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glasses standing in the kitchen. She is 

holding a cell phone and looking at it. She is 
standing in front of a sink in the kitchen.

A1: The video shows a woman preparing 
food in a kitchen. She is standing in front of 
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top and black pants while preparing food.
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holding bread in her hands.

A2: Yes, the woman is holding bread in her 
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Figure 1. Web-video trained Large Language Vision Models (LLVM) struggle to understand the fine-grained details and human-object
interactions present in Activities of Daily Living (ADL). We propose LLAVIDAL, an LLVM trained with three modalities on our curated
ADL-X dataset. ADL-X is derived from trimmed, multi-view ADL videos and is augmented with skeleton and object modalities.

Abstract

Current Large Language Vision Models (LLVMs) trained
on web videos perform well in general video understand-
ing but struggle with fine-grained details, complex human-
object interactions (HOI), and view-invariant representa-
tion learning essential for Activities of Daily Living (ADL).
This limitation stems from a lack of specialized ADL video
instruction-tuning datasets and insufficient modality inte-
gration to capture discriminative action representations.
To address this, we propose a semi-automated framework
for curating ADL datasets, creating ADL-X, a multiview,
multimodal RGBS instruction-tuning dataset. Additionally,
we introduce LLAVIDAL, an LLVM integrating videos, 3D
skeletons, and HOIs to model ADL’s complex spatiotempo-
ral relationships. For training LLAVIDAL a simple joint

alignment of all modalities yields suboptimal results; thus,
we propose a Multimodal Progressive (MMPro) training
strategy, incorporating modalities in stages following a
curriculum. We also establish ADL MCQ and video de-
scription benchmarks to assess LLVM performance in ADL
tasks. Trained on ADL-X, LLAVIDAL achieves state-of-the-
art performance across ADL benchmarks. Code and data
will be made publicly available at https://adl-x.github.io/.

1. Introduction
This paper aims explores the potential of Large Language-
Vision Language Models (LLVMs) to understand Activities
of Daily Living (ADL) which present various challenges
including multiple exo-centric viewpoints, fine-grained ac-
tivities with subtle motion, complex human-object inter-
actions, and long-term temporal relationships. Recently,
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[35, 38, 39, 45, 56, 73, 78] have integrated videos into
LLMs, leading to the development of video-based LLVMs
capable of capturing spatio-temporal features. However,
these models are predominantly trained on large-scale web
videos [22, 30], which mainly consists of sports clips [8],
movie scenes [4, 65], and instructional videos [23, 46, 58].
These videos, typically filmed by professionals, follow
strict temporal sequences in closely controlled background
(e.g., Paragliding). The evident temporal structure and
scene semantics in such videos facilitate spatial understand-
ing within LLVMs, as shown in Figure 1. In contrast, ADL
videos pose additional challenges, characterized by lack of
a strict temporal structure where diverse actions may un-
fold concurrently within a single sequence [48]. For in-
stance, a person cooking could intermittently engage in un-
related activities like making a phone call or drinking wa-
ter, disrupting the linear progression of the composite ac-
tion cooking. Consequently, existing LLVMs trained on
web videos struggle to capture such visually perplexing
dynamics inherent in ADL scenarios. Moreover, unlike
specialized video architectures designed for understanding
ADL [5, 6, 19, 20, 24, 55, 69], these LLVMs lack explicit
utilization of cues like 3D skeletons or human-object inter-
actions (HOIs), which are crucial for understanding ADL.
These cues facilitate the learning of view-invariant repre-
sentations and capture fine-grained details essential for in-
terpreting complex human activities. Hence, the current
limitations in understanding ADL stem from the lack of in-
struction tuning of LLVMs on real-world multiview ADL
datasets captured in indoor settings and the simplistic de-
sign of LLVMs with holistic operations.

To address these challenges, we first propose a semi-
automated framework for curating ADL video instruction
tuning data. Unlike existing framework [11, 45], we in-
troduce novel strategies to guide AI annotators in focus-
ing on human-localized spatial regions, incorporating tem-
poral unstructuredness in training distribution, and mini-
mizing hallucinations through weak supervision to gener-
ate of high-quality video instruction pairs for training of
LLVMs. The result of this framework is ADL-X dataset,
comprising 100K untrimmed RGB video-instruction pairs,
3D skeletons (S), language descriptions. We then introduce
the Large LAnguage VIsion model for Daily Activities of
Living (LLAVIDAL), trained on ADL-X. LLAVIDAL in-
tegrates synchronized multimodal inputs from videos, in-
cluding 3D skeletons and HOI (Human-Object Interaction)
cues, into the LLM embedding space. Our study explores
multiple strategies for multimodal integration in LLAVI-
DAL, addressing the challenge of jointly aligning all modal-
ities with the LLM embeddings. To tackle this, we pro-
pose a Multimodal Progressive (MMPro) training strategy,
enabling effective training of LLAVIDAL. Furthermore,
we introduce the ADL Multiple Choice Question (ADL

MCQ) and ADL video description benchmarks, specifi-
cally designed to evaluate LLVM effectiveness in under-
standing ADL. Empirical results show that LLAVIDAL out-
performs other LLVMs, including those trained on datasets
ten times larger, on these ADL benchmarks. To summarize
our contributions:
• We introduce ADL-X, the first multiview RGBS instruc-

tion tuning dataset for ADL tasks, curated via a novel
semi-automated framework for training LLVMs.

• We present LLAVIDAL, the first LLVM designed for
ADL, integrating 3D skeletons and HOI cues into the
LLM embedding space, and propose the MMPro training
strategy for synchronized multimodal training. LLAVI-
DAL trained on ADL-X outperforms all baseline LLVMs.

• We establish new benchmarks, ADL MCQ and video de-
scription tasks, to assess ADL understanding in LLVMs.

2. Related Works
Towards emulating human cognitive perception in digi-
tal intelligence, initial efforts focused on integrating vi-
sion and language modalities [26, 49, 54, 62]. Subse-
quently, the success of LLMs like GPT [7], PALM [14],
BLOOM [72] led to the introduction of multimodal conver-
sational models[1, 2, 12, 40, 66, 74, 81] that combine im-
age pixels and LLMs, we call LLVMs. In this section, we
briefly discuss methodologies relevant to developing video
conversational models.

Image captioners + LLM. With the emergence of foun-
dation models [34, 52, 70, 76], a natural extension is to
use pre-trained VLM encoders to map visual inputs into
language representations for LLM processing. For in-
stance, CogVLM [68] uses this approach for image cap-
tioning, while Socratic Models [75] and VideoChat [35]
adapt it for video captioning. Similarly, dialog-based mod-
els like VideoChatCaptioner [10] summarize videos via in-
teractions between ChatGPT [7] and a captioner such as
BLIP2 [33], while ChatVideo [67] uses task-specific foun-
dation models with ChatGPT [7] to generate responses to
user queries. Efficient video processing approaches, which
encode video segments or frames via VLMs followed by
single or multiple LLM calls with temporal hierarchy, have
been extensively explored in [29, 51, 53, 71, 77]. How-
ever, these models rely on static image-to-language map-
pings, lacking explicit modeling of temporal information.

LLVMs. To align image pixels with the LLM embed-
ding space, image-based methods [2, 17, 40, 74, 81] employ
a visual connector, often a simple linear projection layer.
In contrast, models like Flamingo [1] and BLIP2 [33] use
cross-attention mechanisms, such as a Query Transformer
(Q-Former), to align visual features with textual prompts.
For video alignment, LLVMs similarly use either linear pro-
jectors [11, 28, 45] or Q-Formers [35, 56, 78] for feature
encoding and alignment. However, these LLVMs generally
capture a holistic view without focusing on fine-grained de-
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tails or learning view-invariant representations, which are
essential for understanding ADLs. In LLAVIDAL, addi-
tional video-derived modalities enable its visual connector
to address these challenges.

More Modalities + LLVMs. Methods like VideoL-
Lama [78] and VideoLLaVA [38] incorporate additional
modalities such as audio and images alongside videos. Sim-
ilarly, X-InstructBLIP [50], aligns multiple modalities indi-
vidually with language embedding space, as in Language-
Bind [80]. In contrast, we focus on synchronously align-
ing multiple modalities, requiring joint rather than separate
alignment. This is achieved through our MMPro training
strategy, which uses progressive training [32, 60] to sequen-
tially integrate modalities into the LLM embedding space.

3. Background: Training LLVM
In this section, we briefly present the general framework for
training LLVMs. Given an input video Vi ∈ RT×H×W×C ,
we encode each frame using the pretrained vision-language
model (VLM) CLIP-L/14 [52] to obtain frame-level em-
beddings fi ∈ RT×h×w×Dv , where Dv is the embedding
dimension, and h = H/p, w = W/p are dimensions ad-
justed by the patch size p. We extract temporal and spa-
tial features by aggregating these embeddings along their
respective dimensions [45]. The resulting video-level fea-
tures, X v

i ∈ RFv×Dv , where Fv denotes the number of
spatio-temporal tokens, are obtained by concatenating the
aggregated features.

These video features are projected into the LLM embed-
ding space using a parameterized module Tv , mapping in-
put visual tokens to Qv ∈ RFv×K . Similarly, the text query
is tokenized to Qt ∈ RFt×K , representing an instructional
query from the training data. The inputs to the LLM are
then combined as follows [USER: ⟨Qt⟩ ⟨Qv⟩ Assistant:].
Optimization of the LLVM is performed under a causal lan-
guage modeling objective: minθ LCE(LLM(Tv(X v

i )), yi)
where LCE denotes the cross-entropy loss, θ are the param-
eters of Tv , yi is the target sequence, and LLM(Tv(X v

i )) is
the LLM’s prediction.

4. ADL Video-instruction Pairs (ADL-X)
This section describes the weakly supervised semi-
automated data curation framework employed for the cre-
ation of a novel dataset, ADL-X. This curation framework
is carefully designed to enable the instruction tuning of
LLVMs within the ADL domain. ADL-X comprises video
recordings of ADLs from the NTU RGB+D 120 (NTU)
dataset [41]. This selection was motivated by the dataset’s
focus on ADL videos and its inherent diversity in terms of
actions, subjects, and camera viewpoints.

To facilitate LLVM training, question-answer (QA) pairs
pairs were systematically generated targeting various as-
pects of ADL. The semi-automated data curation process
for ADL-X incorporates three novel techniques as illus-

trated in Figure 2: (i) Person Augmented Generation, which
enhances video descriptions with spatially focused human
related contents; (ii) Temporal Stitching, which connects
short action clips for continuity; and (iii) Weakly Super-
vised Video Descriptions, which facilitates the generation
of high-quality descriptions that guide the creation of video
QA pairs. These QA pairs address diverse dimensions of
ADLs, including human pose configurations, objects re-
lated to human actions, scene appearance, and the fine-
grained actions performed. Subsequent sections detail the
chronological steps undertaken to develop ADL-X.

Person Augmented Generation (PAG). ADL tasks
necessitate focusing spatially on the individual’s postures
and their interactions with objects, distinct from the contex-
tual background typical in web videos [19]. Specifically,
we utilize skeleton data to crop bounding boxes around in-
dividuals. This person augmentation strategy minimizes
background information in the video frames, effectively di-
minishes the generation of extraneous content by LLMs in
video descriptions, focusing on human actions.

Temporal Stitching (TS). Real-world ADL videos
videos typically lack temporal structure, in contrast to in-
structional videos like cooking, where actions are sequen-
tially linked. To mimic the inherent randomness of ADLs,
we develop a methodology to construct long, untrimmed
video sequences by stitching together shorter clips. Ini-
tially, we generated 160 composite action sequences us-
ing GPT prompts to combine individual actions from the
NTU dataset’s 120 actions (A1, A2, ..., A120). An exam-
ple of such a sequence is drink water → eat snack → wipe
face. The corresponding short clips from the NTU dataset
are then stitched together, ensuring that all clips within a
sequence maintain the same subject for consistency. To in-
crease diversity and minimize bias towards specific subject-
action pairings, we randomize both the sequence of actions
and the subject assignments. This procedure yields 16,206
stitched videos, with a maximum of 7 actions per video.

Weakly Supervised (WS) Video Descriptions. The
generation of video descriptions, integral to automating QA
pair creation, involves a two-step process: initially, image
captions are generated for each frame in the video at a rate
of 0.5 fps using CogVLM [68]. Subsequently, these frame-
level captions are synthesized into a cohesive video descrip-
tion via one LLM call. However, this step is prone to in-
troducing hallucinations, potentially degrading the dataset’s
quality. To mitigate this, we employ weak supervision by
incorporating the action sequence obtained from the short
clips into the GPT-3.5 Turbo model, guiding it to gener-
ate a structured, coherent description limited to 300 words.
This method of weak supervision helps eliminate irrelevant
noise from the caption generation process. For details on
our prompting strategy, see Appendix G.

Generating QA Pairs. To generate domain-specific

3



Person 
Augmented 
Generation

Temporal 
S5tching Frame Captioning

A man is standing against a 
plain white wall, wearing a gray 

hoodie and drinking

A man is wearing a black 
shirt with black pants while 

holding a bag of chips

A person is standing in a room 
with a plain white wall and 

holding his ear…

Weakly Supervised Video Descriptions

The video depicts a man standing in a room against a plain white wall and engaging in 
various activities: drinking water, eating a snack (presumably a bag of chips), and making 

a phone call. The man is wearing a gray hoodie and a black shirt with black pants.

GPT Summariza,on

Drink water

Eat snack

Phone call

QA Pair Generation
Q: Can you describe the activities performed by the person in the video?

A: They perform actions like drinking water and consuming food, specifically shown 
handling and eating from a bag of chips. The video also captures them in a moment of 
communication as they make a phone call, with their hand positioned near their ear.

Q: What is depicted in the video with regards to the individual's appearance?

A: The individual in the video wears different aCre across the footage, wearing a gray 
hoodie in one segment and an all-black ouEit consisFng of a black shirt with black pants.

+

Ac5on Sequence
“Drink water, Eat snack, Phone call”

Action classes

Full-resolution NTU Data

…

Fall down

Touch other’s 
pocket Drink water

Read book…

Drink water -> Eat snack -> Phone call

Composite Action Sequence

Figure 2. ADL-X dataset curation pipeline. The ADL-X dataset is derived from the NTU RGB+D 120 dataset through the use of
three techniques: Person Augmented Generation , Temporal Stitching , and Weakly Supervised Video Descriptions . The pipeline lever-
ages CogVLM [68] for frame-level caption generation and GPT-3.5 Turbo [7] for summary synthesis and question-answer pair generation.

QA pairs for ADL, we utilize the dense video descrip-
tions produced in the preceding step. An instruction tem-
plate (detailed in Appendix G), guides the GPT-3.5 model
to formulate questions across various ADL-relevant cat-
egories. These categories include video summary, per-
formed actions, spatial details, human-object interactions
and other video-specific inquiries. Through this prompting
approach, we curated a dataset comprising 100K video in-
struction pairs, named ADL-X, derived from the stitched
ADL videos. Note that this data curation framework, ap-
plied to ADL-X, is adaptable and can be extended to other
existing datasets for domain-specific training of LLVMs.

5. Multi-modalities of ADL-X
Following the literature for understanding ADL [5, 55], we
recognize the importance of integrating additional modal-
ities Mm, such as 3D skeletons (Ms) and human-object
interactions (Mo), to enhance the understanding of ADLs.
These modalities are critical as ADLs predominantly in-
volve movements of essential body parts or joints, facili-
tating the learning of view-invariant representations. More-
over, understanding not only the semantics of objects but
also their trajectories — integral to the actions performed
— is essential for developing fine-grained representations.
However, the question remains: how should these modali-
ties be integrated within the LLM of the LLVM?

To address this, we investigate several strategies to in-
corporate skeletons and object tracks into the LLM input
space. These include utilizing features extracted from ded-
icated modality-language encoders, augmenting QA pairs
with modality-specific information, and contextualizing in-
puts to the LLM with modality-specific language as illus-
trated in Figure 3.
Mm as features. To integrate new modalities into the
LLVM input, we map modality-specific data from Mm →
Xm

i , which is combined with visual features X v
i . It is criti-

cal that the features Xm
i , extracted from skeletons and HOI,

are aligned to the language domain to facilitate their integra-

tion with the LLM embeddings, analogous to visual features
derived from VLM [31]. We provide a detailed methodol-
ogy for extracting these modality-specific features Xm

i .
Skeleton Features (SF) - To extract features from the

skeleton data Ms to be fed as input to the LLVM, we
employ a skeleton-language model, specifically Skeleton-
CLIP [63]. SkeletonCLIP is a dual-encoder framework that
combines a skeleton backbone [79] and a frozen CLIP text
encoder [52]. Initially, the skeleton backbone is pretrained
on trimmed NTU clips [59] for skeleton action classifica-
tion. Subsequently, it is fine-tuned to enhance the align-
ment between skeleton features and language descriptions
of actions using cross-entropy supervision. The resulting
skeleton features are denoted as X s

i ∈ RFs×Ds , where Ds

indicates the dimension of skeleton features. These features
are used as input tokens to LLVMs.

HOI Features (OF) - Extracting HOI features involves
two steps: (i) Action-conditioned object detection and (ii)
Object Localization and Tracking. Both steps leverage off-
the-shelf models that are effective without the need for ad-
ditional training. Given a stitched ADL video composed of
a sequence of trimmed video segments (denoted as clipj),
the initial step involves extracting action-conditioned ob-
ject categories from each clip. This is achieved by uni-
formly sampling 8 frames from each video and employing
a pre-trained BLIP-2 model [33] to generate a list of dis-
tinct objects observed in the frames. Subsequently, we re-
fine this list using the ground-truth action labels and GPT-
3.5. Specifically, for each clipj in a stitched video, the cor-
responding action label and the list of detected objects are
input into GPT-3.5, which is prompted to identify the ob-
ject(s) most relevant to the given action. For example, if
the objects plant, chair, bottle, table are detected in a video
labeled with the action Drinking, GPT-3.5 is expected to fil-
ter out and select [bottle] as the relevant object. Refer to
Appendix G for our detailed action-conditioned object de-
tection prompting strategy.

In the second step, we perform the spatial localiza-
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Frame Sampling

Object Detec3on
phone, hand
chair, board

notepad

ADL-X Video

“Take selfie, clap hands, 
write on paper”

Action 
Sequence

Object Filtering

Phone, hand, notepad

Prompt: Extract objects relevant 
to the actions performed

Object Localiza3on (ObjectLM)
Cell phone localized at (66, 54)

Hand localized at (163, 117)

Feature-based Tracking

…

… …

HOI Features (OF)

Hand

Cell phone
…

Object Tracks

Skeleton Joint Coordinates

Object as QA

Skeleton as QA Skeleton as 
Context

Object as 
Context

Skeleton Joint
Coordinates

SkeletonCLIP

Skeleton Features (SF)

Cell phone: (66, 54) > (163, 117)
Hand: (163, 117) > (160, 123)

Figure 3. The multiple modalities of ADL-X. Left: Extraction of skeleton data features (Ms) using SkeletonCLIP; Middle: Pipeline
for extracting Human-Object Interaction (HOI) features through action-conditioned object detection, localization, and tracking; Right:
Outline of our approach for obtaining Mm as QA and Mm as context.

tion and temporal evolution (i.e., tracking) of these identi-
fied objects within the stitched video. We employ a pre-
trained open vocabulary object localization model, Ob-
jectLM (OWLv2 [47]), inputting the list of relevant ob-
jects along with the corresponding video. For each sampled
frame, object bounding boxes are detected, and features for
each object are extracted from the image regions within
these boxes using ObjectLM. We denote the features for n
objects in frame t as X t

o ∈ Rn×Do , where Do represents the
object feature dimension. To track objects across frames,
for each object in frame t, we compute the cosine similar-
ity between its feature vector X t

o and all feature vectors in
frame t+1 corresponding to the same object category. This
object in frame t is then associated with the object in frame
t+ 1 that exhibits the highest similarity score. This match-
ing process is iterated for all objects across each frame, es-
tablishing a track for each relevant object throughout the
sampled frames. Consequently, for n relevant objects de-
tected across 8 frames, the object features are structured us-
ing the following template: [⟨Xo⟩ = ⟨X 1

o ⟩ ⟨X 2
o ⟩ ... ⟨Xn

o ⟩]
where X j

o ∈ R8×Do represent the features of each tracked
relevant object which are the HOI features in the video.
Mm as QA. 3D skeleton joint coordinates or relevant ob-
ject trajectory coordinates are input alongside the associated
action sequence into GPT-3.5 Turbo [7], which generates a
general description of the skeleton motion or human-object
interactions (HOI) of an ADL-X video. This description is
then re-fed into GPT-3.5 Turbo to generate two QA pairs
that provide detailed explanations of the skeleton and ob-
ject motions. These QA pairs are then added to the training
set of text queries, Qt, to tune the LLVM instruction.
Mm as context. To integrate contextual information of hu-
man skeletons or human-object interactions, we append
modality-specific information to the input text query Qt

while training the LLVM. For Ms, we initially identify
five peripheral joints – the head, right hand, left hand, right
knee, and left knee – due to their significant contribution to
motion. For Mo, we utilize the trajectory coordinates of
the relevant object(s) in the videos. Using GPT-3.5 Turbo,

we generate descriptions of the motion for each of these
joints or objects based on their trajectories throughout the
video, specifically focusing on how the joint and object co-
ordinates evolve. The generated descriptions, denoted as
Qm

t |m = {s, o}, are subsequently appended to the text
query Qt, incorporates these skeleton or human-object de-
scriptions as additional contextual information. This en-
riched query Qnew

t = [Qm
t Qt] is then employed for in-

struction tuning.

6. Multimodal Progressive (MMPro) Training
We dub our trained LLVM on on ADL-X as LLAVI-
DAL. Integrating QA pairs and contextual information
into Qt is achieved using conventional training methodolo-
gies for LLVMs. However, the joint integration of time-
synchronized modalities (Xv , Xs, and Xo) presents chal-
lenges, primarily due to conflicting gradients from the dif-
ferent modalities. To address this, we utilize modality-
specific connectors that align each modality with the LLVM
input space. To mitigate the challenges of training with mul-
tiple modalities, we adopt a Multimodal Progressive (MM-
Pro) training strategy for LLAVIDAL. This approach in-
crementally increases the training complexity by progres-
sively adding modality-specific connectors, following a pre-
defined growth schedule. These connectors project the
modality-specific features into the LLVM embedding space,
facilitating effective multimodal integration.

MMPro training is structured into |η| equispaced stages,
with #Total iterations

|η| iterations per stage. In the case of
LLAVIDAL, where we integrate three modalities via con-
nectors into the LLM embedding space, η = 3 stages. Dur-
ing stage 1, alignment of specific-modality with LLM em-
bedding space is performed. Consequently, video, skeleton,
and HOI features are independently projected into the LLM
embedding space using linear projection layers Tm and their
respective parameters θm for each cue m = {v, s, o}, re-
sulting in LLM input token representations of the video,
skeleton, and HOI cues, respectively:

Qv = Tv(Xv; θv); Qs = Ts(Xs; θs); Qo = To(Xo; θo) (1)
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where Qm ∈ RFm×K . The input to the LLM comprises the
concatenation of Qt and Qm for m = {v, s, o}, structured
according to the template: [USER: ⟨Qt⟩ ⟨Qm⟩ Assistant:]
This stage 1 training ensures that the video, skeleton, and
HOI cues are independently aligned to the LLM embedding
space of LLAVIDAL.

Sequence of Integrating Modalities. Our approach
to determining the sequence for integrating modalities
leverages the principles of curriculum learning.Curriculum
learning [21], a machine learning strategy inspired by the
pedagogical approach of progressing from easy to complex
tasks, is utilized to structure the integration sequence in
LLAVIDAL. MMPro training strategy adopts an incremen-
tal difficulty progression for multi-modal alignment. The
complexity measure guiding the integration sequence is de-
rived from the optimized autoregressive loss obtained from
stage 1. Our findings suggest a gradation of integration dif-
ficulty among the modalities, with videos and skeletons be-
ing relatively simpler to align compared to HOI. The spar-
sity of HOI features, indicated by the infrequency of dis-
tinct HOIs within videos, explains the challenge of aligning
HOI with the language embedding space. Consequently, in
LLAVIDAL, the modalities are integrated in the order of
skeletons followed by HOI, adhering to the curriculum of
escalating difficulty.

In the second stage of training, LLAVIDAL’s architec-
ture expands to include additional modality-specific con-
nector. These connector facilitate the simultaneous align-
ment of video and skeleton data with the LLM embedding.
The parameters for this stage, θv and θs, inherit their initial
values from the weights optimized during stage 1. Con-
sequently, the input format to the LLM is structured as
follows: [USER: ⟨Qt⟩ ⟨Qv⟩ ⟨Qs⟩ Assistant:] where ⟨Qt⟩,
⟨Qv⟩, and ⟨Qs⟩ represent the text, video, and skeleton query
embeddings, respectively. This structured input format en-
sures a targeted integration of video and skeleton modalities
during the MMPro training strategy in stage 2.

The final integration stage in LLAVIDAL incorporates
all modalities. The training parameters θv and θs are fur-
ther refined from their stage 2 configurations, while θo is
initialized from stage 1 training. The input to the LLM at
this stage includes an additional object modality, formatted
as: [USER: ⟨Qt⟩ ⟨Qv⟩ ⟨Qs⟩ ⟨Qo⟩ Assistant:]. This inte-
gration approach, as shown in Figure 4, aligns video, object,
and skeleton modalities with the LLM embeddings, enhanc-
ing the model’s capability to accurately process and under-
stand ADL.

When performing inference, LLAVIDAL utilizes only
the video cue, consequently eliminating the need for
person-centric cropping and additional modalities.

7. Experiments
In this section we first discuss implementation details, then
introduce the ADL related tasks used to evaluate state-
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Video
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Text
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Text

Projection
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Figure 4. MMPro training. Our proposed three-stage progres-
sive training pipeline used to train LLAVIDAL. Stage 1 initializes
independent projections for skeleton, object, and video features.
Stage 2 combines skeleton and video modalities. Stage 3 inte-
grates all modalities into the final model. Large hollow arrows
indicate weight transfer between stages.

of-the-art LLVMs, the evaluation metrics, and finally we
present all of the results and analysis.

7.1. Implementation Details
During training, the embedding dimensions are Dv = 1024
for visual features extracted from CLIP-L/14 [52], Do =
512 for object features extracted from OWLv2 [47], Ds =
216 for skeleton features from SkeletonCLIP [63]. The em-
bedding dimension of the Vicuna [13] LLM is K = 4096,
and the number of visual and skeleton tokens are set as
Fv = 356 and Fs = 256 respectively. The videos input
to LLAVIDAL contain T = 100 frames, with a spatial res-
olution of H = 224,W = 224. LLAVIDAL is trained
on 8 NVIDIA RTX A6000 GPUs for 3 epochs with a to-
tal batch size of 32 and a learning rate of 2e−5. For the
purpose of promoting research in this field, we also pro-
vide the extracted skeleton features and object trajectories
of LLAVIDAL along with the ADL-X dataset.

7.2. ADL Tasks, Test Datasets, and Metrics
This paper introduces novel benchmarks for assessing
LLVM’s temporal understanding of diverse and real-world
ADL videos. We propose two new ADL MCQ benchmarks
including ADL MCQ-AR and ADL MCQ-TC. ADL MCQ-
AR involves multiple-choice question-answering for action
recognition, where the model selects the correct action from
a set of options given a question about the action performed
in a video. Similarly, ADL MCQ-TC focuses on predicting
the missing action in a temporal sequence, given a video
containing either a complete or incomplete sequence, in-
cluding the action at the blank position (e.g., “take some-
thing off table, “drink from cup”, <blank>, “walk away”).
If the <blank> appears at the end of an incomplete se-
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Table 1. Impact of different components in the ADL-X data cura-
tion framework on LLVM training.

Training data PAG TS WS ADL MCQ-AR ADL MCQ-TC Descrip. (Avg)
SH TSU TSU

ActivityNet ✗ ✗ ✗ 39.6 20.9 31.9
NTU120 ✓ ✗ ✓ 37.2 20.5 54.1
ADL-X ✗ ✓ ✓ 40.6 25.5 59.1
ADL-X ✓ ✓ ✗ 39.0 24.8 62.2
ADL-X ✓ ✓ ✓ 44.5 29.5 64.8

quence where the input video lacks subsequent actions, the
task is an action forecasting. Finally, we also evaluate the
LLVMs on ADL video description tasks for long-duration
videos with densely occurring actions and fine-grained cap-
tions. Note that all our evaluations are performed zero-shot.

Evaluation Datasets. For ADL MCQ-AR evalua-
tion, we utilize the Charades [61] (Char) and Toyota
Smarthome [18] (SH) datasets. Evaluation for ADL MCQ-
TC is conducted using LEMMA [27] (LEM) and Toyota
Smarthome Untrimmed [16] (TSU) datasets. ADL MCQ-
TC on LEMMA is an action forecasting task. Video de-
scription tasks are assessed using the Charades and TSU
datasets, both featuring long-duration videos with multiple
actions per video. Notably, for the TSU dataset, we man-
ually annotated video descriptions with fine-grained details
regarding activities performed by elderly individuals, em-
ploying 6 human annotators for 174 videos. Our evaluation
relies on these annotated descriptions, which we also pro-
vide to the community as part of the test set for ADL-X.

Evaluation Metrics. To ensure result consistency and
reproducibility, we employ LLAMA 3.1 [66] locally in-
stead of the GPT API, where model weights may up-
date over time. For ADL MCQ task evaluation, we fol-
low [36, 42, 43], prompting LLAMA 3.1 with the output of
LLAVIDAL, along with MCQ questions and options, to se-
lect the nearest option generated by LLAVIDAL, thus min-
imizing scoring bias. For video-level description evalua-
tion, following [45], generated descriptions are compared
against ground truth and scored by LLAMA across dimen-
sions of Information Correctness, Detail Orientation, Con-
textual Understanding, Temporal Understanding, and Con-
sistency, with scores scaled to a maximum of 100.

7.3. Impact of ADL-X Training on LLVMs
In Table 1, we demonstrate the effectiveness of our novel
semi-automated curation of the ADL-X dataset. To vali-
date the importance of domain-specific training, we trained
an LLVM on trimmed NTU120 clips, showing that the
NTU120-trained model outperforms the model trained on
ActivityNet [8] for description task, while our ADL-X-
trained LLVM achieves the highest performance in all ADL
tasks. As shown in Table 1, all strategies—PAG, TS,
and WS—used to curate ADL-X from NTU120 gener-
ate a high-quality video-instruction pairs with minimal hal-
lucinations, enabling the LLVM to effectively understand
human-centered actions and handle temporal randomness.

Table 2. Strategies to integrate skeletons and HOIs in LLVM.

Method ADL MCQ-AR ADL MCQ-TC TSU
Char SH LEM TSU Descrip. (Avg)

ADL-X ChatGPT 51.0 44.5 28.6 29.5 64.8

Video+Skeleton
Skeleton Features (SF) 52.7 42.6 33.1 30.3 66.5
Skeleton QA 47.5 43.1 25.9 29.6 61.8
Skeleton Context (SC) 48.2 45.4 27.8 30.2 66.3
SC + SF 51.2 46.2 33.5 32.5 66.8

Video+HOI
HOI Features 53.8 48.0 32.6 37.1 68.0
HOI (YOLO+CLIP) 53.7 45.1 34.1 37.0 67.8
HOI QA 50.4 45.5 30.3 28.4 62.5
HOI Context 50.3 44.6 26.5 27.8 63.8

Table 3. Integrating all modalities in LLAVIDAL.

Method ADL MCQ-AR ADL MCQ-TC TSU
Char SH LEM TSU Descrip. (Avg)

SF + OF 53.8 40.7 32.1 33.1 65.8
X-InstructBLIP [50] 49.0 45.6 27.5 29.9 65.5

MMPro Training
Prog. A (Token) 55.2 48.1 34.3 38.2 70.8
Prog. A (String) 52.7 45.4 32.3 34.5 65.5
Prog. B (Token) 52.8 49.4 32.8 33.0 69.2
Prog. B (String) 51.3 48.6 30.1 32.6 67.4
Prog. A (SF+SC, Token) 54.5 49.3 32.2 34.9 69.5

Verification of ADL-X. To validate the correctness of
our LLM-assisted data curation pipeline, we conducted a
human evaluation study where the quality of 100 video-
QA pairs were rated on a scale of 1-5 based on QA pair
correctness. This user study revealed an average rating of
4.1 for the the generated QA pairs, demonstrating that our
three key filtering strategies successfully yields high quality
video-instruction pairs.

7.4. How to integrate modalities in LLVMs?
Table 2 explores the integration of skeleton and HOI cues
alongside RGB videos in LLAVIDAL. We integrate skele-
ton information as features (SF), QA pairs, and context (SC)
as illustrated in section 5. Both SF and SC outperform the
ADL-X ChatGPT baseline (Video ChatGPT model trained
with ADL-X) across most ADL tasks, with the combination
of skeleton context and features (SC+SF) achieving the best
results, corroborating the importance of skeleton integration
for enhanced ADL understanding in LLVMs. In contrast,
HOI cues used as QA or context provide limited discrimi-
native value for the LLM. However, HOI features extracted
from ObjectLM significantly improve performance across
ADL tasks, showing their crucial role in ADL understand-
ing. We find that HOI extraction using BLIP2 + OWLv2
outperforms the conventional object detector + CLIP ap-
proach, supporting our choice for extracting HOI.

Table 3 shows the performance of LLAVIDAL us-
ing various strategies to jointly integrate modalities Mm,
namely videos, skeletons, HOIs, and language. Joint train-
ing of all modalities and modality-specific alignment with
language following X-InstructBLIP[50] underperforms the
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Table 4. State-of-the-art comparison. Performance is shown on ADL MCQ and ADL Video Description tasks. [CI: Correctness of
Information, DO: Detail Orientation, CU: Contextual Understanding, TU: Temporal Understanding, Con: Consistency]

Method Training ADL MCQ-AR ADL MCQ-TC Charades Avg TSU AvgData Size Char SH LEM TSU CI DO CU TU Con CI DO CU TU Con

CogVLM [68] + GPT [7] 1.5B Images 52.3 42.5 32.0 23.6 42 62 49.6 36.5 32.8 44.6 55.2 72.0 60.6 30.2 48.5 53.3
CogVLM [68] + Llama [66] 1.5B Images 52.8 43.2 32.5 22.5 40.2 61.8 49.5 36.5 33.5 44.3 49.8 66 56.6 29.8 40.2 48.5
BLIP2 [33] + GPT [7] 1.5B Images 50.2 39.6 28.9 20.2 39.8 60.2 47.8 36.0 37.2 44.2 48.8 66.6 63.6 45.6 39.8 52.9

VideoLlama [78] 2.6M QA Pairs 40.2 44.8 32.6 24.6 22.2 42.5 33.8 20.2 34.5 30.6 57.8 62.0 62.4 48.2 44.4 54.9
VideoLlava [38] 1.2M QA Pairs 41.8 49.2 30.0 25.5 23.6 46.4 34 20.6 33.5 31.6 30.8 54.8 42.4 30.4 44.5 40.6
VideoChatGPT [45] 100K QA Pairs 51.0 39.6 31.4 20.9 26.1 45.2 35.6 21.4 31.2 31.9 31.2 52.8 78.2 64.8 45.6 54.5
ChatUniVi [28] 3M QA Pairs 53.1 48.1 32.3 36.4 36.5 54.5 46.6 32.2 35.9 41.1 56.8 66.9 79.0 50.0 56.6 61.9

ADL-X ChatGPT [45] 100K QA Pairs 51.0 44.5 28.6 29.5 40.6 50.6 49.8 30.6 40.2 42.4 62.4 79.4 70.8 51.2 60.4 64.8
LLAVIDAL 100K QA Pairs 55.2 48.1 34.3 38.2 45.8 64.2 57.0 36.4 39.4 48.6 66.0 86.2 79.6 50.0 72.4 70.8

Q: Describe the video above in details. Include all the ac4ons and object 
interac4ons of the person in the scene.

The video depicts a man and a woman in a bedroom. The man is seen bending over a bed, while 
the woman is standing next to him. The man then proceeds to pull the mattress away from the 
bed frame, revealing the box spring. He then proceeds to pull the box spring out of the bed frame. 
The woman then takes the box spring and places it on the floor. The man then pulls the mattress 
back into the bed frame. The video focuses on the actions of the man and woman in the bedroom, 
with a particular emphasis on the movements and interactions with the objects in the room.

In the video, a young man is seen working in a bedroom. He is seen laying down a bed, folding a 
bed, and putting a bed away. The man is wearing a black shirt and a blue jacket. The room has a 
white floor and a white wall. The man is also seen using a chair and a table. The video is shot in a 
home in India. The man is seen working alone in the room.

In the video, a person is seen moving a blue blanket or sheet off a bed, possibly to clean or rearrange 
the bed. The person is also seen walking towards a table with a laptop on it, possibly to use the 
laptop for work or entertainment.

In the video, a person is seen moving a blue and white blanket from a bed, possibly to clean or 
rearrange the room. The person is also seen walking towards a bed with a blue pillow, which 
suggests that they are interacting with the bed and its contents. The room has a white floor, a blue 
blanket on the bed, and a chair nearby. The person's actions and interactions with the objects in the 
room, such as the bed and the chair, highlight the ongoing activities within the space.

Video-LLaVA Video-LLaMA Video-ChatGPT LLAVIDAL

Figure 5. Qualitative results comparing LLAVIDAL with
SOTA models. Incorrect descriptions are marked in red.

model trained in Table 2 due to difficulties in optimiz-
ing the projection layer Tv for effective alignment of both
Tp and To. In contrast, our MMPro strategy effectively
retains discriminative representations from all modalities
through its stage-wise integration—first video, then skele-
tons, and finally HOIs—which addresses optimization chal-
lenges faced by baseline multimodal models. To validate
the modality integration sequence in LLAVIDAL, we con-
duct experiments with a curriculum-based model (Prog. A)
using stage 1 MMPro losses and an alternative integration
sequence—video, then objects, then skeletons (Prog. B).
We also ablate the impact of prefixing each modality with
a token or string. Results show that Prog. A with token-
type prefixing per modality performs best across most ADL
tasks, further confirming the efficacy of curriculum-based
modality integration in MMPro. Moreover, we find that
skeleton features alone are sufficient, and skeleton context
is not needed when integrating skeletons in LLAVIDAL.

7.5. Comparison to the state-of-the-art
We compare LLAVIDAL against the state-of-the-art on
ADL MCQ tasks and ADL video description tasks.

ADL MCQ. Table 4 compares LLAVIDAL to state-of-
the-art LLVMs on the ADL MCQ-AR and ADL MCQ-
TC benchmarks. LLAVIDAL achieves substantial improve-
ments in action recognition, outperforming the represen-
tative baseline, VideoChatGPT, by +8.2% and +21.4% on
the Charades and Smarthome datasets, respectively. On the
TSU dataset, LLAVIDAL surpasses VideoChatGPT by up
to +82.7%, highlighting its superior temporal understand-
ing. Figure 5 provides a visual comparison of LLAVI-
DAL against representative baselines on the ADL bench-
marks, with additional examples in Appendix F.

ADL Video Description. Table 4 shows the perfor-
mance comparison of baseline LLVMs and LLAVIDAL on
their video description capabilities on the Charades and
TSU datasets. Video-level descriptions are obtained di-
rectly from the Charades dataset. For the TSU dataset,
comprising lengthy videos, we segment each video into 1-
minute clips and input them individually to the LLVMs for
generating clip-level descriptions. Subsequently, we con-
catenate all clip-level descriptions and utilize GPT-3.5 turbo
to summarize them into a video-level description, following
the same instruction template utilized in our dense descrip-
tion pipeline for ADL-X. Across all the 5 VideoChatGPT
metrics, the results show that LLAVIDAL consistently sur-
passes current SOTA methods, and outperforms all mod-
els including the image captioners-summarizers pipelines
which are trained on billions of images.

8. Conclusion
In this work, we present a novel semi-automated framework
for curating ADL video instruction tuning dataset and in-
troduce ADL-X. We introduce LLAVIDAL, an LLVM ca-
pable of integrating 3D skeletons and HOI modalities using
a novel Multimodal Progressive training strategy. To as-
sess LLVMs’ performance in ADL scenarios, we propose
the ADL MCQ and video description benchmarks. Results
demonstrate that LLAVIDAL, when trained on ADL-X, sur-
passes other baselines, indicating its efficacy in grasping in-
tricate temporal relationships within ADL contexts.
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framework for online spatiotemporal detection of activities
of daily living by hierarchical activity models. Sensors
(Basel), 19(19):4237, 2019. Published 2019 Sep 29. 2

[49] Bolin Ni, Houwen Peng, Minghao Chen, Songyang Zhang,
Gaofeng Meng, Jianlong Fu, Shiming Xiang, and Haibin
Ling. Expanding language-image pretrained models for gen-
eral video recognition. In European Conference on Com-
puter Vision, pages 1–18. Springer, 2022. 2

[50] Artemis Panagopoulou, Le Xue, Ning Yu, Junnan Li,
Dongxu Li, Shafiq Joty, Ran Xu, Silvio Savarese, Caiming
Xiong, and Juan Carlos Niebles. X-instructblip: A frame-
work for aligning x-modal instruction-aware representations
to llms and emergent cross-modal reasoning, 2023. 3, 7

[51] Jong Sung Park, Kanchana Ranasinghe, Kumara Kahatapi-
tiya, Wonjeong Ryoo, Donghyun Kim, and Michael S. Ryoo.
Too many frames, not all useful: Efficient strategies for long-
form video qa. ArXiv, abs/2406.09396, 2024. 2, 13

[52] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen
Krueger, and Ilya Sutskever. Learning transferable visual

models from natural language supervision. In International
Conference on Machine Learning, 2021. 2, 3, 4, 6, 13

[53] Kanchana Ranasinghe, Xiang Li, Kumara Kahatapitiya, and
Michael S. Ryoo. Understanding long videos in one multi-
modal language model pass. CoRR, abs/2403.16998, 2024.
2, 13

[54] Hanoona Rasheed, Muhammad Uzair Khattak, Muhammad
Maaz, Salman Khan, and Fahad Shahbaz Khan. Finetuned
clip models are efficient video learners. In The IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
2023. 2

[55] Dominick Reilly and Srijan Das. Just add π! pose induced
video transformers for understanding activities of daily liv-
ing. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2024. 2, 4

[56] Shuhuai Ren, Linli Yao, Shicheng Li, Xu Sun, and Lu
Hou. Timechat: A time-sensitive multimodal large lan-
guage model for long video understanding. arXiv preprint
arXiv:2312.02051, 2023. 2, 13, 14

[57] S. N. Robinovitch, F. Feldman, Y. Yang, R. Schonnop, P. M.
Leung, T. Sarraf, J. Sims-Gould, and M. Loughin. Video cap-
ture of the circumstances of falls in elderly people residing in
long-term care: an observational study. Lancet, 381(9860):
47–54, 2013. Erratum in: Lancet. 2013 Jan 5;381(9860):28.
17

[58] F. Sener, D. Chatterjee, D. Shelepov, K. He, D. Singhania, R.
Wang, and A. Yao. Assembly101: A large-scale multi-view
video dataset for understanding procedural activities. IEEE
Conf. Comput. Vis. Pattern Recog., 2022. 2

[59] Amir Shahroudy, Jun Liu, Tian-Tsong Ng, and Gang Wang.
Ntu rgb+d: A large scale dataset for 3d human activity anal-
ysis. In IEEE Conf. Comput. Vis. Pattern Recog., 2016. 4,
23

[60] Yi-Ting Shen, Hyungtae Lee, Heesung Kwon, and Shu-
vra S Bhattacharyya. Progressive transformation learning
for leveraging virtual images in training. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 835–844, 2023. 3

[61] Gunnar A. Sigurdsson, Gül Varol, Xiaolong Wang, Ali
Farhadi, Ivan Laptev, and Abhinav Gupta. Hollywood in
Homes: Crowdsourcing Data Collection for Activity Un-
derstanding. In European Conference on Computer Vi-
sion(ECCV), 2016. 7

[62] Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guil-
laume Couairon, Wojciech Galuba, Marcus Rohrbach, and
Douwe Kiela. FLAVA: A foundational language and vision
alignment model. In CVPR, 2022. 2

[63] Arkaprava Sinha, Dominick Reilly, Francois Bremond, Pu
Wang, and Srijan Das. Ski models: Skeleton induced vision-
language embeddings for understanding activities of daily
living. In Proceedings of the AAAI Conference on Artificial
Intelligence, 2025. 4, 6

[64] Quan Sun, Yuxin Fang, Ledell Wu, Xinlong Wang, and Yue
Cao. Eva-clip: Improved training techniques for clip at scale.
arXiv preprint arXiv:2303.15389, 2023. 15

[65] Makarand Tapaswi, Yukun Zhu, Rainer Stiefelhagen,
Antonio Torralba, Raquel Urtasun, and Sanja Fidler.

11



Movieqa: Understanding stories in movies through question-
answering. 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 4631–4640, 2015. 2

[66] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste
Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aure-
lien Rodriguez, Armand Joulin, Edouard Grave, and Guil-
laume Lample. Llama: Open and efficient foundation lan-
guage models. ArXiv, abs/2302.13971, 2023. 2, 7, 8

[67] Junke Wang, Dongdong Chen, Chong Luo, Xiyang Dai,
Lu Yuan, Zuxuan Wu, and Yu-Gang Jiang. Chatvideo: A
tracklet-centric multimodal and versatile video understand-
ing system. ArXiv, abs/2304.14407, 2023. 2, 13

[68] Weihan Wang, Qingsong Lv, Wenmeng Yu, Wenyi Hong, Ji
Qi, Yan Wang, Junhui Ji, Zhuoyi Yang, Lei Zhao, Xixuan
Song, Jiazheng Xu, Bin Xu, Juanzi Li, Yuxiao Dong, Ming
Ding, and Jie Tang. Cogvlm: Visual expert for pretrained
language models. ArXiv, abs/2311.03079, 2023. 2, 3, 4, 8,
13, 15

[69] Xiaolong Wang and Abhinav Gupta. Videos as space-time
region graphs. In Proceedings of the European conference
on computer vision (ECCV), pages 399–417, 2018. 2

[70] Yi Wang, Kunchang Li, Yizhuo Li, Yinan He, Bingkun
Huang, Zhiyu Zhao, Hongjie Zhang, Jilan Xu, Yi Liu, Zun
Wang, et al. Internvideo: General video foundation models
via generative and discriminative learning. arXiv preprint
arXiv:2212.03191, 2022. 2, 13

[71] Yuetian Weng, Mingfei Han, Haoyu He, Xiaojun Chang, and
Bohan Zhuang. Longvlm: Efficient long video understand-
ing via large language models. ArXiv, abs/2404.03384, 2024.
2, 13

[72] BigScience Workshop, Teven Le Scao, Angela Fan, Christo-
pher Akiki, Ellie Pavlick, Suzana Ilić, Daniel Hesslow, Ro-
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LLAVIDAL : A Large LAnguage VIsion Model
for Daily Activities of Living

Supplementary Material

A. Overview
The Supplementary material is organized as follows:
• Section B: Related Work
• Section C: Additional Dataset Details
• Section D: Additional Implementation Details
• Section E: Improving Actions: Skeleton Cues vs Object

Cues
• Section F: Additional Qualitative Evaluation
• Section G: LLM Prompts Used
• Section H: Limitations
• Section I: Licensing and Intended Use

B. Related Work
In this section, we discuss the recent datasets proposed for
instruction tuning of LLVMs. We also present the recent ad-
vancements in multimodal conversational models both with
training-free methods and methods using visual connectors.

Data: Existing video-instruction datasets, such as
VideoChat[35], Valley[44], Video-ChatGPT [45], and
TimeIT [56], have made significant strides in advancing
general video understanding and dialogue. Valley is derived
from a website called Jukinmedia that provides videos with
diverse categories and wide detailed descriptions. TimeIT
dataset from TimeChat offers videos with temporal varia-
tions and task diversity. On the other hand, ActivityNet [8]
boasts a diverse taxonomy with 203 activity classes, most
activity classes are not tailored to the ADL domain. It
is to be noted that most LLVMs like VideoChatgpt [45],
VideoLlava [38] derive their instruction dataset from Activ-
ityNet. Webvid, which is now de-comissioned due to pri-
vacy issues introduced in [3], consists of 2.5 million video-
text pairs scraped from the web. Although these video in-
struction datasets are large in scale, offer diverse action
classes, and focus on general video understanding, they fail
to address the challenges specific to ADL. These challenges
include intra-class temporal variations, long-term tempo-
ral relationships, complex human-object interactions, and
videos captured in multiview settings. Unlike ADL videos,
the internet videos in these datasets are predominantly shot
by a cameraman, ensuring human-centered frames. Con-
sequently, they do not capture the unstructured randomness
spatially and temporally inherent in real-world ADL videos.
In contrast, ADL-X is specifically designed to address the
challenges inherent in ADL (see Table 5). It captures tem-

poral unstructuredness through the temporal stitching of
several unrelated actions in sequence and incorporates com-
plex human-object interactions from the NTU120 dataset.
Additionally, our proposed PAG and WS video description
techniques effectively eliminate hallucinations, resulting in
high-quality video-instruction pairs.

Image captioners + LLM. Advancements in Large
Language Models (LLMs) have naturally extended vision-
language models [52], leveraging LLMs to enhance reason-
ing capabilities. The emergence of these foundation models
has given rise to training-free methods like Socratic Mod-
els [75] and VideoChat [35], which use pretrained vision
encoders [34, 70] to map visual information into a language
embedding space, followed by LLMs for downstream video
tasks.

On the other hand, effective image captioners like
CogVLM [68] introduce separate layers into the Trans-
former block of the LLM to process image features using
independent QKV matrices and Feed Forward Networks
specifically designed for images. Such effective captioning
approaches have inspired methods that map visual informa-
tion to language via image captioners, followed by process-
ing with LLMs. Among dialog-based models, VideoChat-
Captioner [10] summarizes videos through conversations
between ChatGPT [7] and a captioner such as BLIP2 [33].
Similarly, ChatVideo [67] employs task-specific foundation
models to create a database of ”tracklets,” with a database
manager and ChatGPT [7] collaborating to generate re-
sponses for user queries during inference.

For long video understanding, approaches like [71,
77] segment videos into smaller units, providing either
segment-level descriptions directly to LLMs or encod-
ing each segment, concatenating tokens, and projecting
them into the LLM space. Likewise, Language Reposi-
tory [29] introduces write-and-read operations to prune text
redundancies and extract information across various tem-
poral scales. The Multimodal Video Understanding Frame-
work [53] explores integrating video-specific information
into an LLM-based framework by using off-the-shelf vision
tools to extract three object-centric modalities from videos
and fusing this information through natural language. Ad-
ditionally, [51] investigates optimal strategies for key-frame
selection to significantly reduce redundancies. However,
despite these advances, training-free models fail to capture
the complex temporal relationships intrinsic to ADL. These
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Table 5. Video Instruction Dataset Comparison.

Dataset Modalities Subjects Multiple Videos QA Pairs Atomic Actions Temporal Object Type
Views per Vid Rand. Traj.

TimeIT[56] RGB+L NA No 173000 173K Medium No No Web
VideoChat[35] RGB+L NA No 8196 11K Low No No Web
Valley[44] RGB+L NA No 64,687 65K Low No No Web
VideoChatGPT [45] RGB+L NA No 27,801 100K Medium No No Web

ADL-X RGB+S+L 106 Yes 16,343 100K High Yes Yes ADL

relationships, including long-term dependencies and intri-
cate human-object interactions, remain a significant chal-
lenge for these approaches.

Large Language Vision Models (LLVMs). The abili-
ties of LLMs in contextual understanding and language gen-
eration have led to the introduction of video conversational
models. These methods typically employ foundation mod-
els to extract visual features from images and project them
into an embedding space compatible with language mod-
els. Flamingo [1] utilizes a vision-language resampler com-
bined with gated cross-attention, while BLIP2 [33] intro-
duces Q-Former to map image features into the LLM em-
bedding space. Similarly, MiniGPT4 [81] uses a simple lin-
ear projection layer. However, these models fall short of be-
coming conversational assistants due to the lack of human
instruction feedback. To address this, mPLUG-OWL [74]
first aligns visual and language features through multi-
modal autoregressive pretraining, followed by multimodal
instruction tuning using LoRA [25], enabling more natu-
ral and human-aligned responses. Models such as Instruct-
BLIP [17] and LLaVA [40] introduce large-scale human in-
struction datasets to facilitate LLM fine-tuning. Meanwhile,
models like PaLI [12] and Qwen-VL [2] allow direct train-
ing of LLMs during pretraining or supervised fine-tuning
stages.

Other models, including VideoChat, VideoLLaMA, and
TimeChat [35, 56, 78], leverage Q-Former for effective
feature encoding and alignment. For example, VideoL-
LaMA [78] employs a vision transformer with an im-
age Q-Former to obtain frame-level representations, fol-
lowed by a video Q-Former for temporal modeling. Sim-
ilarly, TimeChat [56] encodes variable-length videos using
a timestamp-aware frame encoder with a Q-Former to in-
fuse temporal information into vision tokens, followed by
a sliding window Q-Former to condense frame-level fea-
tures for the projection layer. Building on these approaches,
VideoLLaVA [38] jointly trains on both images and videos,
pre-aligning visual modalities to language using Language-
Bind [80] encoders. VideoChatGPT [45] leverages both
temporal and spatial features from videos, obtained by av-
erage pooling frame-level features both spatially and tem-
porally.

In contrast to these models, LLAVIDAL incorporates

3D skeleton data and human-object interaction (HOI) cues
alongside videos into the LLM embedding space. This in-
tegration enables the additional cues to learn discriminative
video representations, making LLAVIDAL particularly ef-
fective for interpreting ADL videos, where temporal rela-
tionships and complex HOIs are crucial.

C. Additional Dataset Details
Question Types. We divide our QA in different questions
so that our model understands human object interaction
holistically, we lay emphasis on actions performed and the
sequence of actions occurring in the video and likewise how
objects are associated with the actions. We carefully design
such questions relevant to the videos with GPT 3.5 Turbo.
The questions encompasses actions happening, summariza-
tion, objects in the scene, color of the objects and questions
related to the video. For Skeleton as QA and Object as QA,
we construct two additional questions for each. For Skele-
ton, we include ”What is the motion of the body and joints
relative to the actions?” and ”Which joints are moving in
the video?”. For Object, we add ”What are the relevant ob-
jects in the scene?” and ”What is the object in the trajectory
[x1, y1, x2, y2]?”. These are illustrated in Figures 6 and 7.

Average video and sentence length. There is an aver-
age of 23 words per sentence in our QA and average word
count for each answer is 42. The average video length is 10
seconds in our dataset. We have 126, 2229 nouns, 551, 172
verbs, 40, 415 actions and 722, 807 objects in our QA show-
ing the overall dynamics of dataset which is illustrated in
WordCloud of the Figure 8.

Importance of Person Augmented Generation (PAG).
When PAG is not applied to the videos in an ADL dataset,
the resulting dense-level captions often include a signifi-
cant amount of irrelevant information about the background
scene. This extraneous information is not directly con-
nected to the subject or the actions being performed, and
its presence can introduce noise into the training data. If
left unchecked, this noise can have a detrimental effect on
the learning process, as the model may erroneously focus
on the background details rather than the key elements of
the ADL. By failing to isolate the relevant information, the
model’s attention is diverted away from the crucial aspects
of the task at hand, namely the individual performing the ac-
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 You have coordinates tracking the positions of human joints   throughout a 
 video, given in a specific format showing the   coordinates of various joints  (e.g.,
knees, hands, head)   across multiple Frames. Using this data, you need  to 
 determine the general motion direction and the amount of   motion   for each joint
over time. For each joint, the   response  should:

 Start with the joint's name followed by a colon.
 Describe the motion direction in one sentence.

Additionally, provide a sentence describing the overall   posture and   position of
the joints relative to each other   throughout the video

 The Pose coordinates are of the following format:
In Frame  0, the left knee is at (106, 197) and the  right hand is at (87, 162) , the
head is at (112, 40).. In Frame 1, the right knee is at (82,208) and the left  knee is at
(87,204)  and the left hand is at (122,63) and the head is  at (91,38)..... 

Prompt to Generate Skeleton
Description

Actions List

Generated QA Pair  

 A. In the video, a man is seen opening a refrigerator, taking out
food items, and placing them on a counter. He is also seen
pouring a liquid from a bottle into a container. The scene takes
place in a kitchen with various objects such as a refrigerator, a
sink, a bottle, a container, and a cup. The man's actions
demonstrate his engagement in food preparation or meal
preparation, showcasing his ability to handle kitchen tasks
efficiently.

 Q. Describe the video in detail?include all the actions
happening and the object interaction of the person/persons in
the scene.

 A. In the video, a person is seen opening a refrigerator and
taking out a bottle. He then pour a liquid into a cup, which is
placed on the counter. The person is also seen walking
towards the refrigerator and placing a bottle inside. The
sequence of events showcases the person's actions of opening
the refrigerator, taking out a bottle, pouring a liquid into a
cup, and placing the bottle inside. The refrigerator and the
cup on the counter are the primary objects in the scene."

LLAVIDAL Inference Pipe line  for the method Skeleton as QA

Pipe line  for the method Skeleton as Context

(Question + Skeleton Context,Answer)   

Input video

Input video

 Q. Describe the video in detail?include all the actions
happening and the object interaction of the person/persons in
the scene.

Generated Skeleton Description

GPT

skeleton_desc: 
  Head: The head moves slightly in a random horizontal and   vertical direction,
indicating small changes in head   position over time. 
  Left Hand: The left hand moves mostly in a horizontal   direction, with slight vertical
movement. 
  Right Hand: The right hand moves primarily in a horizontal   direction, with minor
vertical motion. 

Left Knee: The left knee shows almost no vertical or horizontal motion, suggesting a
relatively stable position throughout the video.

 Right Knee: The right knee shows minimal movement both   horizontally and
vertically, indicating a stable position.

G
P
T

A: The head, left hand, right hand, left knee, and right knee
movements described in the pose description give insight into
how the individual performed actions like 'drink water',
'apply cream on hand', 'reading', and 'carry object'. For
example, the horizontal movement of the left hand might
correspond to the action of carrying an object, while the small
vertical motion of the right hand could be related to applying
cream on hand.

Q: How do the described joint movements relate to actions
performed in the video?

Q: What are the actions performed by the individuals in the video?
Given the <Skeleton_desc>

A: The actions depicted in the video include drinking water,
applying cream on hand,reading, and carrying an object

Actions : 
Open Refrigerator ,
Take out bottle, pour
water 

Drinking water,
Applying cream
on hand  
Reading
document, 
Carrying object  

LLAVIDAL

Figure 6. Overview of pipeline for Skeleton as QA and Skeleton as context.

  
 

Prompt to Retrive Relevant Objects 

Generated QA Pair  

 A.The video shows a man sitting on a
couch, opening a box, and typing on a
keyboard. The scene also includes a
couch, a box, a keyboard, and a TV

LLAVIDAL Inference Pipe line  for the method HOI as QA

Pipe line  for the method HOI as Context

(Question + HOI trajectories, Answer)   

Input video

 Q. Describe the video in detail?include
all the actions happening and the object
interaction of the person/persons in the
scene.

I have a video where the action "{action_label}"
is being performed by a human. I have detected
all of the objects in the scene of this video,
the objects I found are: {found_objects}. I only
want the objects that are relevant to the action
"{action_label}". From the list of detected
objects, return only the objects that are
relevant to the action being
performed. It is crucial that the objects you
return are contained in the list of objects I
have given you, DO NOT create new objects or
modify the names of the existing objects. Order
the objects by their relevance to the action. IT
IS OKAY TO NOT RETURN ANY OBJECTS IF NONE ARE
RELEVANT, In this case respond with the string
"None".never explain your decision)

OwlV2
[82.29, 

32.67, 

15.91,

51.73] 

   

 Object
trajectories 

GPT

       Object LM

Actions : Sitting on
couch, Holding box ,
typing on Laptop,
walk

BLIP2

Couch
Box
Laptop

Relevant
objects 

Box

chair
table

Laptop

Couch

Found 
 objects 

       Object LM Input video
frame

LLAVIDAL

GPT

 Q: What is tracked in the trajectories of
the  video at [121, 75], [124, 77], [140, 77]
[138, 74]) ? 

 A: The Objects tracked in the video  are : 
 Couch

 A: Box, Couch and Laptop

Q. What are the relevant
objects in the video?

 A. In the video, a man is seen sitting
on a couch, holding a box, and opening
it. He is also seen typing on a laptop.

 Q. Describe the video in detail?include
all the actions happening and the object
interaction of the person/persons in the
scene.

Input video

Figure 7. Overview of pipeline for HOI as QA and HOI as context.

tions, the actions themselves, and the interactions between
the person and objects in the scene. This dilution of focus
can lead to suboptimal performance and hinder the model’s
ability to accurately understand and classify ADLs. In con-
trast, by employing person-centric cropping, the irrelevant
background information is effectively eliminated from the
videos. This targeted approach ensures that the dense-level
captions concentrate solely on the elements that are directly
related to the subject and their actions. By maintaining
this persistent focus on the relevant information, the train-
ing data becomes more coherent and informative, enabling
the model to better capture the essential characteristics of
the ADLs. In Fig 9, we illustrate an example to highlight
the importance of PAG in our semi-automated data curation
framework.

D. Additional Implementation Details

We deployed a 4-bit quantized version of CogVLM-
17B [68] for annotating frame-level captions. On an A5000
GPU, the inference uses 11GB of memory.The two prompts
that are used to get the frame-level descriptions for the
ADL-X are – ”Give a detailed description of the actions
happening and describe the image, include motions and the
objects interacted by the person” and ”Summarize the con-
tent of the image in details explaining all events happen-
ing”. CogVLM uses Vicuna v1.5 7b [13] as their large lan-
guage model and EVA2-CLIP-E [64] as their VIT encoder,
the input image dimensions are 224×224, the average time
to annotate a video is 80 seconds at 0.5fps.

LLAVIDAL details. To generate HOI cues, we perform
frame-level object detection using BLIP2 and localization
using OWLv2. BLIP2 [33] uses a ViT-L and a FlanT5 [15]

15



Figure 8. Overview of ADL-X. Top Left: Training and test data distribution; Top Middle: Wordcloud of Textual Representation of Training
Data; Bottom Left: Sample video frames with detected relevant object Bottom Middle: 3D skeletons of the corresponding sample video;
Right: Sample QA pairs

The image depicts two individuals in a
room where the person on the left is

pointing towards the person on right, she
is wearing yellow top and blue jeans, the
person on the right is dressed in white t-
shirt and black shorts, there are many

chairs and desks in the scene with
computer monitors .In the distance we can
see a white board with writing on them,
there seems to be a desk behind the

board.There is also a jacket on the chair
hanging , the floor has some wires on

them.

The image depicts two individuals in a
room with computer monitors on a desk.

The person on the left, wearing a
yellow top and blue jeans, appears to
be gesturing or pointing towards the
person on the right. The person on the
right, dressed in a white t-shirt and
black shorts, seems to be observing or
listening. The setting appears to be an

office or a classroom.

Figure 9. Left: uncropped videos and frame level annotations from CogVLM; Right: PAG and CogVLM captions. The irrelevant informa-
tion (marked red) adds noise to the annotations.

architecture for detection, while OWLv2 [47] uses an OWL-
ViT-L which is a CLIP based model for extracting localiza-
tion features of the detected objects. In case of skeleton-
CLIP, the skeleton Encoder, Hyperformer, is pretrained on
NTURGBD for 140 epochs for action recognition, and then
is aligned with the CLIP Text Encoder for an additional 100

epochs. LLAVIDAL uses a Vicuna-v1.1 (7B) as the LLM
which is frozen during instruction tuning.
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E. Improving Actions: Skeleton vs HOI Cues
In this section, we present a comprehensive analysis of our
multi-modal approach leveraging HOI tokens, skeleton to-
kens, and their progressive integration (MMPro) for fine-
grained action recognition. Our empirical evaluation across
a diverse set of household actions demonstrates distinct per-
formance patterns across modalities, revealing their com-
plementary nature in action understanding when compared
against video only trained model. This analysis is shown in
Figure 10.

HOI token integration along with video token in LLMs
yields substantial performance gains in object-interaction
intensive actions, with peak improvements in “use lap-
top” (+45%), “use tablet” (+32%), “cook cut” (+40%),
and “make coffee” (+35%). This performance boost can
be attributed to the enhanced object-contextual reasoning
capabilities, where the model effectively leverages object-
centric features to disambiguate actions occurring in similar
spatial contexts. The HOI token cue demonstrates particu-
lar efficacy in scenarios requiring fine-grained object state
understanding, such as distinguishing between “pour from
kettle” (+20%), “pour from can” (+18%), and “pour from
bottle” (+15%), where object state transitions and object-
specific attributes are crucial for action classification. Addi-
tionally, HOI tokens show significant improvements in con-
text dependent actions like “breakfast eat at table” (+25%),
“put something on table” (+22%), and “clean dishes dry up”
(+18%), where spatial relationships between multiple ob-
jects exists.

The skeleton token cue exhibits superior performance
in actions characterized by distinctive kinematic patterns,
showing significant improvements in body-centric actions
such as “take pills” (+28%), “drink from can” (+25%),
“drink from bottle” (+22%), and “walk” (+15%). These
improvements stem from the model’s ability to capture fine-
grained skeletal dynamics, enabling robust discrimination
between actions with similar object interactions but distinct
motion patterns. Notably, skeleton tokens demonstrate en-
hanced capability in temporal action modeling, particularly
in sequential actions involving multiple body positions such
as “lay down” (+18%), “get up” (+16%), and “sit down”
(+17%). The skeleton cue also excels in capturing subtle
motion differences in drinking actions (“drink from cup”
+20%, “drink from can” +25%, “drink from bottle” +22%),
where the trajectory and orientation of movement are key
discriminative features.

Our proposed MMPro framework, demonstrates signifi-
cant synergistic effects, particularly in complex actions re-
quiring both object and kinematic understanding. For in-
stance, MMPro achieves significant improvements in “use
tablet” (+58%), “make coffee” (+52%), “breakfast take
ham” (+45%), and “use laptop” (+48%), where both ob-
ject state changes and body motion patterns are crucial for

accurate classification. The framework’s effectiveness is
particularly evident in ambiguous scenarios where individ-
ual modalities underperform, such as “clean dishes” (HOI:
+18%, skeleton: +15%, MMPro: +25%), “cook stir” (HOI:
+22%, skeleton: +20%, MMPro: +32%), and “pour from
kettle” (HOI: +20%, skeleton: +22%, MMPro: +30%).

In complex composite actions like “make coffee” (in-
volving “pour grains” +28%, “pour water” +25%), MMPro
successfully captures both the object state transitions and
the associated body movements, resulting in more accurate
action classification. Our results demonstrate that the MM-
Pro strategy successfully addresses the limitations of video
only LLVMs, providing a more comprehensive framework
for action understanding in complex real-world scenarios.

F. Additional Qualitative Evaluation
In this section, we provide qualitative evaluation of LLAVI-
DAL and other state-of-the-art LLVMs for the tasks of ADL
MCQ Action Recognition and ADL MCQ Temporal Com-
pletion, illustrated in Figures 12, 13, and 14. In Figure 15,
we demonstrate the performance of LLAVIDAL for Video
Description Generation on the Charades dataset.

One of the applications of LLAVIDAL is to monitor cog-
nitive decline in geriatric patients through the action fore-
casting capabilities of our model. In this effort, we have
qualitatively evaluated the model on videos of falls on long
term care by the IMPL SFU [57]. The subjects in these
videos are suffering from dementia, seizure, diabetes like
diseases and the dataset contains 175 such falls. We slice
the input video before the event of fall and prompt LLAVI-
DAL and other LLVM’s to predict whether the person will
fall or not. As illustrated in Figure 11, our model outper-
forms the other LLVMs by predicting the fall correctly and
by giving proper explanation of why the fall would occur
highlighting its reasoning capabilities. While other models
predict that the person ”has fallen down” and hallucinates
the reasoning of the fall as well.

G. LLM Prompts Used
In the following sections, we demonstrate the prompts used:

G.1. Dense Captioning using GPT-3.5 Turbo
{”role”:”system”}: "You will play two
roles: a human asking questions
related to describing a video and an
intelligent chatbot designed for video
description and dense captioning. Your
task is to generate a detailed and
descriptive paragraph based on the
provided fragmented information about
a video."

”##TASK”: "Users will provide
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Figure 10. Improvement of actions with object tokens vs skeleton tokens vs MMPro training

 Q. Is the person going to fall?

    
     Yes, the person is in a
precarious position, as they
are sitting on the edge of

the chair which could
potentially cause them to

fall.  

The person falls.

   Yes,the person in the video   

   is seen falling off the chair.

  The person has fallen.

 Q. Is the person going to fall?

     Yes, the person is 
     walking down a hallway,
and it appears he might be

about to fall.

     No,the person is walking.

 The person has fallen down.

       Yes,the person in the
       video is walking down a 

 hallway in a hospital.

Input snippet Input snippet

Figure 11. The input snippet is the input video and the grey part is omitted out, here the model needs to detect the greyed action.

fragmented descriptions of a video, and
you will generate ONE conversation-like

question and answer related to
describing the video in detail.The
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 Q. Pick the correct action that is being performed in the video

among the options?

 a) Reading book                         b) Using tablet
 
 c) Walking                              d) Using telephone

Walking

 Using tablet  Using tablet

Using tablet

 Q. Pick the correct action that is being performed in the video 

 among the options?

 a) Pouring from can                      b) Using tablet
 
 c) Drinking from glass                   d) Leaving 

Leaving

  Pouring from can Drinking from glass

  Pouring from can

Figure 12. Evaluation of ADL MCQ Action recognition task on Charades Dataset

 
  Q. What action does the person do after the action "Drink from cup" and before the 
     action "Sit down"?
 a) Cook                                               c) Cook -Use Oven
 b)Walk                                                d) Make Tea         

    
     Walk  

Make Tea

Make Tea

Cook

 Q. What action does the person do after the action "Read" and before the action "Take   Something
off the table"?
 a)Walk                                                       c)Get up
 b)Make coffee- pour grains                       d)Make breakfast-Spread jam or butter

WalkGet up

Make coffee-pour grainsGet up

Figure 13. Evaluation of ADL MCQ TC task on TSU dataset

question should ask to describe
the video content in detail.The
answer should be a paraphrased and
well-structured paragraph based on the
provided description, with a minimum
of 150 words and a maximum of 300
words.When the provided information is
short, aim for a 150-word description,
and when the provided information
is more detailed, aim for very
long descriptions up to 300-word
description."

”##INSTRUCTIONS”: "The question
must be like a human conversation
and focused on describing the video
in detail.The answer must be a
paraphrased version of the provided
information, very detailed and
descriptive, and within the specified
word count.Combine the information from
different sections of the video into a
single coherent summary, ignoring any
repetitions.Compare the information

across all fragments of video and
remove or ignore any inconsistent
information and do not say the summary
comes from different fragments of
the video.Give more emphasis on the
actions, the objects, and the colors
of the background and the objects.Give
the sequence of actions happening in
the video and the objects the person
interacts with."

{”role”:”user”}: "The fragmented video
description is: {mega caption}. Please
generate the response in the form of
a Python dictionary string with keys
"Q" for question and "A" for answer.
Each corresponding value should be the
question and answer text respectively.
For example, your response should
look like this: {"Q": "Your question
here...", "A": "Your answer here..."}.
Emphasize that the answer should
focus on describing the video content
following the given instructions."
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Q.What action is most likely to be performed given the action "wash

cutting-board and "get cutting-board from table with hand" were

performed?'choose from the following options

a) Work-on milk                   b) Put bread | tomato on table   

                                     with hand    
c) Get cutting board,other        d) Clean hand
   person with hand                   
e) Close wrapping                 f) Put cutting-board on table     
                                     with hand                     
                      

      Get cutting-board, other

person  with hand

    Get cutting-board, other

person  with hand

 Put cutting board 
  on table with hand 

      Get cutting-board, other 

 person  with hand  

Q .What action is most likely to be performed given the action "close

fridge" and "put meat in fridge with hand"?choose from the following

options

a) Put plate | fork on table        b) Get fork from plate with hand

   with hand                     

c) Eat cereal with hand             d) Put meat in sandwich with     

                                       hand

e) Get plate from table with        f) Put water-pot on table with 

   hand                                hand

      Put meat in sandwich 

with hand

Put meat in sandwich

with hand 

    Get plate from table
with hand 

      Put meat in sandwich 

with hand  

Figure 14. Evaluation of ADL MCQ TC task on Lemma dataset

G.2. QA generation using GPT-3.5 Turbo: Prompt
1

{”role”:”system”}: "You play two roles:
a human asking questions related
to summarizing a video and an
intelligent chatbot designed for video
summarization and dense captioning.
Your task is video summarization. As
an AI assistant, assume that you have
watched the video and generated the
provided caption as the summary of the
video. Your task is to play the role
of a human who asks three questions
related to summarizing the video and
then play the role of an AI assistant
that provides paraphrased answers based
on the video content and the provided
caption."

”##TASK”: "Users will provide a
caption of the video alongside dense
caption describing detected objects in
that scene, and you will generate a set
of three conversation-like questions
related to summarizing the video.
The questions and answers can be very
similar, but they should all focus on
summarizing the video content. The
answers should be paraphrased versions
of the provided caption and the dense
caption with the object detections.
You have information about the video
based on the provided caption and have
summarized the events in it. You also
have the dense caption with the object
and scene details. Generate THREE

different questions asking to summarize
the video and provide detailed answers
to each based on the caption and the
dense caption."

”##INSTRUCTIONS”: "The questions
must be like a human conversation and
focused on summarizing the video. The
answers must be paraphrased versions
of the provided caption and the dense
caption, and they should be detailed
and descriptive."
"------"
"SAMPLE QUESTIONS:"
"- Can you provide a summary of the
video?"
"- What are the main events in the
video?"
"- Could you briefly describe the video
content?"

{”role”:”user”}: "The video caption
is: {caption}. The additional
dense caption is: {mega caption}.
Generate three different questions
on summarizing the video, and provide
answers that are paraphrased versions
of the given caption and the dense
caption. Please attempt to form
question and answer pairs based on
the two sets of text. Please generate
the response in the form of a Python
list of dictionary string with keys
"Q" for question and "A" for answer.
Each corresponding value should be the
question and answer text respectively.
For example, your response should
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 Q1. Describe the video in detail.

A1) The video shows a young boy sitting on a table and writing on a piece of

paper.He is wearing a black shirt and appears to be focused on his work.

A2) No,the boy does not drink water. 

A1) The video shows a young boy sitting at a table, writing on a piece of
paper. He appears to be focused on his task, and his handwriting is neat
and precise. The boy is wearing a casual outfit, with a t-shirt and jeans.
The room he is in is well-lit, with natural light coming in from a window
in the background. The table he is sitting at is made of wood and has a
smooth surface. The boy's writing appears to be in a foreign language, and
he seems to be taking his time to ensure that every word is written
correctly. Overall, the video captures a peaceful and focused moment of a
young boy engaging in a creative activity. 

A2) Yes,he takes a sip of water from a glass and then  continues to write
on the paper.

A1) The video shows a young boy sitting on the floor in a room, wearing a 

shirt and dark pants. He is writing on a piece of paper, which is placed on a

table or a desk. The room appears to be a bedroom, with a white wall . The

boy is focused on his writing task, and the room is filled with various items

such as clothes, books, and other objects. The overall atmosphere of the

scene is calm and peaceful, with the boy engrossed in his writing.

A2) Yes,the boy is drinking water from a glass sitting on a floor. 

A1) In the video, we see a young boy sitting at a table in a room. He is
wearing a black and white striped shirt. The table is white and has a

black and white striped tablecloth on it. There is a white chair in the
room, and a black and white striped rug is on the floor. The boy is

writing something on a piece of paper. The room is cluttered with
various items such as a black and white striped pillow, a white plastic
bag, a white bottle, and a black and white striped book. The boy is

sitting on a chair, and there is a white box in the room. The video lasts
for 30 seconds, and the boy is sitting at the table for the entire

duration.

A2) Yes, the young boy in the video is seen drinking water at the table.

Q2. Does he drink water ?

Figure 15. Qualitative evaluation of video description on Charades Dataset. Text marked in red are incorrect. Text marked in green are
correct.
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look like this: [{"Q": "Your first
question here...", "A": "Your first
answer here..."}, {"Q": "Your first
question here...", "A": "Your first
answer here..."}, {"Q": "Your first
question here...", "A": "Your first
answer here..."}]. Emphasize that
the questions and answers can be very
similar, but they should all focus on
summarizing the video content."

G.3. QA generation using GPT-3.5 Turbo: Prompt
2

{”role”:”system”}: "You play two roles:
a human asking questions related to
a video and an intelligent chatbot
designed for video summarization
and dense captioning. Your task is
extracting diverse video information.
As an AI assistant, assume that you
have watched the video and generated
the provided caption as the summary
of the video. Your task is to play
the role of a human who asks three
questions related to summarizing the
video and then play the role of an AI
assistant that provides paraphrased
answers based on the video content and
the provided caption."

”##TASK”: "Users will provide
a caption of the video alongside
dense caption describing detected
objects,setting and details in that
scene, and you will generate a set
of three conversation-like questions
related to the video. The questions
and answers can be very similar, but
they should all focus on the details
of the video content. The answers
should be paraphrased versions of the
provided caption and the dense caption
with the object and scene details.
You have information about the video
based on the provided caption and have
summarized the actions in it. You also
have the dense caption with the scene
details. Generate THREE different
questions asking the details of the
video and provide detailed answers
to each based on the caption and the
dense caption and one question should
be about what actions are happening
which should come from captions of the

video."
”##INSTRUCTIONS”: "The questions

must be like a human conversation
and focused on finding the intricate
and unique details of the video. The
answers must be paraphrased versions
of the provided caption and the dense
caption, and they should be detailed
and descriptive. " "------"
"SAMPLE QUESTIONS:"
"- What are the actions occuring
sequentially in the video?"
"- What are the colors of the outfits
of the person in the video?"
"- What are the objects in the scene?"
"- What is the person doing?"

{”role”:”user”}: "The video caption
is: {caption}. The additional dense
caption is: {mega caption} Generate
three different questions on the
details of the video, and provide
answers that are paraphrased versions
of the given caption and the dense
caption. Please attempt to form
question and answer pairs based on
the two sets of text. Please generate
the response in the form of a Python
list of dictionary string with keys
"Q" for question and "A" for answer.
Each corresponding value should be the
question and answer text respectively.
For example, your response should
look like this: [{"Q": "Your first
question here...", "A": "Your first
answer here..."}, {"Q": "Your first
question here...", "A": "Your first
answer here..."}, {"Q": "Your first
question here...", "A": "Your first
answer here..."}]. Emphasize that
the questions and answers can be very
similar, but they should all focus
on the various details of the video
content and understanding what actions
are happening. Include at least one
question about the sequence of actions
happening in the video."

G.4. skeleton Description Generation Prompt using
GPT-3.5 Turbo

I have the coordinates that track the
position of human joints throughout a
video. I want to obtain the motion of
each of these joints over time, using
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only these human joint coordinates.
Here are the joint coordinates across
observations: {pose str}. I want to
know the general motion of these joints
AND the amount of this motion (if the
joint moved a lot, or only a small
amount over the frames). Respond with
a single sentence that INDEPENDENTLY
describes the motion directions and
amount for each joint over the entire
video. Please start your reply for
each joint with the name of the joint.
What can you tell me about the motion
and motion magnitudes of these joints?
Describe the concrete direction of
the motion of the joints, do not just
say they move in many directions, but
only describe how it moves and not its
numerical coordinates. Do not forget
to list the motion and amount of motion
in two separate sentences. Begin each
description with the name of the joint
followed by a colon. Also include a
sentence that captures the structure of
the human body, such as the posture and
position of the joints relative to one
another

Here the pose str, is of the following format:
In observation 0, the right knee is
at (104, 201) and the left knee is at
(106, 197) and the right hand is at
(87, 162) and the left hand is at (134,
49) and the head is at (112, 40). In
observation 1, the right knee is at
(82, 208) and the left knee is at (87,
204) and the right hand is at (66, 167)
and the left hand is at (122, 63) and
the head is at (91, 38).....

G.5. Prompt to obtain Relevant Objects using GPT-
3.5 Turbo

I have a video where the action
"{action label}" is being performed by
a human. I have detected all of the
objects in the scene of this video, the
objects I found are: {found objects}.
I only want the objects that are
relevant to the action "{action label}".
From the list of detected objects,
return only the objects that are
relevant to the action being performed.
It is crucial that the objects you
return are contained in the list

of objects I have given you, DO NOT
create new objects or modify the names
of the existing objects. Order the
objects by their relevance to the
action. IT IS OKAY TO NOT RETURN ANY
OBJECTS IF NONE ARE RELEVANT, In this
case respond with the string "None".
The relevant objects are (return the
objects separated by a comma) (never
explain your decision).

H. Limitations

While our approach works well with videos spanning a few
seconds, it struggles with long videos. LLAVIDAL’s pre-
processing pipeline samples 100 frames per video. This
sampling rate misses out key information in case of long
videos, where there is a larger number of frames. To this
end, for the task of generating Video Descriptions, we split
the long videos in Toyota Smarthome Untrimmed into clips
of 20 seconds each and generate descriptions for each clip.
These clip-level descriptions are summarized using GPT3.5
Turbo to obtain a video-level description. However, this
summarization step loses valuable information and hence
fails to provide an accurate summary of the long video. Fu-
ture work should explore an effective sampling strategy for
long video understanding.

I. Licensing and Intended Use

This paper introduces a large-scale dataset, ADL-X, com-
prising 100K untrimmed RGB video-instruction pairs, 3D
skeletons, language descriptions, and action-conditioned
object trajectories. The raw videos in ADL-X comprise
content from NTURGB+D [59], for which the original au-
thors retain distribution rights for the clipped action videos.
The scripts utilized to curate the dataset are open-sourced,
facilitating the regeneration of the dataset. We will also pro-
vide comprehensive features, including image features ex-
tracted using CLIP, skeleton features derived from skele-
tonCLIP, and HOI features obtained through ObjectLM.
We plan to release ADL-X via an academic website for
research, academic, and commercial use. The dataset is
protected under the CC-BY license of Creative Commons,
which allows users to distribute, remix, adapt, and build
upon the material in any medium or format, as long as the
creator is attributed. The license allows ADL-X for com-
mercial use. As the authors of this manuscript and collec-
tors of this dataset, we reserve the right to distribute the
data. Additionally, we provide the code, data, and instruc-
tions needed to reproduce the main experimental baseline
results, and the statistics pertinent to the dataset. We spec-
ify all the training details (e.g., data splits, hyperparameters,
model-specific implementation details, compute resources
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used, etc.). Furthermore, we release the code and model
weights of our proposed Large LAnguage VIsion model
for Daily Activities of Living (LLAVIDAL), along with
the features and instruction QA pairs for the combination
videos. The ADL-X dataset focuses on ADL and does not
contain any personal data that can resemble evidence, reveal
identification, or show offensive content.

The ADL-X dataset can be used by multiple domain ex-
perts to advance research and development in various appli-
cations related to ADL. Its potential applications include,
but are not limited to, assistive technologies, healthcare
monitoring systems [37], smart homes [9], robotics for as-
sisted living, and instructional videos for ADL training and
support. The dataset can also contribute to the develop-
ment of AI-driven solutions that aim to improve the qual-
ity of life for individuals with disabilities, older adults, and
those in need of daily assistance. While we believe that
the ADL-X dataset has the potential to make a positive im-
pact on society by enabling the development of technolo-
gies that support and enhance the lives of individuals, we
acknowledge that, as with any technology, there is a possi-
bility that the dataset or the ideas it presents could be mis-
used or adapted for harmful purposes. However, as authors,
we strongly oppose any detrimental usage of this dataset,
regardless of whether it is by an individual or an organiza-
tion, under profit or non-profit motivations. We pledge not
to support any endeavors that could cause harm to individ-
uals or society in relation to our data or the ideas presented
herein. Our intention is to foster research and innovation
in the field of ADL analysis and support, ultimately con-
tributing to the development of technologies that improve
the quality of life for those who need assistance with daily
activities. We encourage all users of the ADL-X dataset to
adhere to the highest ethical standards and to prioritize the
well-being of individuals and society in their research and
development efforts.
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