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Abstract

Self-supervised video representation learning aimed at max-
imizing similarity between different temporal segments of
one video, in order to enforce feature persistence over time.
This leads to loss of pertinent information related to tempo-
ral relationships, rendering actions such as ‘enter’ and ‘leave’
to be indistinguishable. To mitigate this limitation, we pro-
pose Latent Time Navigation (LTN), a time-parameterized
contrastive learning strategy that is streamlined to capture fine-
grained motions. Specifically, we maximize the representation
similarity between different video segments from one video,
while maintaining their representations time-aware along a
subspace of the latent representation code including an or-
thogonal basis to represent temporal changes. Our extensive
experimental analysis suggests that learning video represen-
tations by LTN consistently improves performance of action
classification in fine-grained and human-oriented tasks (e.g.,
on Toyota Smarthome dataset). In addition, we demonstrate
that our proposed model, when pre-trained on Kinetics-400,
generalizes well onto the unseen real world video benchmark
datasets UCF101 and HMDBS51, achieving state-of-the-art
performance in action recognition.

Introduction

Contrastive learning (Hadsell, Chopra, and LeCun 2006) is
a prominent variant in learning self-supervised visual repre-
sentations. The associated objective is to minimize the dis-
tance between latent representations of positive pairs, while
maximizing the distance between latent representations of
negative pairs. For instance, a visual encoder aims at learning
the invariance of multiple views of a scene, which constitute
positive pairs, by extracting generic features of images (Bach-
man, Hjelm, and Buchwalter 2019; Caron et al. 2020; Chen
et al. 2020; Grill et al. 2020; He et al. 2020; Hjelm et al. 2019;
Jiao et al. 2020; Tian, Krishnan, and Isola 2020; Wu et al.
2018) or videos (Feichtenhofer et al. 2021; Han, Xie, and
Zisserman 2020; Huang et al. 2019; Kong et al. 2020; Li et al.
2021a,b; Park et al. 2022; Yang et al. 2021b, 2022; Sun et al.
2021). Then, the trained visual encoder can be transferred
onto other downstream tasks.
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Remarkable results have been reported by augmentation-
invariant contrastive learning. In this context, contrastive
learning methods enable the visual encoder to find com-
pact and meaningful image representations, invariant to data
augmentation. The latent representation of two augmented
views of the same instance are enforced to be similar via
contrastive learning. In image-based tasks, a common aug-
mentation method relates to random cropping (Chen et al.
2020; Wu et al. 2018). When extending this idea to videos,
which are endowed with additional temporal information,
cropping in the spatial dimension (Kong et al. 2020) is not
sufficient for training an effective visual encoder. Therefore,
recent works (Feichtenhofer et al. 2021; Li et al. 2021b; Sun
et al. 2021) sample different views with a temporal shift,
learning representations that are invariant to time changes.
However, for downstream tasks involving temporal relation-
ships, a representation invariant to temporal shifts might omit
valuable information. For instance, in differentiating actions
such as ‘enter’ and ‘leave’ the temporal order is fundamen-
tal. Hence, a trained visual encoder remains a challenge in
handling downstream video understanding tasks such as fine-
grained human action recognition (Das et al. 2019; Goyal
etal. 2017; Li et al. 2021c¢).

Motivated by the above, we propose Latent Time Navi-
gation (LTN), a time parameterization scheme streamlined
to learn time-aware representations on top of the contrastive
module. As illustrated in Fig. 1, deviating from current con-
trastive methods (Feichtenhofer et al. 2021; He et al. 2020;
Tian, Krishnan, and Isola 2020; Wu et al. 2018) which di-
rectly maximize the similarity between representations ob-
tained from the visual encoder for positive samples, LTN
encompasses the following steps. Firstly, we decompose a
subspace (i.e., a learnable orthogonal basis and associated
magnitudes) from the latent representation code for the video
segment, namely ‘time-encoded component’, to do with tem-
poral changes (e.g., changes in appearances, motion, object
locations). The other subspace (‘time-invariant component’)
has to do with invariant information. Subsequently, we em-
bed the time shift value used for generating data view into a
high-dimensional vector as the magnitudes of the directions
in the orthogonal basis and then encode this time information
into the ‘time-encoded component’ by linear combination
of the orthogonal basis and the magnitudes. Finally, we con-
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Figure 1: Current methods (left) leverage on contrastive learning to maximize representation similarities of multiple positive views
(segments with time spans and data augmentation) of the same video instance to represent them as a consistent representation.
To further improve the representation capability for fine-grained tasks without losing important motion variance, our approach
(right) incorporates a time-parameterized contrastive learning (LTN) to remain the video representations aware to time shifts

(starting time) in a decomposed time-encoded subspace.

duct contrastive learning on the entire time-parameterized
representations in order to maximize the similarity between
positive pairs along the ‘time-invariant component’, while
maintaining their representations time-aware along the ‘time-
encoded component’. We note that LTN incorporates time
information for video representations and therefore is able
to model subtle motions within an action. Consequently, the
time-aware representation obtained from the trained visual en-
coder generalizes better to unseen action recognition datasets,
especially to our target human-oriented fine-grained action
classification dataset (Das et al. 2019).

In summary, the contributions of this paper include the
following. (a) We propose Latent Time Navigation (LTN)
to parameterize the time information (used for generating
data views) on top of contrastive learning, in order to learn
a time-aware video representation. (b) We demonstrate that
LTN can effectively learn the consistent amount of temporal
changes with the video segments on the decomposed ‘time-
encoded components’. (c) We set a new state-of-the-art with
LTN on the real world dataset (e.g., Toyota Smarthome) for
fine-grained action recognition with self-supervised action
representation learning. (d) We demonstrate that our proposed
model, when pre-trained on Kinetics-400 dataset, generalizes
well to unseen real-world video benchmarks (e.g., UCF101
and HMDBS51) with both linear evaluation and fine-tuning.

Related Work

Contrastive Learning. Contrastive learning and its vari-
ants (Bachman, Hjelm, and Buchwalter 2019; Caron et al.
2020; Chen et al. 2020; Grill et al. 2020; He et al. 2020;
Hjelm et al. 2019; Jiao et al. 2020; Tian, Krishnan, and Isola
2020; Wu et al. 2018) have established themselves as a per-
tinent direction for self-supervised representation learning
for a number of tasks due to promising performances. Re-
cent video representation learning methods (Feichtenhofer
et al. 2021; Huang et al. 2019; Kong et al. 2020) are inspired

by image techniques. The objective of such techniques is
to encourage representational invariances of different views
(i.e., positive pairs) of the same instance obtained by data
augmentation, e.g., random cropping (Chen et al. 2020; Wu
et al. 2018), rotation (Misra and van der Maaten 2020), while
spreading representations of views from different instances
(i.e., negative pairs) apart. To further improve the representa-
tion capability, CMC (Misra and van der Maaten 2020) scaled
contrastive learning to any number of views. MoCo (He et al.
2020) incorporated a dynamic dictionary with a queue and a
moving-averaged encoder. To omit a large number of negative
pairs, BYOL (Grill et al. 2020) and SwAV (Caron et al. 2020)
were targeted to solely rely on positive pairs. However, these
methods miss a crucial Time element when they are straight-
forward applied to the video domain with views generated by
image data augmentation technique. In our work, we adopt
recent contrastive learning frameworks (Grill et al. 2020; He
et al. 2020) and we focus on learning time-aware representa-
tions for videos by latent spatio-temporal decomposition and
navigation in the representation space.

Self-supervised Video Representation Learning. Ap-
proaches for self-supervised video representation learning ex-
ploit spatio-temporal pretext tasks from numerous unlabeled
data. Towards effective extraction of the pertinent motion
information in the time dimension, a number of temporal
pretext tasks were proposed, e.g., pixel-level future genera-
tion (Mathieu, Couprie, and LeCun 2016; Srivastava, Mansi-
mov, and Salakhutdinov 2015; Vondrick, Pirsiavash, and Tor-
ralba 2016b; Vondrick et al. 2018) and jigsaw-solving (Kim,
Cho, and Kweon 2019). Additionally, in order to facilitate
the learning process, numerous works focused on learning
representations in a more abstract space including temporal
order (Misra, Zitnick, and Hebert 2016; Xu et al. 2019) or
arrow (Wei et al. 2018) prediction of video frames, future
prediction (Vondrick, Pirsiavash, and Torralba 2016a), speed
prediction (Benaim et al. 2020), motion prediction (Diba
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Figure 2: Overview of the proposed LTN framework. At each training iteration, given an input video, (a) a query clip (¢) and
multiple positive key clips (ki k5, ..., k;;) are generated by data augmentation with different temporal shifts dt. All clips are
then fed to a visual encoder that extracts spatio-temporal features for each clip. To learn time-aware representations for query and
key clips, (b) we first pre-define a learnable orthogonal basis D; (d1,d2, ..., dn) that represents the ‘time-encoded component’.
The video representations are expected to be time-aware along D, in the training stage. To do so, we transform each query and
key video representation (i.e., f(¢), (k")) by a linear combination of D; and associated magnitudes learned from its time shift
dt to a time-blended position (i.e., f’(¢,dt,), f'(k,, dt,), abbreviated as f'(q), f’(k, )). Finally, we conduct (c) contrastive
learning on top of f’, so that the learned representation from the visual encoder can maintain temporal awareness.

et al. 2019) and a combination of these tasks (Bai et al. 2020).
These methods are highly constrained by the limited quality
of pretext tasks. Recently, video contrastive learning meth-
ods (Huang et al. 2019; Kong et al. 2020) have obtained
promising results and a large-scale study (Feichtenhofer et al.
2021) has been conducted to compare state-of-the-art image-
based contrastive methods (Caron et al. 2020; Chen et al.
2020; Grill et al. 2020; He et al. 2020) on videos using
spatio-temporal cropping, color jitters and Gaussian blur data
augmentation techniques to generate multiple video views.
Further, to improve representation performance, (Ding et al.
2022; Huang et al. 2021; Ranasinghe et al. 2022) focused
on view generation techniques, e.g., context-motion decou-
pling (Huang et al. 2021), foreground-background merg-
ing (Ding et al. 2022), global and local sampling across
space and time (Ranasinghe et al. 2022). In addition, some
specific designs are incorporated in spatio-temporal represen-
tation learning including Gaussian probabilistic representa-
tions (Park et al. 2022), skeleton contrastive learning (Li et al.
2021a; Yang et al. 2021b; Das et al. 2021) and muti-modal
learning with audio (Bruno, Du, and Lorenzo 2019; Dwibedi
et al. 2019; Patrick et al. 2021; Recasens et al. 2021; Shuang
et al. 2021; Xiaolong, Allan, and Alexei A 2019) or with
optical flow (Han, Xie, and Zisserman 2020; Li et al. 2021b).
Such contrastive methods aimed at learning video represen-
tations invariant to time shift. However, motion significantly
changes with time shifts, leading to poor performance on
downstream fine-grained action recognition tasks that highly
rely on the motion variance. To address this issue, CATE (Sun
et al. 2021) proposed to parameterize data augmentation re-
lying on an additional Transformer head prior to contrastive
learning. It demonstrated that awareness of the temporal data
augmentation is particularly instrumental in fine-grained ac-
tion recognition tasks. Deviating from CATE that shifts the

entire visual representation along all dimensions by the time-
shift values even for the action with small motion variances,
we study variant time-parameterization strategies and propose
to encode the time-shift values partially on certain orthogonal
directions instead of on the entire visual representation. By
our proposed LTN, the impact of time can be video specific
and controlled by the number of the orthogonal directions so
that the visual encoder can better capture motions.

Proposed Approach

In this section we introduce our Latent Time Navigation
(LTN) framework. We start with the overall architecture, then
we proceed to describe the design strategies focusing on time
parameterization that enforces the learned video representa-
tion to be aware of motion variances.

Overall Architecture of LTN

Our objective is to train a generic visual encoder f for ex-
tracting accurate spatio-temporal features of video clips. We
design our visual encoder to be efficient for downstream fine-
grained action recognition tasks. We illustrate the overview
of the architecture in Fig. 2. To train the visual encoder, a
general data augmentation technique including random tem-
poral shifts is applied to generate multiple positive views
for a given input video, allowing us to obtain multiple rep-
resentations from different views. Deviating from previous
methods (He et al. 2020; Tian, Krishnan, and Isola 2020),
which directly employ contrastive learning for these repre-
sentations in order to make them invariant to spatio-temporal
augmentation, we design an additional time parameterization
module to blend temporal augmentation to a ‘time-encoded
component’ prior to contrastive learning. We then perform
the contrastive learning for the new time-blended represen-



tations in the training stage. The trained visual encoder can
thus be aware of time shifts compared to other positive pairs
and can capture the important motion variances of videos for
improving fine-grained action recognition tasks.

View Generation and Embedding. Following the study
(Feichtenhofer et al. 2021), we first spatio-temporally crop
a segment by randomly selecting a segment and cropping
out a fixed-size box from the same video instance. We then
pull together image-based augmentations including random
horizontal flip, color distortion and Gaussian blur follow-
ing (Chen et al. 2020; He et al. 2020) to generate positive
views of the input video at each training iteration. As demon-
strated in (Feichtenhofer et al. 2021), multiple positive sam-
ples with large time spans between them are beneficial in
downstream performance. In our work, we sample a query
clip noted as ¢ and multiple positive keys with large time
spans, noted as kf‘, s k:; (see Fig. 2 (a)). We utilize a 3D-
CNN network (Hara, Kataoka, and Satoh 2017) as the visual
encoder to obtain dim-dimensional representations of all
clips (i.e., £(q), £(k]), ..., f(k}) € RIxdim),

Awareness of Time in Latent Space. Large time spans
between positive samples may depict significant changes in
human motion. When directly matching f(q) to all positive
pairs, the corresponding representations may lose pertinent
motion variance caused by time shifts. This could compro-
mise the accuracy of downstream tasks related to fine-grained
human motion (e.g., classification of ‘Leave/Enter’, ‘Stand
up/Sit down’). Hence, we expect positive pairs to be partially
similar with each other (due to static object, scene) while
also partially aware of their time shifts to preserve temporal
dynamic information (e.g., changes in motion). To do so, we
design several time parameterization methods (see Sec. Time
Parameterization in Latent Space) to encode the time shift
value (denoted as dtq for ¢) used for data augmentation to
a part (several orthogonal directions) of the visual represen-
tation while keep the remaining part unchanged. Such time-
encoded pretext representation of ¢ and each positive key can
be computed and denoted as f’(q, dtq) and (K}, dty,). We
then maximize the mutual information between the pretext
representations f’(¢,dtq) and f’(k;}, dty) by contrastive
learning. The original (target) visual representations from
different segments (e.g., f(¢), f(k,7)) will be sensitive to
time along the time-encoded part after learning and can be
transferred onto downstream tasks.

Time Parameterization in Latent Space

We first introduce the latent space decomposition approach to
split the representation space into ‘time-encoded component’
and ‘time-invariant components’, and then we introduce time
encoding which is used as a parameter to transform the visual
representation only along the ‘time-encoded component’ to
reach a new time-blended position.

Latent Space Decomposition. To decompose the repre-
sentation space, we set a learnable orthogonal basis (i.e., a
subspace) D; = {d1,da2,...,dm} with M € [1,dim), and
d € R¥mx1 (o represent the ‘time-encoded component’,
where each vector indicates a basic visual transformation.
Due to D, entailing an orthogonal basis, any two direc-
tions dj, d; follow the constraint in Eq. 1. We implement

D; € R¥m*M a5 a learnable matrix following (Wang et al.
2022), and we apply the Gram-Schmidt algorithm during
each forward pass in order to satisfy the orthogonality.

goa_d0 iF
<dj,dj >= {1 i=j. (1)

Time Encoding. We decomposed the ‘time-encoded com-
ponent’ D, of the video representation from the latent space,
to force the model to be aware of temporal variances along
D, with different time shifts. We propose to encode and pa-
rameterize the time shift values dt for the randomly selected
query (and key) segment using their absolute starting point
in seconds in the timestamps (i.e., tsqr¢). We used absolute
time as we aimed at learning the representation of a single
segment aware of time shift from a fixed ‘reference view’
(i.e., the video beginning).

e(dt, f(q)) = MLP ([MLP(tstart), £(q)]). ()

Specifically, we encode dt into a high-dimensional vector
e(dt, f(q)) by simple MLP (see Eq. 2), with the purpose
of parameterizing the time shift considering different time-
blending variants followed by contrastive learning. The time
encoder also accepts f(q) as the input by concatenating with
embedded dt, towards learning a video specific encoding.
We explore the idea of effective modeling for time shifts by
proposing and comparing three time parameterization vari-
ants for the transformation from f to f’. The first approach
has to do with straightforward linear addition on video repre-
sentation f(q) with ¢(dt, f(q)) (Variant 1). We then develop
more efficient variants, which model the ‘time-encoded com-
ponent’” more finely by learning the weights (Variant 2) or
the magnitudes (Variant 3) only along the directions in the
‘time-encoded component’ D;.

Variant 1. Time-driven Linear Addition We implement
e(dtq,f(g)) € R*4™ as the offset, from which positive
pairs need to be pulled away from the representation ‘time-
encoded component’ to obtain the time-blended representa-
tion in the latent space. The linear addition can be described
as Eq. 3.

(g, dty) = f(q) + €(dtq, f(q)) ©)

Variant 2. Time-driven Attention We then explicitly im-
plement an attention mechanism to learn a set of attention
weights for the positive pairs to be driven by W € R1*M =
{wy,wa, ..., wpr } = Softmax ( e(dtq, f(q))) The attention
weights force f(q) to focus on the specific ‘time-encoded
component’ in Dy according to different time encoding. This
process can be described as follows

M
£'(q,dt,) = £(q) - (_Z w; - dy). )

Variant 3. Time-driven Linear Transformation. As
shown in Fig. 2 (b), we finally propose a linear transfor-
mation method to encode the time shift information in the
latent ‘time-encoded component’ D;. To implement linear
transformation along Dy, we learn the coefficient (i.e., mag-
nitude) on each direction of Dy, noted as A € R*M —
{a1,a9,...;apn} = €(dty, f(g)), by the time encoder. This
linear transformation is able to enforce time variance and



Transformation Top-1 (%) Mean (%)
Base: w/o transformation 65.1 49.7
Variant 1: Linear w/o D, 66.0 49.8
Variant 2: Attention 66.7 51.6
Variant 3: Linear w/ D;
w/o orthogonalization of D, 67.3 53.1
w/ orthogonalization of D, 67.8 53.7

Table 1: Top-1 accuracy and Mean accuracy on Smarthome
CS in comparing proposed Time parameterization variants.

Method P Top-1 (%) Mean (%)
MoCo (He et al. 2020) 2 61.5 472
pMoCo (Feichtenhofer et al. 2021) 4 65.1 49.7
pBYOL (Feichtenhofer et al. 2021) 4 61.7 42.4
LTN + MoCo 2 65.5 49.0
LTN + pMoCo 4 678 53.7
LTN + pPBYOL 4 63.3 45.1

Table 2: Top-1 accuracy and Mean per-class accuracy on
Smarthome CS signifying the impact of LTN on different
contrastive frameworks. P: number of positive pairs.

to obtain different representations only along D,. The final
time-blended representation £(g, dt,) can be described as
follows
M
£(q,dty) = f(g)+ > ai-di =f(g) + AxD{. (5

i=1

All proposed time parameterization variants are effective in
learning video representations aware of temporal changes
and can improve the target downstream tasks by capturing
such motion variances. Associated analysis is presented in
Sec. Ablation Study, where we compare the three variants
on their performance of downstream tasks. We find that the
Linear Transformation with an orthogonal basis is the most
effective and is beneficial as a generic methodology for learn-
ing time-aware spatio-temporal representations.

Self-supervised Contrastive Learning

In this section, we omit the parameterized time of all samples
in the notations to simplified formulations (e.g., £’(¢, dtq)
is abbreviated as £’(¢)), and we provide details on the con-
trastive loss function. We apply general contrastive learning
(see Fig. 2 (c)) to train our visual encoder f to encourage
similarities between the time-blended positive representa-
tions, £'(q), £'(ky), ..., £'(k}), and discourage similarities
between negative representations, f’(ky ), ..., f’(ky). The In-
foNCE (Oord, Li, and Vinyals 2018) objective is defined as
follows

P P sim (£(a).£0k;))
Ly=)" Lwce = —E(log —— ). ©
SN sim (£(0).£ (k)

p=1 n—=1

where P represents the number of positive Keys, IV denotes
the number of negative Keys, and the similarity can be com-
puted as:

o(x) - $(y) 1

Sim(z = .
@) = B o Temp’ @

#lLayers #Dimensions Top-1(%) Mean (%)

None - 65.1 497
1 128 66.7 50.5
1 1024 67.3 52.3
2 1024 67.1 52.8
2 2048 67.8 53.7
3 2048 67.9 53.2

Table 3: Top-1 accuracy and Mean per-class accuracy on
Smarthome CS w.r.t.Time Encoder.

Size of D, (M)  Top-1(%)  Mean (%)
M =16 65.2 51.6
M =64 67.8 53.7
M =128 67.3 52.2
M =512 67.6 52.1

M =1024 67.5 51.1
M = 2000 66.9 50.5

Table 4: Top-1 and Mean accuracy on Smarthome CS for
study on number of directions in the orthogonal basis D,.

where T'emp refers to the temperature hyper-parameter (Wu
et al. 2018), and ¢ is a learnable mapping function (e.g., an
MLP projection head (Feichtenhofer et al. 2021)) that can
substantially improve the learned representations.

Experiments and Analysis

We conduct extensive experiments to evaluate LTN on four
action classification datasets: Toyota Smarthome, Kinetics-
400, UCF101 and HMDBSI1. Firstly, we provide experi-
mental results on tested variants, we investigate exhaustive
ablations and further analyze on Toyota Smarthome (fine-
grained action classification dataset) to better understand the
design choices of our proposed time parameterization ap-
proaches. Secondly, we compare LTN with the best setting to
state-of-the-art methods on all evaluated benchmarks. : Toy-
ota Smarthome, UCF101 and HMDB51 without additional
training data and with pre-training on Kinetics-400.

Ablation Study

As activities of Toyota Smarthome (Smarthome) are with sim-
ilar motion and high duration variance (e.g., ‘Leave’, ‘Enter’,
‘Clean dishes’, ‘Clean up’), the temporal information is gener-
ally crucial for action classification. To understand the contri-
bution of LTN for video representation learning, we conduct
ablation experiments on Smarthome Cross-Subject (Das et al.
2019), with linear evaluation protocol (i.e., pre-training with-
out action labels, then training the classifiers only with the
action labels) using RGB videos without additional modali-
ties or training data. For the proposed D, unless otherwise
stated, we set M = 64 directions over the dim = 2048
dimensions. We report Top-1 and Mean per-class accuracy.

LTN Variants. The key module of LTN is the Time Pa-
rameterization method with three effective variants To study
the impact of each variant, we start from a baseline using
MoCo (He et al. 2020) with multiple positive samples P = 4
as (Feichtenhofer et al. 2021) and we then incorporate the
time parameterization variants. The results in Tab. 1 indicate



Method Supervision

Backbone

Mod.

Dataset Frozen

Toyota Smarthome

CS(%) CV2(%)

From scratch Supervised R3D-50 \Y SH X 50.2 28.6
SimCLR (Chen et al. 2020) Self-sup. R3D-50 \Y SH v 422 26.3
SwAV (Caron et al. 2020) Self-sup. R3D-50 v SH v 41.4 25.6
MoCo (He et al. 2020) Self-sup. R3D-50 \'% SH v 47.2 28.8
pBYOL (Feichtenhofer et al. 2021) Self-sup. R3D-50 \Y% SH v 42.4 26.8
LTN (Ours) Self-sup. R3D-50 v SH v 53.7 30.1
LTN (Ours) Self-sup. R3D-50 V K400 v 54.5 355
STA (Das et al. 2019) Supervised I3D+LSTM V+P K400 X 54.2 50.3
AssembleNet++ (Ryoo et al. 2020) Supervised R(2+1)D-50 V K400 X 63.6 -

NPL (Piergiovanni and Ryoo 2021) Supervised R3D-50 v K400 X - 54.6
ImprovedSTA (Climent-Pérez and Florez-Revuelta 2021) Supervised I3D+LSTM V+P K400 X 63.7 53.6
VPN (Das et al. 2020) Supervised I3D+AGCNs V+P K400 X 60.8 53.5
MoCo (He et al. 2020) Self-sup. R3D-50 \% K400 X 61.8 52.7
LTN (Ours) Self-sup. R3D-50 vV K400 X 65.9 54.6

Table 5: Comparison of LTN to state-of-the-art methods on the Toyota Smarthome dataset (SH) with Cross-Subject (CS) and
Cross-View?2 (CV2) evaluation protocols. Mod: Modalities, V: RGB frames only, P: pre-extracted Pose data (skeleton keypoints
coordinates), K400: the Kinetics-400 dataset. We classify methods w.zz.supervision in the second column.

that leveraging time information is pertinent in improving the
accuracy of fine-grained action classification. Specifically,
in Variant 1, joint linear addition and visual representation
related to time encoding without using D, slightly boosts the
Top-1 performance. We argue that the learned representation
should code spatio-temporal data augmentation. If the entire
representation is biased by time in the absence of Dy, the
static information that should be invariant is also shifted. This
motivates us to use latent space decomposition to disentan-
gle the ‘time-encoded component’ D, coded in the learned
representation. Using Dy to parameterize time encoding can
significantly improve the performance (+1.9% by Variant 2
based on attention), especially by means of linear transfor-
mation (+4.0% by Variant 3).

Impact of LTN for Different Contrastive Models. We
compare two state-of-the-art momentum-based contrastive
models (Grill et al. 2020; He et al. 2020), a pair of positive
samples (P=2) and the improved versions (Feichtenhofer
et al. 2021) by leveraging multiple positive Keys (P=4) on
the Smarthome dataset. Then, we incorporate the proposed
LTN (Variant 3 with M = 64) into all models. The results in
Tab. 2 demonstrate that LTN improves all three models and
performs the best with p MoCo (Feichtenhofer et al. 2021)
for our target downstream action classification task.

Design of Time Encoder. We explore how many direc-
tions are required in D;. We empirically test six different
values for M from 64 to 2000. Quantitative results in Tab. 4
show that when using 64 directions (out of all dim=2048
directions), the model achieves the best action classification
results. Hence, we set M = 64 for the other experiments. For
the design of the proposed time encoder, we investigate the ef-
fect of different numbers of hidden layers and dimensions for
the time encoder across five architectures. The results shown
in Tab. 3 suggest that 2-layer MLP with 2048 dimensions in
the hidden layer is the most effective.

Comparison with State-of-the-art

We first compare our method on Smarthome. As we are
the firsts to conduct the self-supervised action classification

Method Backbone Mod. K400 (%)
VTHCL (Yang et al. 2020) R3D-50 V 37.8
CVRL (Qian et al. 2021) R3D-50 V 66.1
SeCo (Yao et al. 2021) R3D-50 V 61.9
MoCo (He et al. 2020) R3D-50 V 66.6
pBYOL (Feichtenhofer et al. 2021) R3D-50 V 70.0
MCL (Li et al. 2021b) R3D-50 V+F 66.6
LTN (Ours) R3D-50 V 71.3

Table 6: Comparison with state-of-the-art methods on
Kinetics-400 by Linear evaluation. Mod: Modalities, V: RGB
frames only, F: pre-extracted optical flow.

task on this dataset using only RGB data, we re-implement
state-of-the-art models (Caron et al. 2020; Chen et al. 2020;
Feichtenhofer et al. 2021; Grill et al. 2020; He et al. 2020)
and we compare the linear evaluation results without extra
training data. We find that our proposed LTN, jointly with
MoCo (He et al. 2020) achieves state-of-the-art performance,
see Tab. 5. To further compare the results with skeleton-based
methods (Climent-Pérez and Florez-Revuelta 2021; Das et al.
2020) trained with additional stream (Yang et al. 2021a,c),
we conduct a self-supervised pre-training on Kinetics-400
and we transfer the model on Smarthome by linear evalua-
tion and fine-tuning, see Tab. 5 bottom. In both settings, our
model outperforms self-supervised state-of-the-art accuracy
and many supervised approaches (Climent-Pérez and Florez-
Revuelta 2021; Das et al. 2019, 2020; Piergiovanni and Ryoo
2021; Ryoo et al. 2020; Shi et al. 2019).

We then compare our method to state-of-the-art approaches
by linear evaluation on the general video understanding
benchmark, Kinetics-400. For fair comparison, we mainly fo-
cus on the methods using R3D-50 and 7' = 8 sampled frames
for training. The results are shown in Tab. 6 and demonstrate
that, our LTN can improved upon previous methods (Feicht-
enhofer et al. 2021; He et al. 2020; Li et al. 2021b; Qian et al.
2021; Yang et al. 2020; Yao et al. 2021).

We also compare our LTN to state-of-the-art on HMDBS51



Method Backbone Mod.

Data FrozenUCF (%)HMDB (%)

Data FrozenUCF (%)HMDB (%)|

OPN (Lee et al. 2017) VGG-M A% N - UCF X 59.6 23.8
ClipOrder (Xu et al. 2019) R(2+1)D \% - v - - UCF X 72.4 30.9
CoCLR (Han, Xie, and Zisserman 2020) S3D \'% UCF v 70.2 39.1 UCF X 81.4 52.1
LTN (Ours) R3D-50 \'% UCF Vv 71.8 40.3 UCF X 81.6 52.8
SpeedNet (Benaim et al. 2020) S3D-G \Y - v - - K400 x 81.1 48.8
VTHCL (Yang et al. 2020) R3D-50 \" - v - - K400 x 82.1 49.2
TaCo (Bai et al. 2020) R3D-50 \% K400 v 59.6 26.7 K400 x 85.1 51.6
MoCo (He et al. 2020) R3D-50 \% - v - - K400 x 92.8 67.5
CVRL (Qian et al. 2021) R3D-50 \" - v - - K400 x 92.2 66.7
pBYOL (Feichtenhofer et al. 2021) R3D-50 \" - v - - K400 x 94.2 72.1
SeCo (Yao et al. 2021) R3D-50 \% K400 Vv - - K400 x 88.3 55.6
CATE (Sun et al. 2021) R3D-50 \% K400 Vv 84.3 53.6 K400 x 88.4 61.9
CORP (Hu et al. 2021) R3D-50 \" K400 Vv 90.2 58.7 K400 x 93.5 68.0
FAME (Ding et al. 2022) 13D \" K400 v - - K400 x 88.6 61.1
LTN (Ours) R3D-50 A% K400 v 90.6 58.9 K400 x 94.5 72.3
CoCLR (Han, Xie, and Zisserman 2020) S3D V+F K400 Vv 77.8 524 K400 x 90.6 62.9
MCL (Li et al. 2021b) R(2+1)D-50 V+F - v - - K400 x 934 69.1
BraVe (Recasens et al. 2021) TSM-50x2 V+F+AAudioS Vv 92.8 70.6  |AudioS X 96.5 79.3

Table 7: Comparison with state-of-the-art methods on UCF101 and HMDBS51 with pre-training on Kinetics-400 (K400). Mod:
Modalities, V: RGB frames only, F: pre-extracted optical flow, A: Audio.

and UCF101 (see Tab. 7). For fair comparison, we mainly
focus on the model trained with the R3D-50 backbone used in
our work with training frames 7' = 8. Using frozen features,
our model outperforms all other works and even outperforms
a number of works that adopt fine-tuning. For fine-tuning,
the improvements are slight as the duration of these videos is
small and the action is not as sensitive as Smarthome to time
variance. However, we still outperform all previously single
RGB-based models and our model performs competitively
with current multi-modal methods (Han, Xie, and Zisser-
man 2020; Li et al. 2021b; Recasens et al. 2021) combining
information from pre-extracted optical flow and audio.

Further Analysis

Per-class Comparison with State-of-the-art. We list the
Smarthome classes that benefit the most and the least from
LTN (see Tab. 8) compared to the state-of-the-art model
(MoCo). We find that our method is able to effectively clas-
sify the fine-grained actions (e.g., ‘Cook.Usestove’ +47.1%,
‘Makecoffee.Boilwater’ +31.8%, ‘Laydown’ +25.9%, ‘Leave’
+22.4%) while being challenged in distinguishing some
object-oriented activities (e.g., ‘Drink.Fromglass’ -28.3%,
‘Drink.Fromcan’: -14.2%). We believe that this is due to the
fact that we focus on temporal modeling using time encod-
ing, which only places emphasis on humans and ignores
object information. To tackle this challenge and to further
improve classification performance, future work will extend
our method to latent spatial information (Sun et al. 2021) in
order to capture the object information, while maintaining
time awareness, which is still an open problem.

Representation Analysis. To demonstrate that the learned
presentations are aware of temporal augmentations, we ran-
domly select 2 videos (‘Leave’ and ‘Enter’) that are correctly
classified by our model and uniformly sample 20 segments
for each video. Then, we visualize their time-aware (learned
by the proposed LTN) and time-invariant (learned by MoCo)
representations respectively with t-SNE (see Appendix for vi-

Activity Gain from LTN (%)
Cook.Usestove +47.08
Maketea.Boilwater +31.78
Laydown +25.88
Cutbread +25.42
Leave +22.43
Mean Accuracy +6.97
Walk -5.07
Usetablet -11.30
Cook.Cleandishes -12.74
Drink.Fromcan -14.24
Drink.Fromglass -28.25

Table 8: Activities that benefit the most and the least from
LTN, and Mean per-class accuracy gain on Smarthome CS.

sualization). We find that, unlike the time-invariant represen-
tations of uniformly sampled segments learned by previous
model (He et al. 2020) that are only regrouped together, the
time-blended representations learned by our LTN are well
aligned over the time order. Hence we conclude that LTN
can learn the consistent amount of temporal changes with the
video segments on their time-aware representations to benefit
fine-grained motion-focused action classification.

Conclusions

In this work, we present LTN, a temporal parameterization
approach that learns time-aware action representation. We
show that embedding time information of each video segment
into the contrastive model by time navigation through a time
encoder and an orthogonal basis can significantly improve the
representation capability for videos. Experimental analysis
confirms that a visual encoder extracting such representation
can boost downstream action recognition. Future work will
extend our time parameterization approach to spatial dimen-
sion, in order to better capture the object information that
may also be crucial for fine-grained action recognition.
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