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Abstract—Magnetic confinement fusion reactors are complex
devices where a large amount of energy is required to make
the fusion reactions happen. In such experimental conditios,
the Plasma Facing Components (PFC) are subjected to high
heat fluxes. In current tokamaks like Tore Supra, infrared
thermographic diagnotics based on image analysis and feedbk
control are used to measure and monitor the heating of the PFC
during plasma operation. The system consists in detectingigh
increase of the IR luminance signal beyond fixed temperature
thresholds for a set of predefined Regions of Interest (ROI).
Consequently, this system neither takes into account the grmal
objects outside of the ROI, nor the geometric information ofthe
detected thermal object. In this paper, we propose a new vish-
based approach for the automatic detection of thermal evest Fig. 1. ROl drawn by the user for the monitoring and the feetlbzontrol
This approach is composed of three main tasks: thermal objec to prevent from PFC overheating. Temperature thresholdsiraticated for
detection (1), classification (2), and thermal event recogion (3). €2ch RO
We present results of our approach for the recognition of one
critical thermal event and compare it with the previous sysem.

|I. INTRODUCTION

Magnetic confinement fusion is a more and more active fi
of research since nuclear fusion is considered as a pragig
approach for alternative energy production. One issuedotre §
a sufficient power balance in the future devices like ITER #
to rely on long plasma pulses with high auxiliary heatinge Th®
goal is to inject most of the available power while ensuring
the Plasma Facing Components (PFC) safety by limiting thi®- 2. A heating antenna with the its infrared image durirgathload.
power load just below their operational limits. To measuré a Electric arcing is visible on the bottom part of the infraiethge.
monitor the heating of the PFC during plasma operation, the
most efficient way is to collect surface temperature infdrama )
by using a network of infrared video cameras. Then a feedback  calibrated, -
control based on infrared image analysis is used to corteol t 2) it requires an operator for both editing the ROI each
heat loads in real-time. The image analysis part of the Tore time the PFC configuration changes and manually tune
Supra’s feedback control consists in detecting high irsees the temperature thresholds,
the IR luminance signal beyond fixed temperature thresholds3) thermal events outside of the ROI cannot be detected,
for a set of predefined Regions of Interest (ROI) (see figure 1) 4) the sensitivity to false detection is high: the preserice o
It has been successfully applied to the detection of some ©nly one noisy or dead pixel in a ROI with a temperature
thermal events [1], as electric arcing. These arcs are dause higher than the detection threshold is enough to raise a
by a potential difference between the two lateral shielda of false alarm, _ o _
heating antenna and can lead to the destruction of sensitive) different thermal events will not be discriminated if yhe
parts like the copper grills of the heating antennas (see Occur in the same ROL
figure 2). However, this system has several drawbacks amdsummary, a need exists in both automation of the procgssin
limitations: and better understanding and interpretation of infrareabies

1) working with temperature values make the strong aas, for instance, an accurate identification of new heating

sumption that the infrared digital sensors are always welbnes (hot spots). In this paper, we propose a new approach



for the automatic detection of Thermal Events (TE) inspired Four representatives thermographic behaviours of specific
from a video understanding framework [2] widely used ipatterns during a pulse are shown in figure 3 and describes
videosurveillance applications. The goal is to separate thelow:

domain expert knowledge on event modeling from the ima
processing tasks dedicated to the extraction of low level
features from visual data. The major advantage of such (g)
framework compared to the current system is thatethpgiori  (3)
knowledge of the scene is not inside the image but in the scene
model description.

(4)

Il. RECOGNITION OF THERMAL EVENTS

background pixels: the temporal evolution is practical
null,

reflection area from metallic component (normal TE),
hot spot: this is a normal thermal event caused by the
interaction of fast electrons with the PFC (guard limiter).
The temperature increases linearly in the time,

electric arcing: strong temperature peaks during the
steady state (abnormal TE).

The global dynamic of the infrared image sequences can-pe major difficulty is to be able to efficiently detect such
classified into two states: stead_y and transient. Duringdste {hermal events in a dynamic experimental context with a low
state, the average level of the pixel values does not changes;ise alarm rate. To this end, we follow a process chain as

very slowly. Transient states occur when the power injectiqytrated in figure 4 where each of the three main vision sask
is increased or modulated. In this case, the pixel variatiopy guided by the domain expert knowledge.

can be sudden. We call a thermal object a local region in
the image which has a high contrast with its neighbourhood.
A description of identified critical areas of potential oveat

and their related heat source can be found in [3]. Two kinds of
thermal objects can be detected in the infrared images: alorm
and abnormal. Usually normal thermal object dynamics evolv
with respect to the heat load whereas abnormal ones have a
thermal intensity which can unexpectedly increase, eafigci
during steady states.
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Fig. 4. Process chain of the proposed approach.

A. a priori knowledge formalization

More precisely, we use a formalized visual description of
the thermal events to detect. This description relies on a
visual concept ontology composed of generic spatiotenipora
attributes such as geometric and temporal cues [4]. The
main advantage in using such a symbolic description is its
reusability for other thermal events to recognize. Indeedial
concepts are an intermediate level that helps mapping low-
level numerical values to a domain class description. Fer th
arcing event, the description used is described in figure 5.

The local contrast of a region is defined as the ratio
% wherey,. is the mean value of the pixels in region
andy,,,- the mean value of the pixels surrounding the region
The AT velocity is the positive variation of the temperature
AT =T; — T;_; between the time intervaht = ¢; — t;_1.

B. Thermal object detection

Motion is a particularly important cue for object detec-
tion in image sequences. Indeed, a moving object is often
referred as an object of interest and can then be classified
as foreground. The simplest approach to detect moving pixel
in image sequences consist in subtracting the current frame
from a reference frame. Since background is rarely statjpna
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Fig. 6. Blobs featuresu(, h,0) and inter-blob featuresd(I) used by the
merging criteria.

Fig. 5. High-level description of an electric arc. Spatitifibutes have been

translated from physical values to pixel values. Tempottaibates Duration

have been t_ranslated from seconds to frames. Ranges vauesponds to  each other in this orientation. Two blobs and B, are defined
observed min and max. as visible for each other if the center Bf (resp.B,) is inside

the hatched zone formed WY, (resp.B;) as seen in figure 6.
the key issue for any background subtraction algorithm is e visibility is proportional to the inverse of the distan¢o
efficiently model the background and update it according tbe sizes, and to the horizontal elongations of the two blobs
the pixel variations. Many approaches have been proposedparameterd, w, andh). This criterion prevents from merging
background modeling based on unimodal distribution, mixtudistant small blobs. Then, a new bounding box including the
of gaussians or compressed models (see [5] for an overviet®o merged blobs is computed and the merging process is
Here the method of Butler et al. [6] is used. The basic idea tgpeated until no more merges are possible.
this method is to represent each pixgl in the frame by a 9roHP Thermal event recognition
of clusters. The clusters are sorted in order of the likeltho . .

Once each blob has been classified, the last task is to

that they model the background and are adapted to deal with : :
backgro}:md changes. Thge algorithm dependps on three miisognize the event patterns from the detected thermatisbje

free parameters: the number of clusters, the adaptatien r  this end, we also rely on tfepriori knowledge of figure 5.

and the foreground classification threshold. The adaptatite for rt]he specific case Of_ erI]ectrllc ar;nrr]]g, we use .three. aiteri
is directly linked up to the duration and the thermal evalnti or.t e event recognition: t € Size O.t € pa_ttern, 'ts. sr(qpe

of the thermal event to detect. A small rate will be adapted prizontal r(_ectangle_), and Its QUratlon. This step is asen
the detection of slow thermal events whereas a high ratéowill or the precise spatial localization of the event patterns.
adapted to the detection of rapid themal events such asielect [1l. EXPERIMENTAL RESULTS

arcing. Therefore the setting of this parameter dependstliir ~ To assess the performance of our system, we have compared
on thea priori knowledge given by the experts. In the samghe results of the arcing event detection with ground trutad
way, the foreground classification threshold can be comaechptained from manual annotations of a pulse dataset. Tse pul
to the temperature attributes. Basically, the parametesets gataset used for this evaluation is composed of 50 infrared
according to the local contrast attribute of the thermahéve fiims taken from two heating antennas (the two lower hybrid
Concerning the number of clusters, we observed only smajlrrent drive launchers). A total of 183 arcing events have
detection differences while varying the value (between @ ameen annotated. The videos are acquired at 50 frames per
5), so we decided to set it to 3 in order to maintain a goagbconds. The frame size is 32240 pixels. A pulse duratilon
trade-off between sensitivity and frame rate. is between 5 and 62 seconds. This corresponds to a total
Electrical arcs are oriented horizontally (in the video e&m plasma time of 1496 seconds. Counting results are reported

referential) with a strong infrared signature at the coprél iy taple 1. The frame rate of the C++ sofware implementation
level. Nevertheless, it is very rare to observe the entiteepa s gpout 23 frames per second.

in the infrared images. Most of the time, only a collection of

pattern subparts are visible and detected in the form ofrakve Antenna  no. of GT no. of detected arcing events
blobs by the segmentation algorithm. This is why a specific puzlzes - 1T3F; F3N F4P
merging process is necessary to reconstruct the wholegarcings 22 45 41 4 3
pattern. c2+C3 50 183 176 7 7
C. Thermal object classification TABLE |

According to the symbols used in figure 6, we have deﬁne%DETECTION RESULTS FOR THE ARCING EVENT WITH GROUND TRUTH
(GT), TRUE POSITIVE(TP), FALSE NEGATIVE (FN), AND FALSE POSITIVE

a blob merging criterion as follows: (FP)COUNTS.
HVCZ{linl < |y11|7Vi:1v2} (1)

This criterion favor the merge of blobs having the same Figure 7 presents visual results at each step of the system
orientation (here horizontal for the arcs) and capablsegiing and for four representative cases. False negative andvessit
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Fig. 7. system outputs after (a) ground truthm (b) motiorect&tn, foreground pixels are in black, (c) median filteramgl blob extraction, (d) blob merging,
and (e) arcing event recognition with corresponding bougdiox superimposed on original image.

results can be explained by the lack of precision of sonf® reach real-time constraints, we plan to implement the
annotations (ground truth errors), and by the detectioargrr thermal object detection algorithm on a FPGA . Finally, such
during the transient states. A simple triggering of the did@ a system could be a solution for the ITER project where wide
algorithm during the transient states should be enough dogle video cameras are planned for the PFC monitoring.
prevent from such false detections.
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