluation and comprehensive method
variation tests, this detail oriented paper strives to determine
what are the best practices to train a pedestrian classifier.
To the best of our knowledge, these experiments are new to
the community. They bring a new light on some overlooked
parameters, and precise or disprove some of the community
empirical findings that were never experimentally validated
before.

More specifically, our contributions are manyfold. We pro-
vide extensive experiments and analysis in the domains of
model size, instance selection, data cleaning, data generation,
as well as near real-time classifier choice and thresholding,
soft-cascading, and non-maximum suppression.

In order to study underexplored state-of-the-art areas and
assess parameters impact independently, we first define a base-
line that performs on par with common pedestrian detectors
while remaining generic enough to test on the most common
competitors. To validate our experiments, we provide tests
with two types of features: HoG [16] and LBP [46]; and on
two major datasets, INRIA [16] and Caltech USA [20].

The rest of this paper is organized as follows. Section
2 reviews the related state-of-the-art. Section 3 describes
the reference classifier training methodology along with the
variants that we will utilize throughout this study. Section 4
covers the large set of experiments we have undertaken and
Section 5 sums up our findings and discusses possible future
directions.

II. RELATED WORK

Classifier optimization always has been a major concern
in computer vision. Techniques ranging from active learning
[39] to feature augmentation [11][40] have been employed
to fine-tune the classifiers on tasks as various as person re-
identification [42][62][68] or event recognition [12][41].

More specifically, data selection from imbalanced datasets
has been a concern for pedestrian detection since the birth of
the field. [34] proved that disproportioned datasets degrade
SVMs prediction accuracy, especially for non-linearly sep-
arable data. Subsequent research on these experiments [65]
showed that best performance was obtained for approximately

positives data Selecting
augmentation

negatives similar
“ ‘ — -

i Data generation

Train set

wain@ vain @)

train .
— e
- @
val val val

bootstrapping

]
Ud Classifier 1

Train set

(ram

‘»»

tram

bootstrappmg

» *. » Classmer 2

7
"/

uoljezi eloads Jaljisse

tram

SH0.103r34-40-3AVISYI

bootstrappmg

P Y Y

Fig. 2. data generation example with horizontal cut. the
Feature values corresponding to upper and lower body
parts are concatenated to form a new data sample.

Train set
—

Fig. 1. Training pipeline. The initial training set generation selects data while balancing negative and
positive sample cardinalities (Top). A cascade classifiers is then trained on it (Left), each independent
classifier being learnt through bootstrapping (right). balanced positive and negative sets is sought all

along the cascade. cl:classifier

comparable class cardinalities when over-sampling the minor-
ity set.

Limited work carries out these issues. Bootstrapping
[16][25] is probably the most common adaptation to the
problem. This data training mechanism improves accuracy
thanks to successive training set updates focusing on samples
difficult to classify. It is first initialized on uniformly drawn
negative samples. At each iteration, the negative training set
is augmented with the false positives of the previous run.
The process keeps repeating until the performance converges
or a memory threshold is reached. [57] further showed that
2 iterations lead to optimal performance. [27] adopted a
different practice for random forest. They first train ¢ trees
with uniformly-drawn samples, use them to obtain harder
positive and negative sample to train the next ¢ trees, and
iteratively repeat this process. Each tree group bears its own
bias, therefore improving the overall forest performance. [24]
incorporated latent values to optimise hard negative mining.

Generative techniques consider over-sampling the minority
class through artificial data generation. This type of approach
suffers from both, over-generalization and the risk to create
erroneous data. The SMOTE algorithm [S58] is probably the
most renowned one. It creates new data as the linear com-
bination of a randomly selected data point and one of its
(same class) k& nearest neighbors. Borderline-SMOTE [29]
subsequently proposed to improve SMOTE through clever
selection and strengthening of weak pairs. ADASYN [30] con-
sidered limiting the over-generalization through density-based
data generation. In the same vein, [35] introduced cluster-
based oversampling, simultaneously tackling the intra- and
inter-class imbalance issue. Finally, [6] proposed curriculum
learning to progressively incorporate into the training set data
ordered according to their generative power (i.e. from easy
samples to hard ones).

Cost sensitive learning methods [22][53] are an alternative
to generative techniques that learn the cost of misclassifying
each data sample. They optimize the classification perfor-
mance by up-weighting important data and provide a natural
way to enhance the minority class.

Finally, [33] highlighted and tackled the imbalance issue
with a two classifier cascade: The first one aims for a high
recall whereas the second one enhances precision.

An alternate strategy to deal with the excess of negative data
is to successively prune out easy-to-classify instances via the
use of several consecutive classifiers. This cascade-of-rejectors
[69][7] can also be considered to speed up the detection.
The technique, inspired by Viola & Jones face detector [56],
builds up a classifier cascade that consists of successive
rejection stages that get progressively more complex, therefore
rejecting more difficult candidates as the classifiers get more
specialized. [52] further upgraded the principle from features
to data by performing hierarchical clustering on the dataset,
leading to improved classification results. However, it requires,
for each new datum, to find the corresponding set of clusters
it belongs to. See [31] for more details on learning from
imbalanced datasets.

III. REFERENCE TRAINING METHODOLOGY

The definition of a reference method is a difficult task.
On one hand, it needs to be generic enough to allow the
evaluation of a wide spectrum of common techniques and
its reproducibility under various application environments. But
on the other hand, results competitive with the state-of-the-art
are required for the conclusions to be usable with up-to-date
algorithms. Bearing this compromise in mind, we chose the
following reference method. For the sake of conciseness, we
restricted it to real-time or near real-time techniques, but in
most cases, the extension to more compute-intensive strategies
remain possible.

Our training methodology, illustrated in figure 1, unfolds
as follows. It decomposes in two distinct parts: The initial
training set generation and the classifier training. The initial
training set generation carefully selects data from a set of
images while balancing negative and positive sample cardinal-
ities. We then train a cascade of 1 to n classifiers. This cascade
could include a cascade-of-rejectors [15][69][7]1[52][56], a soft
cascade [8], or both. In addition, each independent classifier is
learnt through bootstrapping [16][25] to improve performance.
One key aspect is to seek balanced positive and negative sets
at all time. Hence, all along the cascade, the minority class is
oversampled to create balanced positive and negative sets.

The body of this section describes each of these compo-
nents independently while putting the emphasis on important

JOURNAL OF IEEE ACCESS, SEPTEMBER 2018

aspects or parameters that will be analysed in the next section
dedicated to experiments.

A. Minority class oversampling

As the studies on the topic prove that class imbalance
leads to deteriorated performance, one may seek class balance
before any training. Two options exist. The first one consists in
undersampling the majority class. This solution doesn’t satisfy
our needs as a large training set is preferable to fully represent
the data variability and avoid overfitting during the training
process. The remaining solution oversamples the minority
class. This process implies the creation of extra data that
will not match any existing instance in the dataset images.
Nevertheless, these newly created instances have to credibly
represented a hypothetical data. The risk of introducing spuri-
ous data in the dataset should be minimized, especially in our
case, where we may generate over 90% of one class instances.
Consequently, the large majority of data generation algorithms
create new data by fusing the values of existing samples. In
order to respect the credibility constraint, the parent data often
are feature space neighbors, leading to the new data to be
created in their feature space local vicinity. This is the over-
generalization issue that cripples most generative techniques,
like SMOTE [58]: Instead of exploring the emptiest areas of
the feature space, these algorithms keep populating the denser
areas, thus reinforcing the dataset biases.

In order to free the process from this issue, [S5] takes
advantage of the spatial localization of most pedestrian feature
values. Indeed, due to their block or region decomposition,
geometrically structured descriptors, such as HoG [16], LBP
[1], DPM [24], or Haar-inspired strategies [18], each of their
feature values have a precise localization within the proposal

window. The new data generation function f(.) unfolds as
follows. We randomly select 2 instances 1 = [z11,...Z1n]
and x5 = [x21,...x9,] from the same class S; and create a

new sample with their lower and upper body features, while
avoiding doublons. Uniform sampling with replacement is
employed. More formally:

Vo, 2o €8 f(21,22) = [11, . Z1n, Ton 41, m2,] (1)

So, a minority class of n samples can spawn a maximum of
n X (n — 1) new instances. Not normalizing the final vector
gives better results than a re-normalization.

In their approach, [55] solely used the horizontal dichotomy
in order to guarantee the creation of valid data. In this paper,
we choose to explore the limits of this strategy by relaxing
this constraint in the experiments section.

B. Training Set Generation

This first step aims to form the initial training set by
selecting insightful instances from the swarm of features
extracted from the training images I. Let D be the desired
training set cardinality, with training set positive and negative
instances cardinality P and N so that D = P + N. To get a
representative negative subset of the training set, the common
approach is to randomly extract n = D/|I| data from each
image. This typically leads to a large imbalanced training set

Fig. 3. Representation of the parameter ng for instances selection. Positive
samples are in red, selected negative ones are in blue, unselected ones in
black. The rough class boundaries are depicted with dashed lines. From left
to right, no=100%, no=50%, no=10%

with few positives P and a large subset N of negative instances.
Data generation techniques [58][35] can then be employed to
limit the class bias. Positive instances horizontal flipping is
also frequently used.

To get a better control over the selected instances, we
borrowed the strategy from [S5]. In this approach, ground
truth positive examples are augmented with near positives,
defined as negative data having a spatial overlap with the
ground truth positive samples higher than 90%. Let P; be the
set of already selected positive data after the processing of ¢
images. When processing image ¢ + 1, negative samples are
selected as follows:

1) Data negative samples are sorted according to their sim-
ilarity with positive samples F;.

2) Select the subset of the 7y most similar negative samples
(based on euclidean distance), with ng > n.

3) n = D/|I| negative instances are randomly selected
among the remaining subset ng.

Finally, the positive class set is oversampled to reach a balance
with the negative instances.

no represents the overall similarity between the selected
negative N and positive data P. Setting ng low restricts the se-
lected negative data to those similar to positive ones, therefore
building a classifier that focusses on the often misclassified
data that lie on the border between the two classes. Inversely,
no=100% comes back to the common approach for instance
selection where the full training set is represented. Figure 3
depicts the idea. Only ground truth positive and the same
amount of original negative samples are fed to the training
set, the rest of the original data and the augmented data are
directed to the validation set.

C. Data cleaning

The purpose of data cleaning is to spruce the dataset off data
that could potentially mislead the classifier training. In this
paper, we experimented with two data cleaning methods with
distinct spirits: Tomek links [54] focusses on mixed classes
neighborhoods while DBSCAN cleans overpopulated areas
[23].

Tomek links are defined by pairs of opposite classes data
that are respective nearest neighbors. More formally, given
an instance pair (x;,x;), where z; and z; are respectively
positive and negative instances, and d(z;,x;) is the distance
between z; and z;, the d(z;,x;) pair is called a Tomek link
if there is no instance xj, such that d(z;,zx) < d(z;, ;)
or d(z;,xr) < d(x;,x;). Therefore, Tomek links are drawn
either from noise, or on classes border. So they are a powerful
tool, for data clean-up, especially after synthetic sampling.
Tomek links can then be removed until all nearest neighbor

JOURNAL OF IEEE ACCESS, SEPTEMBER 2018

pairs belong to the same class. In our case, we employ
euclidian distance and restrict the deletion to negative data
to spare the scarce minority class.

DBSCAN cleaning makes use of the renowned density-based
clustering algorithm [23]. It basically performs a density
correction, removing data from the mostly populated areas
of the feature space. The algorithm unfolds as follows. With
number of neighbors present within distance d associated
to each point, the data points are ranked according to their
neighbor cardinality. The algorithm then iteratively removes
the sample in the most populated neighborhood, updates the
cardinalities accordingly,and stops when all data samples have
less than Nmin points in their vincinity. We used the euclidian
distance, d=0.8 and Nmin=35 for all our experiments.

D. Classifier

The two employed classifiers in this work are typical
Adaboost [63] and random forest [9]. After specifying our
random forest setting, we will remind bootstrapping, the
cascade-of-rejectors and soft cascade methods in the next
subsections.

In our paper, the tree construction is grounded on typical
entropy optimization S:

S=> —pc,log(pc,))
Ci=0
And the final confidence score for instance x is obtained by
voting: 1 E
P(Ci(z)) = & ; c(Cy) 3)

where F is the number of trees, ¢;(C;) is the count for category
C; at the leaf node L; of the " decision tree.

E. Classifier bootstrapping

We use bootstrapping [16][25] to augment the training set.
At each iteration, we incorporate the most badly classified
data from the validation set into the training set and retrain
the classifier. We aim to repeat this process until the training
set reaches its desired initial size 7.

However, a maximum of 2 iterations is advised to avoid
overfitting [57]. Therefore, we employ [55] method to deal
with this issue, the idea being to introduce new data to prevent
overfitting. Instead of simply selecting data from the validation
set, we generate it the same way as detailed in the minority
class oversampling section. Each new datum is generated
based on 2 data samples selected among the misclassified data.
Weighted sampling is utilized in this case, the probability of
an instance to be drawn being set in relation to the extent of
the error. The training set reduction algorithm, illustrated in
figure 4, iterates until the desired training set size is reached.

F. Cascade-of-Rejectors

The cascade-of-rejectors is an efficient strategy for siev-
ing out a large proportion of false positives, and has been
applied several times in the context of pedestrian detection
[15][69][7]1[52][56]. However, tuning this cascade of classi-
fiers remains problematic. First, the classifiers are prone to

Train set Train set Train set Train set

Keep the most
badly classified
negatives

Undersample the
number of positives

Generating new
negatives

Fig. 4. Set cardinality balancing pipeline. *+” and ’-’ signs represent the
positive and negative classes. Best viewed in color.

Optimizing recall

Optimizing precision

Fig. 5. Toy example of a cascade-of-rejectors training for binary classification.
Blue and red colors represent the classes. The line depicts a (hypothetical)
separating hyperplane. The first iterations optimize on recall, the final one
optimizes for precision. Minority and majority classes are respectively under-
and over-sampled between each iteration to learn on balanced classes. Best
viewed in color.

errors that propagate along the cascade. Second, most authors
employing this technique solely reject negative data after each
classification step to avoid the creation of classifiers likely to
reject positive data during the subsequent stages. However,
this leads to progressively more imbalanced datasets. Fine
tuning of the original positive versus negative instances ratio is
usually necessary to obtain satisfactory results (a 2 to 4 times
bigger negative set is the common practice). But this strategy
is still under-optimal as balanced datasets are proved [65] to
be the best performing ones.

To deal with these issues, we propose a new cascade-of-
rejectors. Our approach borrows [33]’s main idea with a two-
stage classification: The first one aims for a high recall whereas
the second one focuses on precision.

The first stage embodies a cascade of n — 1 rejectors. To
avoid increasing the false negative rate, these n — 1 initial
classifiers enforce a high recall, moderately optimizing the
performance on the precision. The metric formalizes as:

M = (TN x Wry +TP)/(P + N))

with P, N,TP,TN, and Wry being respectively positive,
negative, true positive, true negative instances, and the weight
associated to T'N. W enforces the recall. Note that Wy =
0 comes back to optimizing for recall. When Wry < 0.5,
its parametrization has little impact on the results. We used
Wrn = 0.5 for all our experiments. Negative data, with a
confidence below 0.5, are rejected at each stage. Negative
data over-sampling is then undertaken to avoid emptying
the validation set. When insufficient to match the positive
instances cardinality, random positive data under-sampling
is then considered. We employ Adaboost as classifiers for
this part. These decision trees have demonstrated compet-
itive performance whilst retaining computational efficiency
[61][44]. During testing, typically over 95% of the data are
safely discarded after 4-5 iterations. This cascade-of-rejectors
guaranties a high recall, increased performance induced by

JOURNAL OF IEEE ACCESS, SEPTEMBER 2018

Multiple detections False positives Missed Overlapping positives

Fig. 6. Difficulties that non-maximum suppression tackles. Detections are in
green. Best viewed in color.

balancing the datasets at each iteration, and few parameters to
tune.

The second stage performs a finer classification, aiming for
high precision results. Since the bulk of the data have been
removed, more demanding computation can be performed at
this stage without slowing down the detector. We employ a
dense forest classifier, that has shown [5] giving slightly better
performance than its counterparts on pedestrian detection. We
optimize for the log-average miss rate [49]. Figure 5 illustrates
the cascade effect on a toy dataset.

The only parameters that require careful tuning are the
rejection thresholds #(C;), with C; the ith classifier of the
cascade. During i'h stage of the testing cascade, any data
d; with confidence C;(d;) < t(C;) will be rejected. Since
the method optimizes for the recall, the large majority of
data around the separating border between the two classes are
negative ones. It is then sensible to set ¢(C;) > 0.5. See the
experiment section for a thorough evaluation of this parameter
impact on performance.

G. Non-Maximum Suppression

Objects of interest generating lots of detections in their
neighborhood, non-maximum suppression is a method that
keeps the maxima while deleting other proposals. Its purpose
is two-fold. First, aggregating the information of nearby detec-
tions. It also works as an overlap control mechanism, balancing
overlapping false detections and detections over self-occluding
objects. Figure 6 illustrates these difficulties.

In this study, we use 3 different implementations of
the threshold non-maximum suppression. First, Greedy non-
maximum suppression is the systematically employed tech-
nique that compares the bounding boxes that overlap over
a pre-defined threshold and keeps the best scoring one. We
set the overlap threshold to 0.6 for all our experiments. We
also question its supremacy by testing out to other methods.
Threshold non-maximum suppression (t-NMS) [10] groups the
detection according to the bounding boxes overlap with the
group best candidate, keeps the d candidates with highest
confidence for each group, and builds the final candidate
position with the group mean border positions. Despite its
simplicity, t-NMS doesn’t require heavy parametrization and
combines well with the cascade algorithms. Even though the
complexity is O(n?), it is quite fast in practice since most of
the negatives have already been suppressed by the cascade-of-
rejectors. We set the overlap threshold to 0.4 and d = 2 for
all our experiments. We also considered Scale non-maximum
suppression (s-NMS) [10] that differs from t-NMS by treating
each scale separately.

In the occurrence of nested detections, our parametrization
always favors the biggest one. Threshold non-maximum sup-
pression is utilized by default.

IV. EXPERIMENTS

This section, dedicated to our experimental validation,
breaks down into several sub-parts. After presenting the
datasets and the experimental setup details, we run individual
experiments on each part main parameters or overlooked
variations. The last part compares our work to the state-of-
the-art.

A. Datasets

We experimented on the INRIA and Caltech-USA datasets.
The INRIA [16] features 1832 training and 741 testing high
resolution pictures. This is among the most widely used
dataset for person detection. Despite its small size compared
to more recent benchmarks, the INRIA dataset boasts high
quality annotations and a large variety of angles, scenes, and
backgrounds.

The Caltech-USA [20] dataset totals 350000 images. Despite
some annotation errors [67], its large size along with crowded
environments, tiny pedestrians, and numerous occlusions prob-
ably make the Caltech-USA dataset the most widely used one.
We experimented on the “reasonable set” that restricts algo-
rithms to pedestrians over 50 pixels in size and a maximum
of 35% occlusion.

With respectively a large variability and tiny occluded detec-
tions, everyday pictures and automotive application, these two
datasets offer complementary settings for our experiments.

B. Experimental setup

We experimented on the INRIA [16] and Caltech-USA
(reasonable set) [20] datasets with HoG [16] and Haar-LBP
[14] features. HoGs are configurated with 12 x 6 cells, 2 x 2
blocks and 12 angle orientations, for a total of 2640 values.
Block as well as full histogram normalisation are performed.
The LBP descriptor follows the same structure, features a
value per channel for each cell, and non-uniform patterns are
pruned out [45]. Candidates are selected using a multi-scale
sliding window approach [69] with a stride of 4 pixels. Ap-
proximately 60% are loosely filtered according to “edgeness”
and symmetry. No background subtraction or motion features
are employed on the Caltech dataset. The training set size is
up-bounded at 12K samples. Increasing this threshold doesn’t
improve performance.

No generative resampling is performed. The model height is
set to 100 pixels for the INRIA dataset, 50 pixels for Caltech.

We also implemented a cascade-of-rejectors baseline with
the commonly used settings: Rejector optimisation is done
according to the log-average miss rate metric. We tested this
baseline with a typical initial validation set containing 4 times
more negative samples than positive ones. To compare with
the common multi-dataset training technique, we also used an
augmented version with PETS2009 [26] positive samples. This
set gathers 50K positive instances from both datasets and 110K

JOURNAL OF IEEE ACCESS, SEPTEMBER 2018

[Component [default method | default parameter | [Model height size [INRIA [Caltech]
Model height pixels INRIA=100 Caltech=80 m 24.61% | 55.78%
data selected FairTrain [55] INRIA=2000 Caltech=1600 mx 110% 24.54% | 52.82%
Data oversampling FairTrain [55] horizontal cut m x 120% 23.92% | 49.58%
Data Cleaning Tomek links m x 130% 22.95% | 47.51%
Resampling Bootstrapping 5 iterations m x 140% 21.44% | 46.25%
Cascade cascade-of-rejectors 6 iterations m x 150% 20.7% | 47.73%
Cascade classifier Adaboost 512 weak classifiers m x 160% 20.31% | 51.32%
Cascade final classifier Adaboost 512 weak classifiers m x 170% 20.83% | 57.28%
NMS t-NMS t=04and d=2 m x 180% 21.34% | 61.23%

TABLE I TABLE II

DEFAULT METHODS AND PARAMETERS USED FOR THE TRAINING

negatives from the sole INRIA benchmark. Table I summarizes
the default methods and parameters that will be utilized for
the different components alternatives.

We utilised the openCV implementation for the Adaboost
and random forest classifiers. Random forest parameter set
includes the number of decision trees, the number of sampled
feature dimensions and the max tree depth. They were selected
by measuring out-of-bag errors (OOB) [9]. It was computed as
the average of prediction errors for each decision tree, using
the non-selected training data. Adaboost is initialised with a
tree depth of 2 and 256 weak classifiers. Each extra run adds
64 weak classifiers. This is a low number of weak classifiers
compared to typical settings (i.e. [1024, 2048]). However, in
practice, increasing this value leads us to lower performance
and speed.

We use a variant of the threshold non-maximum suppression
(t-NMS) [10] that groups the detections according to the
bounding boxes overlap with the group d best candidate, keeps
the d candidates with highest confidence for each group, and
builds the final candidate position with the group mean border
positions. We set the overlap threshold to 0.6 and d = 3 for
all our experiments. Log-Average Miss Rate (LAMR) [49] is
employed as metric for all runs.

C. Model size

state-of-the-art detectors empirically set the model size [49].
In this subsection, we conducted thorough experimentation to
determine what should be the optimal model size given the
initial conditions and what is its actual impact on performance.
We varied the model height size in relation to the pedestrian
minimal size observed in the dataset. We identified the smallest
detections to be 50 and 60 pixels in height for respectively the
Caltech (reasonable set) and INRIA datasets. And, as shown
in table II, the best corresponding model sizes for these 2
benchmarks are 70 and 100 pixels in height.

The overall rule should be the bigger, the better” as implic-
itly stated in [49]. Indeed, a bigger model will harness more
information. However, the quality of the detection deteriorates
when the model height size exceeds 150% of the smallest
dataset pedestrian. The performance gain is then a factor of
small detection frequency. As shown in [20], in Caltech’s rea-
sonable set, small detections represents the bulk of occurring
pedestrians whereas they remain pretty rare in INRIA, which
explains the discrepancy between the two datasets.
lesson learned: Model size matters. Optimal setting is in the
[m x 140%, m x 160%)] range, depending on the frequency of

LAMR PERFORMANCE ACCORDING TO THE MODEL HEIGHT SIZE THAT IS
SET IN RELATION TO THE MINIMAL PEDESTRIAN SIZE m. BEST RESULTS
IN BOLD.

the size m within the testset. When the frequency is unknown,
we advise setting it up to m x 150%.

D. Instances selection

Experiments on the training set D=P+N size have been
conducted in [55], with the performance reaching a plateau
around 200K data instances. Therefore we will restrict our
tests to the parameter ng tuning the similarity of the selected
negative instances to the positive ones. We implemented 3
strategies for this purpose.

1) Percentage: Select the ng percent most similar data.

2) Threshold: Select the data with similarity inferior to a
threshold ng.

3) Amount: Select the ng most similar data.

In every case, a minimum of n = D/m data are selected
to insure the same training set cardinality. Figure 7 compares
these variants performance.

Despite the rather simple strategies employed here, data
selection leads to a significant classifier performance improve-
ment. The best strategy clearly consists in selecting the p data
most similar to positives. The other two strategies, exploring
parts of the feature space further away from positive instances
lead to less discriminative classifiers. We explain the lower
amount of data preselected for the Caltech dataset by the
lower data variability of this dataset. Indeed, the angle and
commonly encountered background objects are similar over
the frames.

lesson learned: data selection and adaptation is an impor-
tant area that deserves more attention from the community. As
shown in these experiments, careful initial instances selection
is crucial, and can lead to major performance boost. The
selected negatives similarity with positive data must be set
in accordance to the dataset variability.

E. Data cleaning

Data cleaning is a rarely used pre-processing step. Is it
overlooked or just dispensable? To answer this question, we
evaluated its true importance for pedestrian training through
the 2 proposed data cleaning methods. Since our training set
generation method is not deterministic, each result is averaged
over a total of 6 runs on the two datasets. Approximately
0.01 to 0.2% of the negative data are removed. No significant
dataset discrepancy has been observed. Results are detailed in
table III.

JOURNAL OF IEEE ACCESS, SEPTEMBER 2018

[Dataset size | Tomek links [54] | DBSCAN [23]

80K -0.71 £ 0.05% -0.7 £ 0.13%
100K -0.85 £ 0.04% -0.54 £ 0.11%
120K -0.7 £ 0.1% -0.62 £+ 0.16%
140K -0.59 £ 0.11% -0.34 £ 0.09%
160K -0.34 + 0.05% -0.16 £ 0.07%
180K -0.19 £ 0.03% -0.12 £ 0.07%
200K -0.17 £ 0.05% -0.05 + 0.05%
TABLE III

AVERAGE LAMR PERFORMANCE IMPROVEMENT INDUCED BY DATA
CLEANING TECHNIQUES OVER 6 RUNS ON TWO DATASETS. BEST RESULTS
IN BOLD.

The use of data cleaning shows a small but steady mean
improvement. Tomek links outperform DBSCAN cleaning on
this experiment. We assume that the DBSCAN cleaning may
remove important data on the fuzzy class borders that fine
tuned training sets tend to densely populate in order to improve
the classifier discriminative power. Also, its use typically
counterbalances the over-generalization problem which does
not impair the training set construction presented in this study
(see section III-A). We also observe that the data cleaning
efficiency is inversely correlated to the training set size.
We assume that the repercussions of the few spurious data
instances weaken in accordance to the population density in
their neighbourhood.

lesson learned: If cleaning the data could be dispensable,
especially for big fine tuned training sets, it never harms the
classification. Counter-intuitively, the popular DBSCAN does
not perform best for pedestrian detection.

F. Additional data generation

Let’s define a credible datum as a generated datum that
visually looks like the object it represents. Note that the
credibility of newly generated data can only be checked
visually, so, the overall credibility of a generated set can hardly
be quantified. In their original work, [55] restricted their data
generation methodology to horizontal cuts, arguing that the
newly generated instance credibility was paramount. In this
experiment we test the limits of this hypothesis through the
implementation of the following variations:

1) Horizontal cuts in 2 parts of equal areas. The original
strategy proposed in [55]. See figure 2.

2) Vertical cuts in 2 parts of equal areas. Note that cutting
along a vertical axis doesn’t equal to an instance hori-
zontal flip since the two parent instances are likely to be
different data.

3) Random cuts in 2 parts of equal areas. This implies the
cut passing through the centre of the bounding box. Each
new data will be generated according to a different cut.

4) Random walks. The first half of the blocks are selected
with the random walk algorithm [21] from the first
sample. The other half of the blocks are selected from the
second sample. Each new data will be generated accord-
ing to a different walk. Using random walks guaranties
that, at least, one of the 2 sets will be fully connected.

5) Random walks and horizontal cut combination. This
strategy generates negative data utilizing the random
walks and positive data with horizontal cuts.

[Model height size | Feature | INRIA [Caltech |
Horizontal cut HoG 20.31% | 46.25%
Vertical cut HoG 21.28% | 46.51%
Random cut HoG 22.68% | 48.64%
Random walks HoG 25.32% | 50.11%
1+4 combination HoG 22.38% | 48.14%
Horizontal cut LBP 18.42% | 51.26%
Vertical cut LBP 19.12% | 52.02%
Random cut LBP 20.43% | 56.91%
Random walks LBP 22.87% | 60.89%
1+4 combination LBP 19.88% | 53.28%
TABLE IV

DATA GENERATION ALGORITHM ACCORDING TO 4 DIFFERENT
STRATEGIES. SEE TEXT FOR THE DESCRIPTION OF THE METHODS. BEST
RESULTS IN BOLD.

The methods are ranked according to their generative power
and the loss of credibility of the newly generated data. For
instance, with the same initial set, random walks will generate
a much greater variety of new data than horizontal cuts,
leading to a better exploration of the feature space. However,
its likelihood to create spurious data values, that doesn’t
correspond to a legitimate pedestrian image is also much
higher. Results are provided in table IV.

With performance inversely decreasing with the loss of
newly produced data credibility, this experiment confirms that
the credibility is paramount. But counter-intuitively, the same
rule also applies for negative example generation that do not
have this restriction. Indeed, the combination of strategies 1
and 4 doesn’t lead to any improvement. This implies that the
negative samples structural geometry (i.e. a window frame, a
car cabin, or tree branches) also cannot be tampered with.

lesson learned: Data generation credibility is essential and
should not be jeopardized for both positive and negative
instances. Horizontal cuts is the best performing method.

G. Classifier type

The general predominance of Random forest classifiers
over Adaboost for pedestrian recognition have already been
observed in the past [S]. In this study, We aim to push the
experiment further by evaluating its actual impact within a
cascade-of-rejectors. For this purpose, we tune the number of
Adaboost and Random forest classifiers, keeping to 6 their
total amount. Adaboost classifiers always come first in the
cascade in order to benefit from their higher speed-up. This
experiment is only presented for HoG features and the INRIA
dataset as a similar behaviour is observed with other datasets
and features.

Results are reported in table V. The only noticeable im-
provement is observed when the 4 or 5 last classifiers are
random forests. This is sensible as over 90% of the data have
been removed after these stages and the remaining ones are
mostly grouped around the pedestrians. Using random forest
as first classifier doesn’t increase the results. We assume that a
more discriminative classifier is less important during this first
stage that focusses on negative data broadly different from the
positive ones.

We also state that random forest only brings in a marginal
improvement of 0.42% compared to Adaboost classifiers,
contrary to what is usually reported [S][27]. We assume that

JOURNAL OF IEEE ACCESS, SEPTEMBER 2018

80 / 60 70
59,58 ..\.__'_—.__——."’J
55 59,1 65 W——J—
55 -
.“l\ _/'/_ 57,2 65
50 75313 58 50 634
’ V 50 60,3
45 55
L 46,32 L L
A 40 A® A 50
M 35 L M g5]
R R R
30 40 -+
53
sama 35 35, /-"‘f
25 2485 / o 293 35 Y
W 2845 28,41 . 29,3 \ /
28,4
20 3 0 e — . — 30 -
2032 N M - M 30,2
15 - 25 25
120013001400 15001600 17001800 1500 20002100 22002300 24002500 7% 8% 9% 10% 11% 12% 0,88 0,89 03 091 092 093
Amoun selected percentage selected threshold selection

Fig. 7. Comparison of the instance selection strategy variants, setting the log-average miss rate performance in relation to the parametrization. The INRIA

dataset is in red, Caltech in blue.

[# Random forest classifiers [INRIA | Speed |
0/6 20.31% | 2.11fps
1/6 20.31% | 1.09fps
2/6 20.29% | 1.98fps
3/6 20.42% | 1.75fps
4/6 20.13% | 1.47fps
5/6 19.89% | 1.24fps
6/6 19.92% | 0.84fps

TABLE V
LAMR PERFORMANCE AND SPEED OF A HOG-BASED CASCADE ON THE
INRIA DATASET, WHILE VARYING THE CASCADE CLASSIFIER TYPES
(ADABOOST OR RANDOM FOREST). BEST RESULTS IN BOLD.

the Adaboost and random forest performance converge with
the overall result improvement.

lesson learned: Powerful classifiers perform best when used
in all but first classifiers of the cascade. general progresses
in the field also call back into question the random forest
classifier predominance [5].

H. Soft cascade

We tested our pipeline with several variations of the famous
soft-cascade [8], ranked according to their speed-up and their
loss of discriminative power:

1) soft-cascade: The standard soft cascade [8] that adds one

feature value at each step of the cascade.

2) block-cascade: A more discriminative but slower version
of the soft cascade that adds one feature block at each
step of the cascade.

3) Reverse engineering : This method Learns first the clas-
sifier based on the full length descriptor and recursively
removes the less discriminative half until only 2 blocks
are left. It can be considered as a preprocessing step that
quickly prunes out most of the negatives before running
the standard cascade.

Results are presented in table VIIL.

Standard soft cascade provides results on par with the state-
of-the-art [8], which are significantly worse than our baseline.
This makes sense as classifiers trained on low feature dimen-
sionality are far less discriminative than full-length descriptors.
The preprocessing classifier based on reverse engineering
doesn’t degrade the results but provides only a 2-fold speedup.

lesson learned: These results may sound the death knell of
soft-cascade. If a soft-casacade provides a huge speed boost,
its classifiers are independently not discriminative enough to
compete with a the most recent classifiers trained on finely
selected instances.

L. Classifiers threshold setting

Training various classifiers on different data, with varying
features of a classifier cascade invariably leads to a set of
disparate classifiers. In addition to that, variations between
train and test sets may induce more discrepancies. The use
of any classifier cascade is pointless without a mechanism to
cope with these variations. To deal with it, the actual strategy
estimates and sets a different threshold ¢(C;) for each classifier
C;. Setting up a set of cascade thresholds is not an easy task
and the methods that tackle this particular pedestrian detection
sub-problem are, at best, empirical. During testing, the optimal
threshold setting is supposed to replicate the training phase
dataset reduction across the cascade. In other words, each step
should progressively eliminate harder negative examples while
the recall should remain close or equal to 1.

In order to compare the efficacy of various commonly
employed thresholding technique, we first needed to find the
optimal setting. We manually looked for the threshold set
leading to the best performance, exhaustively trying out all
possibilities with a 0.01 step. Then, we tested the following
methods:

1) Constant: Using the same threshold ¢(C;) = T for each
cascade classifier ¢(C;);4 = 0...1

2) Increasing: Monotonously increasing the classifiers
threshold. ¢(C;) = T + ¢ x 0.01.

3) Recall: Estimating thresholds during training such that
recall equals to r. This is the method most commonly
used in the literature.

4) Regular: Using the same purposely low threshold
t(C;) =T for each cascade classifier £(C;) and insuring
that d% of the remaining data are removed at each step
of the cascade.

the parameter 7, and d are manually set to the best per-
forming value. However, the same value is employed for
all datasets. 7=0.58 is utilized for experiment 1, 7=0.55
for experiment 2, and d=40% for experiment 4. Results are
displayed in table in table VIII.

This experiment revealed several interesting points. First of
all, while looking for the optimal thresholds, we stated that
they are not data but feature dependent. In other words, the
best threshold varies a lot when the feature dimensionality
changes but remain quite similar otherwise.

Second, the most common threshold estimation strategy (3),
along with the removal of a predefined amount of data at

JOURNAL OF IEEE ACCESS, SEPTEMBER 2018

[Method [INRIA [Speed(CPU/GPU)] [Method [CALETCH [Speed(CPU/GPU)]
HoG [16] 46% 0.5fps HoG [16] 69% 0.5fps
HoG-LBP [59] 39% Not provided DPM [24] 63.26% < lfps
MultiFeatures [60] 36% < Ifps FeatSynth [2] 60.16% < Ifps
FeatSynth [2] 31% < lfps MultiFeatures+CSS [57] 60.89% No
MultiFeatures+CSS [57] 25% No FPDW [17] 57.4% 2-5fps
Channel Features [18] 21% 0.5fps Channel Features [18] 56.34% 0.5fps
FPDW [17] 21% 2-5fps Roerei [4] 48.35% 1 fps
DPM [24] 20% < 1fps MOCO [13] 45.5% < 1fps
RF local experts [43] 15.4% 3fps JointDeep [47] 39.32% < 1fps
PCA-CNN [36] 14.24% < 0.1fps InformedHaar [66] 34.6% < 0.63fps
Ours - HoG 19.01 % 4/60fps katamari-v1 [5] 22.49% < 1fps
VeryFast [3] 18% 8/135fps FRCNN [51] 56% Ttps
‘WordChannels [15] 17% 0.5/8fps CrossTalk cascades [19] 53.88% 30-60fps
crossTalk cascades [19] 17% 30-60fps Ours - LBP 51.12% 3.6/54fps
Ours - LBP 17.28 % 3.7/54fps Ours - HoG 45.4% 3.9/58fps
Ours - HoG+LBP 17.08 % 2.6/39fps Ours - HoG+LBP 45.2% 1.8/27fps
SSD [38] 15% 56fps WordChannels [15] 42.3% 0.5/8fps
FRCNN [51] 13% Tfps SSD [38] 34% 56fps
RPN+PF [37] 7% 6fps RPN+PF [37] 10% 6fps

ABLE VI

COMPARISON WITH THE STATE-OF-THE-ART. NEAR REAL-TIME METHODS ARE SEPARATED FROM OTHERS. Ours 1S IN BOLD. DEEP LEARNING
TECHNIQUES ARE IN RED. COMPUTATION TIMES ARE CALCULATED ACCORDING TO 640x480 RESOLUTION FRAMES. THE USED METRIC IS THE
LOG-AVERAGE MISS RATE (THE LOWER THE BETTER).

[Soft cascade type [Feature | INRIA [Caltech | [Thresholding strategy [Feature [INRIA [Caltech |
No soft-cascade HoG 20.31% / 2.1fps 46.25% / 1.91ps Optimal HoG 17.89% | 42.67%
soft-cascade HoG 32.21% / 18.1fps | 58.26% / 17.8fps Constant HoG 20.23% | 46.25%
block soft-cascade HoG 27.86% / 9.9fps | 53.97% / 10.1fps Increasing HoG 21.44% | 47.25%
reverse engineering HoG 20.32% / 4 fps 46.23% / 3.9fps Recall HoG 25.01% | 50.88%
No soft-cascade LBP 18.42% / 1.91ps 51.36% / 1.7fps Regular HoG 2711% | 51.84%
soft-cascade LBP 30.87% / 17.8fps | 61.32% / 17.1fps Optimal LBP 15.44% | 42.45%
block soft-cascade LBP 28.33% / 9.8fps 55.45% 1 9.5fps Constant LBP 18.63% | 51.26%
reverse engineering LBP 18.41% / 3.7fps 51.33% / 3.6fps Increasing LBP 19.96% | 51.78%
Recall LBP 22.34% | 54.88%
TABLE VII
LAMR PERFORMANCE AND CPU SPEED IN FRAME-PER-SECOND OF Regular LBP 22.36% 62.53%
TABLE VIII

DIFFERENT SOFT-CASCADE STRATEGIES. SEE TEXT FOR THE DESCRIPTION
OF THE METHODS. BEST RESULTS IN BOLD.

each step (4) perform poorly when used with these classifiers
settings. The best performing thresholding technique uses a
constant threshold (1). This technique leads to an average
deletion of respectively 80% and 35% of the data during the
first 2 steps of the cascade, and 5-10% during the remaining
stages. Hence, we assume that the thresholding technique (3)
and (4) might also be dependent to classifier sets displaying a
rather regular deletion behaviour across the cascade steps.
Finally, all the tested techniques, are, on average performing
4.48% worse than the optimal. This elects threshold estimation
as a potentially rewarding research direction.

lesson learned: Counter-intuitively, the variability between
the threshold values is not much caused by the data, but mostly
by the features. None of existing approaches are close to
the optimal and there is still space for improvement in that
particular direction.

J. Non maximum suppression

Table IX covers our evaluation the 3 existing non-maximum
suppression algorithms previously described in section III-G.
The best results for both HoG and LBP features are always
obtained by the threshold non-maximum suppression with
an average 2% boost compared to the common greedy non-
maximum suppression.

lesson learned: Surprisingly, the choice of the non max-
imum suppression algorithm significantly impacts the over-

THRESHOLD ESTIMATION TECHNIQUES EVALUATION ON INRIA AND
CALTECH BENCHMARKS. SEE TEXT FOR THE DESCRIPTION OF THE
METHODS. BEST RESULTS IN BOLD.

[NMS type | Feature | INRIA | Caltech |
Greedy-NMS HoG 22.91% | 49.62%
t-NMS HoG 20.23% | 46.25%
s-NMS HoG 21.47% | 46.98 %
Greedy-NMS LBP 2021% | 52.32%
t-NMS LBP 18.63% | 51.26%
s-NMS LBP 19.87% | 52.65%

TABLE IX

NON-MAXIMUM SUPPRESSION ALGORITHM EVALUATION ON INRIA AND
CALTECH BENCHMARKS. BEST RESULTS IN BOLD.

all detector performance. The over-employed greedy non-
maximum suppression, that underperforms in every case,
shouldn’t be blindly chosen.

K. Comparison with the state-of-the-art

Table VI shows our method’s ranking compared to the state-
of-the-art, in terms of performance and speed. Table I param-
eters and random forest were employed for this experiment.
T'=0.58 is used for these runs. This work compares favorably
to the state-of-the-art. We used using Adaboost classifiers
and soft coding reverse engineering for this experiment.While
not being the best detector on the market, with respectively
17% and 46% log-average miss rate on the INRIA and
Caltech datasets, our approach still provides a very competitive
performance/speed ratio. For instance, it scores better than

JOURNAL OF IEEE ACCESS, SEPTEMBER 2018

the famous DPM [24] and similarly to the integral channel
features [17] while running 7 times faster. VeryFast [3] and
the crosstalk cascades provide a viable alternative in terms
of speed while displaying lower performance. LBP is the
best descriptor on the INRIA dataset, while HoGs show the
best performance on Caltech. We assume that the numerous
little pedestrians on the latter impact the texture descriptor
more strongly than the gradients. The HoG and LBP fusion
yields little improvement. Packed crowds, teensy pedestrians
and awkward poses remain the main failure cases. Finally,
Deep learning technique [36], [51] perform worse and are
slower, [37] performs much better but is slower, while [38]
is slightly more efficient and faster. It is worth stating that
careful machine learning choices and parametrisation can
bring standard features close to state-of-the-art deep learning
performance. The end-to-end system is trained in 4-14hours
on one core for 10-200K data and processes 3-4 fps on an
Intel Xeon 2.1GHz CPU, calculated over frames of 640x480
pixels in size. Further speed up is possible when using a
GPU, leading our detector to perform in real-time. This makes
this detector one of the best performing real-time pedestrian
detector to date.

V. CONCLUSION

This paper studied through extensive experimentation under-
explored mechanisms at various stages of a pedestrian clas-
sifier training, with an emphasis on data selection, dataset
generation at the initial stage and during the classifier cascade.
Our study highlighted data selection and non-maximum sup-
pression as underexploited components for high performance,
and soft-cascade thresholding assessment as potential research
direction. We also disproved a few empirically received ideas,
namely the predominance of the random forest classifier
(with high performing detectors) or the use of the DBSCAN
algorithm for data cleaning.
Besides extra experiments in domains such as active learning
or part-based models, the application of the optimized Fair-
Train pipeline to deep learning is an obvious possible next
step for this work.

VI. ACKNOWLEDGMENT

To appear in camera ready version.

REFERENCES

[1] T. Ahonen, A. Hadid, and M. Pietikinen. Face description with local bi-
nary patterns: Application to face recognition. PAMI, 28(12):20372041,
2006.

[2] A. Bar-Hillel, D. Levi, E. Krupka, and C. Goldberg. Part-based feature
synthesis for human detection. ECCV, 2010.

[3] R. Benenson, M. Mathias, R. Timofte, and L. V. Gool.
detection at 100 frames per second. CVPR, 2013.

[4] R. Benenson, M. Mathias, T. Tuytelaars, and L. V. Gool. Seeking the
strongest rigid detector. CVPR, 2013.

[5]1 R. Benenson, M. Omran, J. Hosang, and B. Schiele. Ten years
of pedestrian detection, what have we learned? ECCV, CVRSUAD
workshop, 2014.

[6] Y. Bengio, J. Louradour, R. Collobert, and J. Weston.
learning. /ICML, 2009.

[7]1 B. Berkin, B. K. Horn, and I. Masaki. Fast human detection with
cascaded ensembles on the gpu. IEEE Intelligent Vehicles Symposium,
2010.

[8] L. Bourdev and J. Brandt. Robust object detection via soft cascade.
CVPR, 20105.

Pedestrian

Curriculum

[9]
[10]

(11]

[12]
[13]
[14]

[15]

[16]
(17]
[18]
[19]
[20]
[21]
[22]

[23]

[24]

[25]
[26]
[27]
(28]
[29]

[30]
(31]
[32]
[33]
[34]

[35]
[36]
[37]
[38]
[39]
[40]

[41]

[42]

[43]
[44]

[45]

L. Breiman. Random forests. Machine Learning, 2001.

M. D. Buil. Non-maximum suppression. technical report ICG-TR-xxx,
2011.

X. Chang, Z. Ma, M. Lin, Y. Yang, and A. Hauptmann. Feature
interaction augmented sparse learning for fast kinect motion detection.
IEEE Transactions on Image Processing, 26(8):3911-3920, 2017.

X. Chang, Y. Yu, Y. Yang, and E. P. Xing. Semantic pooling for complex
event analysis in untrimmed videos. PAMI, 39(8):1617-1632, 2017.

G. Chen, Y. Ding, J. Xiao, and T. X. Han. Detection evolution with
multi-order contextual co-occurrence. CVPR, 2013.

E. Corvee and F. Bremond. Haar like and Ibp based features for face,
head and people detection in video sequences. ICVS, 2011.

A. D. Costea and S. Nedevschi. Word channel based multiscale
pedestrian detection without image resizing and using only one classifier.
CVPR, 2014.

N. Dalal and B. Triggs. Histograms of oriented gradients for human
detection. CVPR, 2005.

P. Dollar, S. Belongie, and P. Perona. The fastest pedestrian detector in
the west. BMVC, 2010.

P. Dollar, Z. Tu, P. Perona, and S. Belongie. Integral channel features.
BMVC, 2009.

P. Dollr, R. Appel, and W. Kienzle. Crosstalk cascades for frame-rate
pedestrian detection. ECCV, 2012.

P. Dollr, C. Wojek, B. Schiele, and P. Perona. Pedestrian detection: A
benchmark. CVPR, 2009.

P. G. Doyle and J. L. Snell. Random walks and electric networks. MAA,
1984.

C. Elkan. The foundations of cost-sensitive learning. Intl Joint Conf.
Artificial Intelligence, 2001.

M. Ester, H.-P. Kriegel, J. S. X. Xu, E. Simoudis, J. Han, and U. M.
Fayyad. A density-based algorithm for discovering clusters in large
spatial databases with noise. KDD-96, page 226231, 1996.

P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan. Ob-
ject detection with discriminatively trained part-based models. PAMI,
32(9):1627-1645, 2009.

P. F. Felzenszwalb, R. B. Girshick, and D. McAllester. Cascade object
detection with deformable part models. CVPR, 2010.

J. Ferryman and A. Shahrokni. An overview of the pets2009 challenge.
PETS, 2009.

J. Gall and V. Lempitsky.
detection. CVPR, 2009.

C. Galleguillos and S. Belongie. Context based object categorization:
A critical survey. CVIU, 114:712-722, 2010.

H. Han, W. Wang, and B. Mao. Borderline-smote: A new over-
sampling method in imbalanced data sets learning. Intl Conf. Intelligent
Computing, 2005.

H. He, Y. Bai, E. Garcia, and S. Li. Adasyn: Adaptive synthetic sampling
approach for imbalanced learning. Intl J. Conf. Neural Networks, 2008.
H. He and E. A. Garcia. Learning from imbalanced data. [EEE
transactions on Knowledge and data engineering, 21(9):1263-1284,
2009.

A. Hoiem and M. Efros. Putting objects in perspective. 1IJVC, 2008.
S. Hwang, T.-H. Oh, and I. S. Kweon. A two phase approach for
pedestrian detection. ACCV, 2014.

N. Japkowicz. Learning from imbalanced data sets: a comparison of
various strategies. AAAI Workshop on Learning from Imbalanced Data
Sets, 2000.

T. Jo and N. Japkowicz. Class imbalances versus small disjuncts. ACM
SIGKDD Explorations Newsletter, 6(1):40-49, 2004.

W. Ke, Y. Zhang, P. Wei, Q. Ye, and J. Jiao. Pedestrian detection via
pca filters based convolutional channel features. ICASSP, 2015.

Z. Liliang, L. Liang, L. Xiaodan, and H. Kaiming. Is faster r-cnn doing
well for pedestrian detection? ECCV, pages 443-457, 2016.

W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and
A. C. Berg. Ssd: Single shot multibox detector. ECCV, 2016.

W. Liu, X. Chang, L. Chen, and Y. Yang. Early active learning with
pairwise constraint for person re-identification. ECML, 2017.

W. Liu, C. Gao, X. Chang, and Q. Wu. Unified discriminating
feature analysis for visual category recognition. Journal of Visual
Communication and Image Representation, 40:772-778, 2016.

M. Luo, X. Chang, L. Nie, Y. Yang, A. Hauptmann, and Q. Zheng. An
adaptive semi-supervised feature analysis for video semantic recognition.
IEEE Transactions on Cybernetics, 48(2):648-660, 2018.

Z.Ma, X. Chang, Z. Xu, N. Sebe, and A. G. Hauptmann. Joint attributes
and event analysis for multimedia event detection. IEEE Trans. Neural
Netw. Learning Syst., 29(7):2921-2930, 20018.

J. Marin, D. Vazquez, A. M. Lopez, J. Amores, and B. Leibe. Random
forests of local experts for pedestrian detection. /CCV, 2013.

W. Nam, P. Dollar, and J. H. Han. Local decorrelation for improved
pedestrian detection. NIPS, 2014.

T. Ojala, M.Pietikinen, and T. Menp. Multiresolution gray-scale and

Class-specific hough forests for object

JOURNAL OF IEEE ACCESS, SEPTEMBER 2018

[46]

[47]
[48]
[49]
[50]
[51]
[52]
(53]
[54]
[55]
[56]
[57]
(58]
[59]
[60]

[61]
[62]
[63]

[64]
[65]
[66]
[67]
[68]

[69]

rotation invariant texture classification with local binary patterns. PAMI,
24(7):971-987, 2002.

T. Ojala, M. Pietikinen, and D. Harwood. A comparative study of texture
measures with classification based on feature distributions. Pattern
Recognition, 29:51-59, 1996.

W. Ouyang and X. Wang. Joint deep learning for pedestrian detection.
ICCV, 2013.

W. Ouyang and X. Wang. Single-pedestrian detection aided by multi-
pedestrian detection. CVPR, 2013.

D. P, C. Wojek, B. Schiele, and P. Perona. Pedestrian detection: An
evaluation of the state of the art. PAMI, 34(4):743-761, 2012.

D. Park, D. Ramanan, and C. Fowlkes. Multiresolution models for object
detection. ECCV, 2010.

S. Ren, K. Hen, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time
object detection with region proposal networks. NIPS, 2015.

M. Souded and F. Bremond. Optimized cascade of classifiers for people
detection using covariance features. VISAPP, 2013.

K. Ting. An instance-weighting method to induce cost-sensitive trees,.
IEEE Trans. Knowledge and Data Eng., 14(3):659-665, 2002.

I. Tomek. Two modifications of cnn. IEEE Trans. System, Man,
Cybernetics, 6(11):769-772, 1976.

R. Trichet and F. Bremond. Dataset optimisation for real-time pedestrian
detection. IEEE access, 6:7719 — 7727, 2018.

Viola and M. Jones. Rapid object detection using a boosted cascade of
simple features. CVPR, 2001.

S. Walk, N. Majer, K. Schindler, and B. Schiele. New features and
insights for pedestrian detection. CVPR, 2010.

B. Wang and N. Japkowicz. Imbalanced data set learning with synthetic
samples. IRIS Machine Learning Workshop, 2004.

X. Wang, T. X. Han, and S. Yan. An hog-lbp human detector with
partial occlusion handling. ICCV, 2009.

C. Wojek and B. Schiele. A performance evaluation of single and multi-
feature people detection. DAGM Symposium Pattern Recognition, pages
82-91, 2008.

B. Wu and R. Nevatia. Cluster boosted tree classifier for multi-view,
multi-pose object detection. ICCV, 2007.

Y. Y. X. Chang, L. Chen. Semi-supervised bayesian attribute learning
for person re-identification. AAAI, 2018.

R. S.Y. Freund. A decision-theoric generalization of online learning and
an application to boosting. Journal of Computer and System Sciences,
55(1):119139, 1997.

J. Yan. Robust multi-resolution pedestrian detection in traffic scenes.
CVPR, 2013.

R. Yan, Y. Liu, R. Jin, and A. G. Hauptmann. On predicting rare classes
with svm ensemble in scene classification. /CASSP, 2003.

S. Zhang, C. Bauckhage, and A. B. Cremers. Informed haar-like features
improve pedestrian detection. CVPR, 2014.

S. Zhang, R. Benenson, M. Omran, J. Hosang, and B. Schiele. How far
are we from solving pedestrian detection. CVPR, 2016.

Z. Zhiqiang, L. Zhihui, C. De, Z. Huaxzhang, Z. Kun, and Y. Yi. Two-
stream multi-rate recurrent neural network for video-based pedestrian re-
identification. IEEE Transactions on Industrial Informatics, 14(7):3179-
3186, 2017.

Q. Zhu, S. Avidan, M. Yeh, and K. Cheng. Fast human detection using
a cascade of histograms of oriented gradients. CVPR, 2006.

