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Abstract

The objective of unsupervised person re-identification
(Re-ID) is to learn discriminative features without labor-
intensive identity annotations. State-of-the-art unsuper-
vised Re-ID methods assign pseudo labels to unlabeled
images in the target domain and learn from these noisy
pseudo labels. Recently introduced Mean Teacher Model is
a promising way to mitigate the label noise. However, dur-
ing the training, self-ensembled teacher-student networks
quickly converge to a consensus which leads to a local min-
imum. We explore the possibility of using an asymmetric
structure inside neural network to address this problem.
First, asymmetric branches are proposed to extract features
in different manners, which enhances the feature diversity
in appearance signatures. Then, our proposed cross-branch
supervision allows one branch to get supervision from the
other branch, which transfers distinct knowledge and en-
hances the weight diversity between teacher and student
networks. Extensive experiments show that our proposed
method can significantly surpass the performance of previ-
ous work on both unsupervised domain adaptation and fully
unsupervised Re-ID tasks.

1. Introduction

Person re-identification (Re-ID) targets at retrieving a
person of interest across non-overlapping cameras. Since
there are domain gaps resulting from illumination condi-
tion, camera property and view-point variation, a Re-ID
model trained on a source domain usually shows a huge per-
formance drop on other domains.

Unsupervised Domain Adaptation (UDA) targets at
shifting the model trained from a source domain with iden-
tity annotation to a target domain via learning from unla-
beled target images. In the real world, unlabeled images
in a target domain can be easily recorded, which is almost
labor-free. It is intuitive to use these images to adapt a pre-
trained Re-ID model to the desired domain. Fully unsuper-

vised Re-ID further minimises the supervision by removing
pre-training on the labelled source domain.

State-of-the-art UDA Person Re-ID methods [9, 28] and
unsupervised methods [18] assign pseudo labels to unla-
beled target images. The generated pseudo labels are gener-
ally very noisy. The noise is mainly from several inevitable
factors, such as the strong domain gaps and the imperfection
of clustering. In this way, an unsupervised Re-ID problem
is naturally transferred into Generating pseudo labels and
Learning from noisy labels problems, which is similar to
how unlabeled samples are used in Semi-supervised learn-
ing.

To generate pseudo labels, the most intuitive way is to
use a clustering algorithm, which gives a good starting point
for clustering based UDA Re-ID [30, 7]. Recently, Ge et
al. [9] propose to add a Mean Teacher [24] model as on-
line soft pseudo label generator, which effectively reduces
the error amplification during the training with noisy labels.
In this paper, we also use both clustering-based hard labels
and teacher-based soft labels in our baseline. We use a den-
sity based clustering (i.e., DBSCAN [6]) and dynamically
change the dimension of classifier, which surpasses the per-
formance of K-Means++ [1] with dimension-fixed classifier
used in [9].

To handle noisy labels, one of the most popular ap-
proaches is to train paired networks so that each network
helps to correct its peer, e.g., two-student networks in
Co-teaching [10] and two-teacher-two-student networks in
MMT [9]. However, these paired models with identical
structure are prone to converge to each other and get stuck
in a local minimum. There are several attempts to allevi-
ate this problem, such as Co-teaching+ [29], ACT [28] and
MMT [9]. These attempts of keeping divergence between
paired models are mainly based on either different train-
ing sample selection [29, 28] or different initialization and
data augmentation[9]. In this paper, we propose a strong
alternative by designing asymmetric neural network struc-
ture in the Mean Teacher Model. We use two independent
branches with different depth and global pooling methods
as last layers of a neural network. Features extracted from

1



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

WACV
#67

WACV
#67

WACV 2021 Submission #67. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

both branches are concatenated as the appearance signa-
ture, which enhances the feature diversity in the appear-
ance signature and allows to get better clustering-based hard
labels. Soft pseudo labels generated by the teacher net-
work are used to supervise the student network in a cross-
branch manner, which enhances the divergence between
paired teacher-student networks. Our proposed decoupling
method does not rely on different source domain initializa-
tions, which makes it more effective in the fully unsuper-
vised scenario where the source domain is not available.

In summary, our contributions are:

1. We propose to enhance the feature diversity inside
person Re-ID appearance signatures by splitting last
layers of a backbone network into two asymmetric
branches, which increases the quality of clustering-
based hard labels.

2. We propose a novel decoupling method where asym-
metric branches get cross-branch supervision, which
avoids weights in paired teacher-student networks con-
verging to each other and increases the quality of
teacher-based soft labels.

3. Extensive experiments and ablation study are con-
ducted to validate the effectiveness of each proposed
component and the whole framework.

2. Related Work
Unsupervised domain adaptive Re-ID. Recent unsuper-
vised cross-domain Re-ID methods can be roughly catego-
rized into distribution alignment and pseudo label based
adaptation. The objective of distribution alignment is to
learn domain invariant features. Several attempts [25, 16]
leverage semantic attributes to align the feature distribution
in the latent space. However, these approaches strongly rely
on extra attribute annotation, which require extra labor. An-
other possibility is to align the feature distribution by trans-
ferring labeled source domain images into the style of tar-
get domain with generative adversarial networks [26, 34, 3].
Style transferred images are usually combined with pseudo
label based adaptation to get a better performance. Pseudo
label based adaptation is a more straightforward approach
for unsupervised cross-domain Re-ID, which directly as-
signs pseudo labels to unlabelled target images and allows
to fine-tune a pre-trained model in a supervised manner.
Clustering algorithms are widely used in previous unsu-
pervised cross-domain Re-ID methods. UDAP [23] pro-
vides a good analysis on clustering based adaptation and
use a k-reciprocal encoding [32] to improve the quality
of clusters. PCB-PAST [30] simultaneously learns from a
ranking-based and clustering-based triplet losses. SSG [7]
assigns clustering-based pseudo labels to both global and
local features. To mitigate the clustering-based label noise,

researchers borrow ideas from how unlabeled data is used
in Semi-supervised learning and Learning from noisy la-
bels. ENC [35] uses an exemplar memory to save averaged
features to assign soft labels. ACT [28] splits the training
data into inliers/outliers to enhance the divergence of paired
networks in Co-teaching [10]. MMT [9] adopts two stu-
dent and two Mean Teacher networks. Two students are
initialized differently from source pre-training in order to
enhance the divergence of paired teacher-student networks.
Each mean teacher network provides soft labels to super-
vise peer student network. However, despite different ini-
tializations at the beginning of adaptation, the decoupling is
not encouraged enough during the training. We directly use
asymmetric neural network structure inside teacher-student
networks, which encourages the decoupling at all epochs.

Fully unsupervised Re-ID. Recently, several fully unsu-
pervised Re-ID methods are proposed to further minimize
the supervision, which does not require any Re-ID anno-
tation. A bottom-up clustering framework is proposed in
BUC [17], which trains a network based on the clustering-
based pseudo labels in an iterative way. [18] replaces
clustering-based pseudo labels with similarity-based soft-
ened labels. Different to image-based unsupervised Re-
ID, [27] learns tacklet information with clustering-based
pseudo labels. In our proposed method, both hard and soft-
ened pseudo labels are used. Asymmetric structure is pro-
posed to enhance the diversity during the training process
to increase the quality of pseudo labels, which helps us to
outperform state-of-the-art methods.

Teacher-Student Network for Semi-Supervised Learn-
ing. Unsupervised domain adaptation can be regarded to
some extent as Semi-Supervised Learning (SSL), since both
of them utilize labeled data (source domain for UDA) and
large amount of unlabeled data (target doamin for UDA).
A teacher-student structure is commonly used in SSL. This
structure allows student network to gradually exploit un-
labeled data under consistency constraints. In Π model
and Temporal ensembling [15], the student learns from ei-
ther samples forwarded twice with different noise or ex-
ponential moving averaged (EMA) predictions under con-
sistency constraints. Instead of EMA predictions, Mean-
teacher model [24] use directly the EMA weights from the
student to supervise the student under a consistency con-
straint. Authors of Dual student [14] point out that the Mean
Teacher converging to student along with training (coupling
problem) prevents the teacher-student from exploiting more
meaningful information from data. Inspired by Deep Co-
training [21], they propose to train two independent students
on stable samples which have same predictions and enough
large feature difference. However, in unsupervised cross-
domain Re-ID, labeled source domain and unlabeled target
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Figure 1. Source domain pre-training for asymmetric branched
network. One ResNet bottleneck block corresponds to three con-
volutional layers. For UDA setting, inputs are labelled images
from source training set.

domain do not share the same identity classes, which makes
traditional close-set SSL methods hard to use.

3. Proposed Method
3.1. Overview

Given two datasets: one labeled source dataset Ds and
one unlabeled target dataset Dt, the objective of UDA is to
adapt a source pretained model Mpre to the target dataset
with unlabeled target data. To achieve this goal, we propose
a two-staged adaptation approach based on Mean Teacher
Model. We focus on the coupling problem (teacher and
student converge to each other) existing inside the original
Mean Teacher. Asymmetric branches and cross-branch su-
pervision are proposed in this paper to address this problem
and to enhance the diversity in the network, which show
great effectiveness for UDA Re-ID.

3.2. Asymmetric branches

A multi-branch structure is widely used in the fully su-
pervised Re-ID methods, especially in global-local feature
based methods [8, 4, 2]. Such structure keeps independence
between branches, which makes features extracted from
different branches diversified. In the unsupervised Re-ID,
we conduct clustering on appearance signatures to generate
pseudo labels. The quality of pseudo labels is strongly de-
pended on the quality of appearance signatures. We want to
extract distinct meaningful features from different branches.
Thus, we duplicate last layers of a backbone network and
make them different in the structure, which we call Asym-
metric Branches.

Asymmetric branches are illustrated in Figure 1. For a
ResNet-based [11] backbone, the layer 4 is duplicated. The
first branch is kept unchanged as the one used in the original
backbone: 3 bottlenecks and global average pooling (GAP).
The second branch is composed of 4 bottlenecks and global
max pooling (GMP). The GAP perceives global informa-

tion, while the GMP focuses on the most discriminative in-
formation (most distinguishable identity information, such
as a red bag or a yellow t-shirt). Asymmetric branches im-
prove appearance signature quality by enhancing the feature
diversity, which is validated by source pre-training perfor-
mance boost in Table 3 as well as examples in Figure 5.
They further improve the quality of pseudo labels during
the adaptation, which is validated by target adaptation per-
formance in Table 3.

3.3. Asymmetric Branched Mean Teaching

We call our proposed adaptation method Asymmetric
Branched Mean Teaching (ABMT). Our proposed ABMT
contains two stages: Source pre-training and Target adapta-
tion.

3.3.1 Source domain supervised pre-training

In the first stage, we train a network in the fully supervised
way on the source domain. Thanks to this stage, the model
used for adaptation obtains a basic Re-ID capacity, which
helps to alleviate pseudo label noise. Given a source sam-
ple xsi and its ground truth identity y′i, the network (with
weight θ) encodes xsi into average Fa(xsi |θ) and max fea-
tures Fm(xsi |θ) and then gets two predictions Pa(xsi |θ) and
Pm(xsi |θ). Cross-entropy and batch hard triplet [12] losses
are used in this stage as shown in Figure 1.

Lce(yi, y
′
i) = −

∑
i

y′i log(yi) (1)

Ltri(ai,pi,nj) =

P∑
i=1

K∑
a=1

[ max
p=1,...,K

‖ai − pi‖2

− min
n=1,...,K
j=1,...,P

j 6=i

‖ai − nj‖2 + α]+
(2)

where ‖ai − pi‖2 is Euclidean distance between anchor
feature vector ai and positive feature vector pi, while
‖ai − nj‖2 is Euclidean distance between anchor feature
vector ai and negative feature vector ni.

The whole network is trained with a combination of both
losses:

Lscr =λsceLce(Pa(xsi |θ), y′i) + λsceLce(Pm(xsi |θ), y′i)
+ λstriLtri(Pa(xsi |θ), Pa(xsp|θ), Pa(xsn|θ))
+ λstriLtri(Pm(xsi |θ), Pm(xsp|θ), Pm(xsn|θ))

(3)

3.3.2 Target domain unsupervised adaptation

The adaptation procedure is illustrated in Figure 2. It con-
tains two components: Clustering-based hard label genera-
tion and Cross-branch teacher-based soft label training. Af-
ter adaptation, only teacher network is used during the in-
ference.
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Figure 2. ABMT adaptation. For UDA setting, inputs are training set images from both source and target domains. For fully unsupervised
setting, inputs are unlabeled images from target training set.

Clustering-based hard label generation. In previous
UDA Re-ID methods, distance-based K-Means [9] and
density-based clustering DBSCAN [28, 23] are main ap-
proaches to generate pseudo labels. In the real world, it is
hard to know the class number in the target domain, which
makes K-Means unpractical.

We follow the state-of-the-art density-based clustering
method in [23]. To adapt it to our proposed asymmet-
ric branches, we concatenate the average and max features
from asymmetric branches in the teacher network as ap-
pearance signatures. Images belonging to the same identity
should have same nearest neighbors in the feature space.
Distance metric for DBSCAN are obtained by k-reciprocal
re-ranking encoding [32] between target domain and source
domain samples.

A density-based clustering generates unfixed cluster
numbers at different epochs, which means old classifiers
from last epoch can not be reused after a new clustering.
Thus, we simply create new classifiers depending on the
number of clusters at the beginning of each epoch. We
take normalized mean features of each cluster from average
branch to initialize the average branch classifiers and sim-
ilarly those from max branch to initialize the max branch
classifiers. We call them Dynamic Classifiers. With the
help of Dynamic Classifiers, the student is trained on clus-
ter components (outliers are discarded) with cross-entropy
loss:

Lce = −
∑
i

(y′i log(Pm(xti|θ)))−
∑
i

(y′i log(Pa(xti|θ)))

(4)
where y′i is the clustering based hard label and Pa(xti|θ)
and Pm(xti|θ) are student predictions from both asymmetric
branches.

Cross-branch teacher-based soft label training. Clus-
tering algorithms generate hard pseudo labels whose con-
fidences are 100%. Since Re-ID is a fine-grained recogni-
tion problem, people with similar clothes are not rare in the
dataset. Hard pseudo labels of these similar samples can
be extremely noisy. In this case, soft pseudo labels (confi-
dences< 100%) are more reliable. Learning with both hard
and soft pseudo labels can effectively alleviate label noise.

The Mean Teacher Model [24] (teacher weights θ′) uses
the EMA weights of the student model (student weights
θ), which shows strong capacity to handle label noise and
avoids error amplification along with training. We define θ′t
at training step t as the EMA of successive weights:

θ′t =

{
θt, if t = 0

αθ′t−1 + (1− α)θt, otherwise
(5)

where α is a smoothing coefficient that controls the self-
ensembling speed of the Mean Teacher.

Despite these advantages of Mean Teacher, such self-
ensembling teacher-student networks (the teacher is formed
by EMA weights of the student, and the student is super-
vised by the teacher) face the coupling problem. We use
the Mean Teacher soft label generator as in [9] and ad-
dress the coupling problem by cross-branch supervision.
Each branch in the student is supervised by a teacher
branch which has different structure. Weight diversity be-
tween the paired teacher-student can be better kept. Given
one target domain sample xti, the teacher (teacher weights
θ′) encodes it into two feature vectors from two asym-
metric branches, average features Fa(xti|θ′) and max fea-
tures Fm(xti|θ′). The dynamic classifiers then transform
these two feature vectors into two predictions respectively
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Pa(xti|θ′) and Pm(xti|θ′). Similarly, features of the student
(student weights θ) are Fa(xti|θ) and Fm(xti|θ), while pre-
dictions are Pa(xti|θ) and Pm(xti|θ). The predictions from
the teacher supervise those from the student with a soft
cross-entropy loss [13] in a cross-branch manner, which can
be formulated as

La→m
sce = −

∑
i

(Pa(xti|θ′) log(Pm(xti|θ))) (6)

Lm→a
sce = −

∑
i

(Pm(xti|θ′) log(Pa(xti|θ))) (7)

To further enhance the teacher-student networks’ discrimi-
native capacity, the features in the teacher supervise those
of the student with a soft triplet loss [9]:

La→m
stri = −

∑
i

(Ta(xti|θ′) log(Tm(xti|θ))) (8)

Lm→a
stri = −

∑
i

(Tm(xti|θ′) log(Ta(xti|θ))) (9)

where T (xti|θ) =
exp(‖F (xti|θ)−F (xtp|θ)‖2

)

exp(‖F (xti|θ)−F (xtp|θ)‖2
)+exp(‖F (xti|θ)−F (xtn|θ)‖2

)

is the softmax triplet distance of the sample xti, its hardest
positive xtp and its hardest negative xtn in a mini-batch.
By minimizing the soft triplet loss, the softmax triplet
distance in a mini-batch from the student is encouraged to
get as close as possible to the distance from the teacher.
The positive and negative samples within a mini-batch
are decided by clustering-based hard pseudo labels. It
can effectively improve the UDA Re-ID performance.
The teacher-student networks are trained end-to-end with
Equation (4), (6), (7), (8), (9).

Ltarget =λtceLce + λtsce(L
a→m
sce + Lm→a

sce )

+ λtstri(L
a→m
stri + Lm→a

stri )
(10)

4. Coupling Problem in Mean Teacher Based
Methods

The Mean Teacher Baseline is illustrated in Figure 3
(a) where the student gets supervision from its own EMA
weights. In the Mean Teacher Baseline, the student and the
teacher quickly converge to each other (coupling problem),
which prevents them from exploring more diversified infor-
mation. Authors of MMT [9] propose to pre-train 2 student
networks with different seeds. As illustrated in Figure 3
(b), two Mean Teacher networks are formed separately from
two students, which alleviates the coupling problem. How-
ever, different initializations decouple two teacher peers
only at first epochs. Without a diversity encouragement dur-
ing the adaptation, two teachers still converge to each other
along with training. In Figure 3 (c), our proposed asym-
metric branches provide a diversity encouragement during

the adaptation, which decouples both teacher peers at all
epochs.

To validate our idea, we propose to measure Euclidean
distance of appearance signature features between two
teacher networks or two teacher branches. We extract fea-
ture vectors after global pooling on all images in the tar-
get training set. Then, we calculate the Euclidean distance
between feature vectors of both teachers and sum up the
distance of every image as the final feature distance. If
the feature distance is large, we can say that both teacher
peers extract diversified features. Otherwise, the teacher
peers converge to each other. As we can see from the left
curves in Figure 4, the feature distance between two teach-
ers in MMT is large at the beginning, but it decreases and
then stabilizes. Differently, the feature distance between
two branches in our proposed method is always large during
the training. Moreover, we visualize the Euclidean distance
of appearance signature features on all target training sam-
ples between teacher and student networks in Figure 4 right
curves. Our method can maintain a larger distance, which
shows that it can better decouple teacher-student networks.

5. Experiments
5.1. Datasets and Evaluation Protocols

Our proposed adaptation method is evaluated on 3 Re-
ID datasets: Market→ Duke, Duke → Market, Market →
MSMT and Duke→ MSMT. Market-1501 [31] dataset is
collected in front of a supermarket in Tsinghua University
from 6 cameras. It contains 19,732 images of 751 identi-
ties in the training set and 12,936 images of 750 identities
in the testing set. DukeMTMC-reID [22] is a subset of
the DukeMTMC dataset. It contains 16,522 images of 702
persons in the training set, 2,228 query images and 17,661
gallery images of 702 persons for testing from 8 cameras.
MSMT17 [26] is a large-scale Re-ID dataset, which con-
tains 32,621 training images of 1,041 identities and 93,820
testing images of 3,060 identities collected from 15 cam-
eras. Both Cumulative Matching Characteristics (CMC)
and mean Average Precisions (mAP) are used in our ex-
periments.

5.2. Implementation details

Hyper-parameters used in our proposed method are
searched empirically from the Market→Duke task and kept
the same for the other tasks. To conduct fair comparison
with state-of-the-arts, we use a ImageNet [5] pre-trained
ResNet-50 [11] as our backbone network. The backbone
can be extended to ResNet-based networks designed for
cross domain tasks, e.g., IBN-ResNet-50 [19]. An Adam
optimizer with a weight decay rate of 0.0005 is used to op-
timize our networks. Our networks are trained on 4 Nvidia
1080Ti GPUs under Pytorch [20] framework. Detailed con-
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Figure 3. Comparison between (a) Mean Teacher Baseline (b) Mutual Mean Teaching [9] and (c) our Mean Teacher with cross-branch
supervised asymmetric branches. Teacher network is formed by exponential moving average (EMA) values of student network.

Figure 4. Distance comparison between features extracted from a ResNet50 backbone on all samples in DukeMTMC-reid training set for
Market → Duke task. Left: Feature distance between two teacher models in MMT and between two teacher branches in our proposed
method. Right: Feature distance between teacher and student networks.

figurations are given in the following paragraphs.

Stage1: Source domain supervised pre-training. We
set λsce = 0.5 and λstri = 0.5 in Equation 3. The max
epoch Epre is set to 80. For each epoch, the networks are
trained Rpre = 200 iterations.The initial learning rate is
set to 0.00035 and is multiplied by 0.1 at the 40th and 70th
epoch. For each iteration, 64 images of 16 identities are
resized to 256*128 and fed into networks.

Stage2: Target domain unsupervised adaptation. For
the clustering, we set the minimum cluster samples to 4 and
the density radius p=0.002. Re-ranking parameters for cal-
culating distances are kept the same as in [23] for UDA
setting. Re-ranking between source and target domain is
not considered for fully unsupervised setting. The Mean
Teacher network is initialized and updated in the way of
Equation 5 with a smoothing coefficient α = 0.999. We
set λtce = 0.5, λtsce = 0.5 and λtstri = 1 in Equation 10.
The adaptation epoch Eada is set to 40. For each epoch,
the networks are trained Rada = 400 iterations with a fixed
learning rate 0.00035. For each iteration, 64 images of 16
clustering-based pseudo identities are resized to 256*128
and fed into networks with Random erasing [33] data aug-
mentation.

5.3. Comparison with State-of-the-Art Methods

We compare our proposed methods with state-of-the-
art UDA methods in Table 1 for 4 cross-dataset Re-ID
tasks: Market→ Duke, Duke→Market, Market→MSMT
and Duke→ MSMT. Post-processing techniques (e.g., Re-
ranking [32]) are not used in the comparison. Our proposed
method outperforms MMT [9] (cluster number is set to 500,
700 and 1500 respectively). We can also adjust the density
radius in DBSCAN depending on target domain size to get
a better performance, but we think it is hard to know the tar-
get domain size in the real world. With an IBN-ResNet50
[19] backbone, the performance on 4 tasks can be further
improved. Examples of retrieved images are illustrated in
Figure 5. Compared to MMT, embeddings from our pro-
posed method contains more discriminative appearance in-
formation (e.g., shoulder bag in the first row), which are ro-
bust to noisy information (e.g., pose variation in the second
row, occlusion in the third row and background variation in
the fourth row). This qualitative comparison confirms that
appearance signatures of our proposed method are of good
quality.

We compare unsupervised Re-ID methods in Table 2.
Since the Mean Teacher is designed for handling label
noise, it is interesting to see the performance without source
pre-training, which introduces more label noise during the
adaptation. This setting corresponds to an unsupervised Re-
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UDA Methods Market→ Duke Duke→Market Market→MSMT Duke→MSMT
mAP Rank1 mAP Rank1 mAP Rank1 mAP Rank1

HHL (ECCV’18)[34] 27.2 46.9 31.4 62.2 - - - -
UDAP (Arvix’18)[23] 49.0 68.4 53.7 75.8 - - - -
ENC (CVPR’19)[35] 40.4 63.3 43.0 75.1 8.5 25.3 10.2 30.2
PCB-PAST (ICCV’19)[30] 54.3 72.4 54.6 78.4 - - - -
SSG (ICCV’19)[7] 53.4 73.0 58.3 80.0 13.2 31.6 13.3 32.2
ACT (AAAI’20)[28] 54.5 72.4 60.6 80.5 - - - -
MMT500 (ICLR’20)(ResNet50)[9] 63.1 76.8 71.2 87.7 16.6 37.5 17.9 41.3
MMT700 (ICLR’20)(ResNet50)[9] 65.1 78.0 69.0 86.8 - - - -
MMT1500 (ICLR’20)(ResNet50)[9] - - - - 22.9 49.2 23.3 50.1
ours (ResNet50) 69.1 82.0 78.3 92.5 23.2 49.2 26.5 54.3
MMT500 (ICLR’20)(IBN-ResNet50)[9] 65.7 79.3 76.5 90.9 19.6 43.3 23.3 50.0
MMT700 (ICLR’20)(IBN-ResNet50)[9] 68.7 81.8 74.5 91.1 - - - -
MMT1500 (ICLR’20)(IBN-ResNet50)[9] - - - - 26.6 54.4 29.3 58.2
ours (IBN-ResNet50) 70.8 83.3 80.4 93.0 27.8 55.5 33.0 61.8

Table 1. Comparison of unsupervised domain adaptation (UDA) Re-ID methods (%) on medium-to-medium datasets (Market→ Duke and
Duke → Market) and medium-to-large datasets (Market → MSMT and Duke → MSMT).

Unsupervised methods Market Duke
mAP Rank1 mAP Rank1

MMT500*(ICLR’20)[9] 26.9 48.0 7.3 12.7
BUC (AAAI’19)[17] 30.6 61.0 21.9 40.2
SoftSim (CVPR’20)[18] 37.8 71.7 28.6 52.5
TSSL (AAAI’20)[27] 43.3 71.2 38.5 62.2
MMT*+DBSCAN (ICLR’20)[9] 53.5 73.1 54.5 69.5
ours w/o Source pre-training 65.1 82.6 63.1 77.7

Table 2. Comparison of unsupervised Re-ID methods (%) with
a ResNet50 backbone on Market and Duke datasets. * refers to
our implementation where we remove the source pre-training step.
DBSCAN refers to a DBSCAN clustering based on re-ranked dis-
tance.

ID. We use ImageNet initialization at the beginning of the
adaptation. Our proposed method outperforms previous un-
supervised Re-ID by a large margin, which shows that Ima-
geNet initialization can provide basic discriminative capac-
ity for Re-ID.

MMT [9] is the first UDA Re-ID method that uses a
Mean Teacher based soft label generator. Authors of MMT
propose to use 2 students and 2 teachers with different ini-
tialization and stochastic data augmentation to address the
coupling problem. We also use Mean Teacher soft pseudo
labels but propose a different decoupling solution. Features
in asymmetric branches are always extracted in different
manners during the adaptation. Compared to MMT, our
proposed method has less parameters but achieves better
performance. Moreover, in the unsupervised scenario, we
can not pre-train MMT with different seeds to obtain differ-
ent Re-ID initializations. This decoupling strategy becomes
inappropriate. Our decoupling strategy relies on struc-
tural asymmetry instead of different initializations, which
is much more effective in the unsupervised scenario.

ACT [28] uses 2 networks, in which each network learns
from its peer. Input data are split into inliers and ouliers

Figure 5. Examples of retrieved most similar 5 images in Market
→ Duke task from MMT [9] and our proposed method. Given
a query image, different identity images are highlighted by red
bounding boxes, while same identity images are highlighted by
green bounding boxes.

after DBSCAN. Then, the first network selects small en-
tropy inliers to train the second network, while the second
selects small entropy outliers to train the first. This method
enhances input asymmetry by data split. Differently, our
proposed method focuses on neural network structure asym-
metry. Features are extracted in different ways from same
inputs by asymmetric branches, which effectively enhances
feature diversity.

5.4. Ablation Studies

Effectiveness of each component in ABMT. Compared
with traditional clustering-based Re-ID methods, the perfor-
mance improvement mainly comes from DBSCAN on re-
ranked distance, asymmetric branches and cross-branch su-
pervision. We use a Mean Teacher Baseline where original
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Source pre-training Market→ Duke Duke→Market
mAP Rank1 mAP Rank1

ResNet50 29.6 46.0 31.8 61.9
ResNet50+AB 31.5 49.7 33.2 63.2

Target adaptation Market→ Duke Duke→Market
mAP Rank1 mAP Rank1

MT-Baseline+K-Means 59.9 74.8 68.9 88.2
MT-Baseline+DBSCAN 61.9 77.3 69.9 88.3
MT-Baseline+K-Means+AB 64.7 78.1 74.8 90.5
MT-Baseline+K-Means+AB+Cross-branch 66.4 79.9 76.8 91.7
MT-Baseline+DBSCAN+AB 67.8 81.1 77.3 92.0
ABMT(MT-Baseline+DBSCAN+AB+Cross-branch) 69.1 82.0 78.3 92.5
ABMT+Stochastic data augmentation 68.8 81.2 77.6 91.7
ABMT+Drop out 68.3 81.8 77.9 92.0
ABMT+One more branch 68.1 80.7 76.2 90.4

Table 3. Ablation studies with ResNet50 backbone. MT-Baseline corresponds to the Mean Teacher Baseline in Figure 3 (a) with a ResNet-
50. K-Means refers to a K-Means++ clustering whose cluster number is set to 500. AB refers to asymmetric branches. DBSCAN refers to
a DBSCAN clustering [6].

ResNet-50 and a K-Means++ clustering of 500 clusters are
adopted. We conduct ablation studies by gradually adding
one component at each time. Results are shown in Table
3. We can observe: (1) Our proposed asymmetric branches
bring the most significant performance improvement dur-
ing the adaptation. Moreover, as we can see from first two
rows in Table 3, they can directly improve the domain gen-
eralizability of appearance signatures without target adapta-
tion. (2) DBSCAN on re-ranked distance works better than
a K-Means++ clustering of 500 clusters during the adap-
tation. (3) Cross-branch supervision works on asymmetric
branches, which can further improve the adaptation perfor-
mance.

Can traditional decoupling methods further improve
the performance? Enhancing prediction consistency be-
tween the teacher and the student under some random noise
can effectively improve the performance of SSL. Stochas-
tic data augmentation (teacher inputs and student inputs are
under stochastic data augmentation methods) and drop out
(teacher feature vectors and student feature vectors are un-
der independent drop out operations before classifiers) are 2
widely-used methods to provide random noise, which also
helps to decouple the weights between the teacher and the
student. We conduct experiments with stochastic data aug-
mentation (random cropping, random flipping and random
erasing) and independent drop out (probability=0.5). The
results in Table 3 show that they can not further improve
the UDA Re-ID performance. These methods are not de-
signed for fine-grained Re-ID task. When UDA Re-ID per-
formance is already very high, they can not contribute any-
more.

Can more branches further improve the performance?
We add one more branch to our proposed ABMT. To keep

the structural asymmetry in the new branch, the new branch
is composed of 5 bottleneck blocks and global average pool-
ing (GAP). We adapt the cross-branch supervision to three
branches (1 → 2, 2 → 3 and 3 → 1). Results are reported
in Table 3. The third branch worsens the performance. We
argue that the new branch features are not enough distinc-
tive to those from original two branches, which increases
the feature duplicateness and worsens the appearance sig-
nature quality.

6. Conclusion
In this paper, we propose a novel unsupervised cross-

domain Re-ID framework. Our proposed method is mainly
based on learning from noisy pseudo labels generated by
clustering and Mean Teacher. A self-ensembled Mean
Teacher is robust to label noise, but the coupling problem
inside paired teacher-student networks leads to a perfor-
mance bottleneck. To address this problem, we propose
asymmetric branches and cross-branch supervision, which
can effectively enhance the diversity in two aspects: appear-
ance signature features and teacher-student weights. By en-
hancing the diversity in the teacher-student networks, our
proposed method achieves good performance on both unsu-
pervised domain adaptation and fully unsupervised Re-ID
tasks. In future work, we are interested in investigating the
performance of other Semi-Supervised Learning methods
in unsupervised Re-ID. We are also in exploring the effec-
tiveness of our proposed method in other applications, e.g.,
Face Recognition.
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Andreas Köpf, Edward Yang, Zach DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu
Fang, Junjie Bai, and Soumith Chintala. Pytorch: An im-
perative style, high-performance deep learning library. In
NeurIPS, 2019. 5

[21] Siyuan Qiao, Wei Shen, Zhishuai Zhang, Bo Wang, and Alan
Yuille. Deep co-training for semi-supervised image recogni-
tion. In Proceedings of the european conference on computer
vision (eccv), pages 135–152, 2018. 2

[22] Ergys Ristani, Francesco Solera, Roger Zou, Rita Cucchiara,
and Carlo Tomasi. Performance measures and a data set for
multi-target, multi-camera tracking. In European Confer-
ence on Computer Vision workshop on Benchmarking Multi-
Target Tracking, 2016. 5

[23] Liangchen Song, Cheng Wang, Lefei Zhang, Bo Du, Qian
Zhang, Chang Huang, and Xinggang Wang. Unsuper-
vised domain adaptive re-identification: Theory and practice.
arXiv preprint arXiv:1807.11334, 2018. 2, 4, 6, 7

[24] Antti Tarvainen and Harri Valpola. Mean teachers are better
role models: Weight-averaged consistency targets improve
semi-supervised deep learning results. In NIPS, 2017. 1, 2,
4

[25] Jingya Wang, Xiatian Zhu, Shaogang Gong, and Wei Li.
Transferable joint attribute-identity deep learning for unsu-
pervised person re-identification. 2018 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pages
2275–2284, 2018. 2

[26] Longhui Wei, Shiliang Zhang, Wen Gao, and Qi Tian.
Person transfer gan to bridge domain gap for person re-
identification. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 79–88, 2018.
2, 5

[27] Guile Wu, Xiatian Zhu, and Shaogang Gong. Track-
let self-supervised learning for unsupervised person re-
identification. In AAAI 2020, 2020. 2, 7

[28] Fengxiang Yang, Ke Li, Zhun Zhong, Zhiming Luo, Xing
Sun, Hao Cheng, Xiaowei Guo, Feiyue Huang, Rongrong
Ji, and Shaozi Li. Asymmetric co-teaching for unsupervised
cross domain person re-identification. 2020. 1, 2, 4, 7

[29] Xingrui Yu, Bo Han, Jiangchao Yao, Gang Niu, Ivor Wai-
Hung Tsang, and Masashi Sugiyama. How does disagree-
ment help generalization against label corruption? In ICML,
2019. 1



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

WACV
#67

WACV
#67

WACV 2021 Submission #67. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

[30] Xinyu Zhang, Jiewei Cao, Chunhua Shen, and Mingyu You.
Self-training with progressive augmentation for unsuper-
vised cross-domain person re-identification. 2019 IEEE/CVF
International Conference on Computer Vision (ICCV), pages
8221–8230, 2019. 1, 2, 7

[31] Liang Zheng, Liyue Shen, Lu Tian, Shengjin Wang, Jing-
dong Wang, and Qi Tian. Scalable person re-identification:
A benchmark. 2015 IEEE International Conference on Com-
puter Vision (ICCV), pages 1116–1124, 2015. 5

[32] Zhun Zhong, Liang Zheng, Donglin Cao, and Shaozi Li. Re-
ranking person re-identification with k-reciprocal encoding.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 1318–1327, 2017. 2, 4, 6

[33] Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and
Yi Yang. Random erasing data augmentation. ArXiv,
abs/1708.04896, 2017. 6

[34] Zhun Zhong, Liang Zheng, Shaozi Li, and Yi Yang. Gener-
alizing a person retrieval model hetero- and homogeneously.
In The European Conference on Computer Vision (ECCV),
September 2018. 2, 7

[35] Zhun Zhong, Liang Zheng, Zhiming Luo, Shaozi Li, and
Yi Yang. Invariance matters: Exemplar memory for do-
main adaptive person re-identification. In Proceedings of
IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2019. 2, 7


