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Abstract—Apathy is characterized by symptoms such as reduced emotional response, lack of motivation, and limited social
interaction. Current methods for apathy diagnosis require the patient’s presence in a clinic and time consuming clinical interviews,
which are costly and inconvenient for both, patients and clinical staff, hindering among other large-scale diagnostics. In this work, we
propose a novel spatio-temporal framework for apathy classification, which is streamlined to analyze facial dynamics and emotion in
videos. Specifically, we divide the videos into smaller clips, and proceed to extract associated facial dynamics and emotion-based
features. Statistical representations/descriptors based on each feature and clip serve as input of the proposed Gated Recurrent Unit
(GRU)-architecture. Temporal representations of individual features at the lower level of the proposed architecture are combined at
deeper layers of the proposed GRU architecture, in order to obtain the final feature-set for apathy classification. Based on extensive
experiments, we show that fusion of characteristics such as emotion and facial dynamics in proposed deep-bi-directional GRU obtains
an accuracy of 95.34% in apathy classification.

Index Terms—Apathy, Gated recurrent units, Alzheimer, Spatio-temporal classification, behavioral, cognitive, emotion.
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1 INTRODUCTION

A PATHY is defined as the quantitative reduction of goal-
directed activity either in behavioural, cognitive, emotional

or social dimensions [1]. Within the cognitive dimension loss
of interest is a central feature. Given that it is the same in
depression, it is not surprising that apathy and depression often co-
occur in several psychiatric, neurological and neurodegenerative
conditions. It is therefore pertinent to improve the detection of
possible differences. This is the case within the emotional dimen-
sion characterized in apathy by a limited emotional response to
positive and negative events, whereas in depression the emotional
response is always present but with emotional expression limits to
negative emotion such as sadness.

Apathy is a pervasive neuropsychiatric symptom related to
the majority of neurocognitive, neurodegenerative, and psychiatric
disorders such as Alzheimer’s disease (AD) [2], Parkinson’s dis-
ease [3], and mild cognitive impairment [4] with nearly 65% of
dementia patients exhibiting apathy [5].

While experts suggest that early indication of apathy could im-
prove the intervention effects and decrease the global burden of the
disease [6], apathy has been highly underdiagnosed. Its diagnosis
is based on interviews with patients and their caregivers through
a series of questionnaire sessions. Consequently, such interviews
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Fig. 1. Example of controlled and apathetic individuals in conversation.

require the patient’s presence in a clinic and are time-consuming
examination involving clinical personnel. Thus, apathy-diagnosis
is costly and logistically inconvenient for patients and clinical
staff, which hinders large-scale diagnostics.

Towards assisting such subjective assessment, an automated
analysis carries the promise to enable early apathy diagnosis,
leading to improved intervention effects, potentially increasing
the performance of apathy detection in a non-invasive and efficient
manner. In addition, such assessment carries the premise to relieve
national health-care systems from the excessive workload and
allow for large scale early and remote diagnostics.

Motivated by the above, in this article we introduce an auto-
mated apathy classification framework based on facial behaviour
analysis. Three dimensions of apathy were identified in a recent
medical paper by Robert et al. [1], namely (a) behaviour/cognition,
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(b) emotion, and (c) social interaction.
We here aim at recognizing (a) the behaviour, as well as (b) the

emotional dimension of apathy, characterized by exhibited limited
spontaneous expressions, limited emotional responses to positive
or negative events, diminished empathy, and reduced verbal or
physical reactions to own emotional states. In addition, we explore
specific attributes from other dimensions of which is gleaned from
facial dynamics/movements. Patients with apathy are in particular
less persistent in maintaining a conversation and withdraw often
from verbal interaction (social interaction). Thus, we analyze
the facial movements and use them as the observation cue of
conversation attributed to (c). To validate the reduced emotional
response of apathetic subjects, the spontaneous expressions are
elicited by asking all subjects to briefly narrate past positive
and negative experiences, see Figure 1. The clinical diagnosis of
subjects was carried out by psychiatrists in interviews, in addition
to the recording of facial videos during positive and negative nar-
rations. We explore the video data for apathy classification using
multiple emotion dimensions such as expression, valence-arousal
and action unit (AU), along with other facial behaviour/dynamics
such as eye gaze, face pose and face movement. In a nutshell,
our proposed approach analyzes patterns of facial expressions and
dynamics in elderly subjects towards inferring their apathy state.

While the emotional aspect of apathy has been predominantly
explored in previous works, we here study the two dimension
of apathy, namely emotion and human facial analysis. We note
that determining the state of apathy solely from appearance is
highly challenging. We hence place emphasis on analyzing spatio-
temporal features in this work. From the limited recent work
on automated apathy diagnosis [7]–[9] we conclude that it is
highly challenging to characterize the temporal dimension. In
turn, we also find that the persistence of facial behaviour is an
important factor for the problem in hand. Therefore, we here
propose a new architecture that builds on a Gated Recurrent Units
(GRUs) [10], which takes statistical features/descriptors as input
that in turn describe facial behaviour as extracted from video
sequences. Specifically, in seeking to find temporal patterns in
facial behavior, we firstly divide the videos into shorter clips,
from which statistical descriptors pertaining to face behaviour of
each frame are extracted and classified temporally in our proposed
GRU-architecture. The statistical features from each clip are fed
individually in proposed GRU-architecture, in order to obtain
temporal representations of individual features at lower levels of
the proposed architecture, which are then combined with deeper
layers, in order to obtain the final representation employed for
apathy classification. Hence, our hypothesis is that a temporal
level facial behaviour assessment can be instrumental in apathy
classification, as apathy is among others characterized by low
conversation persistence, as well as by withdrawal from verbal
interaction [1].

The contributions of this paper are as follows.

• We are among the first to investigate statistical features
from facial behaviour describing emotion and face dynam-
ics towards automatic apathy detection.

• Our proposed GRU-based architecture is targeted to ex-
plore temporal synergy, as well as temporal persistence in
such features, and exploit them for apathy detection.

• We show that proposed feature fusion and associated bi-
directional temporal representation improve classification
accuracy.

This work extends our initial studies on apathy detection [7],
[8]. In our first work [7] we proposed to use histograms of
statistics pertained to emotion and face movements, which we
classified based on Support Vector Machine for apathy classifi-
cation. Following that, in [8] we enhanced emotion and motion
features by employing joint learning between apathy features and
estimated clinical markers via CNN based multi-task learning.
While these two works constituted image-based algorithms, we
here explore spatial, as well as temporal features in examining
temporal persistence in a wide range of features related to emotion
and face dynamics for robust apathy classification.

This work is organized as follows. Section 2 revisits existing
work on apathy diagnostics, as well as facial and face dynamics-
based motion analysis. Section 3 describes our proposed model,
which incorporates face dynamics, as well as emotion feature
extraction and associated classification. We present experiments in
Section 4 and the related results in Section 4.5 and finally conclude
in Section 5.

2 RELATED WORK

Apathy detection. To date, apathy has been determined in clin-
ical interviews, by exposing patients to questionnaires [3]. Such
practice is time-consuming and requires the physical presence of
a patient at a clinic. The outcome of such diagnosis constitute
bio-markers for apathy, as discussed by Hampel et al. [6]. Neu-
roimaging [2], [11] was pertinent in understanding apathy, where
structural and functional alteration of frontal-subcortical networks
were employed as cues in apathy patients through single-photon
emission computed tomography, positron emission tomography,
and diffusion tensor imaging [11]. Literature reports the use of
the neuroimaging modalities in apathy diagnosis [2], [11]. The
correlation of apathy to AD was studied by Aguera-Ortiz et al. [2]
using magnetic resonance image analysis.

To mitigate challenges of classical apathy detection, automated
apathy detection has been proposed as a novel research area in
computer vision, with high impact and interest.

Computer vision-based study of face and gesture has been
employed in a set of neurodegenerative disorders [12]–[15]. Apa-
thy classification is a new area of research in the field of computer
vision. Happy et al. [7] explored mid-level features from facial
behaviour-based motion and emotion analysis to estimate apathy.
In addition, they appended the regression of clinical attributes
such as mini mental state examination (MMSE) and neuropsy-
chiatric apathy inventory (NPI-apathy). Subsequently, Happy et
al. [8] exploited task relatedness between apathy classification
and estimated clinical markers via multi-task learning to obtain
robust apathy classification. As opposed to that, Chung et al.
[9] introduced an approach based on visual scanning behaviour,
where sequences of fixations and saccades within and between
regions of interest on visual stimuli were analyzed. In particular,
a recurrent neural network (RNN) was proposed to learn group
difference and individual difference in visual scanning process
towards the emotional and non-emotional stimuli. Emotion and
motion features were found to be significant in automated apathy
classification.

Facial expression recognition and cognitive aspect in health
diagnosis. The emotional health of an individual, and hence the
ability of an individual to express and identify emotions, plays
a vital part in cognitive behavioural therapy [12], [16], [17].
Facial expression recognition acts as an indicator for the internal
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emotional state, which has been widely explored in literature [18].
Long short-term memory (LSTM) and recurrent neural network
(RNN) have been widely used to process sequential data, e.g.,
temporal analysis in expression and action recognition, as well
as scene analysis. Examples for the former include continuous
emotion recognition [19], in wild [20] using bi-directorial LSTM,
emotion recognition in combination with ECG employing two
stream LSTM [21] and LSTM with deep attention [22]. We note
that classes in such settings are generally speaking highly distinct
from human perspective. This deviates from our setting of interest
for apathy classification.

Montenegro et al. [13] analyzed emotion recognition from
facial video and electroencephalograph signals for early detection
of autobiographical memory deficits in AD. Similarly, mood disor-
ders, such as major depressive disorder and bipolar disorder were
investigated employing facial expression analysis [23]. In addition,
Montenegro et al. [24] studied emotion from facial depth imagery
to investigate cognitive and emotional behaviour. Coco et al. [25]
proposed a computational approach for diagnosis and assessment
of autism spectrum disorders using facial analysis. Following that,
Samad et al. [26] proposed automatic detection of the autism
spectrum disorder using spontaneous expression analysis. They
concluded that uncontrolled manifestation of smile without proper
visual engagement was a fundamental indicator for impairment in
social communication. Similarly, reduction in facial expressions or
hypomimia was found to be a major cue for estimating the stage
severity of Parkinson’s disease [27]. Moreover, facial expression
features (facial appearance and dynamics) were employed in
estimating clinical depression scores [14].

Face dynamics. According to Hammal and Cohn [28], head
motion and face dynamics plays an important role in gauging
cognitive health. Further, both facial expression and head motion
were studied by Adams and Robinson [29] in classifying complex
categorical emotions. Following this line of research, Hammal et
al. [30] explored the dynamics of head and face movements as
cues for positive and negative behaviour. Pitch, toll, and yaw were
analyzed based on 49 facial landmarks and related movement.
Such cues were found to have a strong correlation with positive
and negative behaviour. Similarly, in anxiety detection, head
movement, lip deformation, and eyebrow movements were found
to be major facial cues [31]. The results indicated that head, as
well as eyes and mouth movements were distinct indicators for
anxiety and stress. The work of Dibekliouglu et al. [32] extracted
face, head movements, as well as speech features in order to
detect the severity of depression, encoded in behaviour patterns.
Anis et al. [15] analyzed 3D head motion by tracking facial
landmarks, extracted associated histograms of velocity and accel-
eration intensities in estimating three levels of chronic depression
severity. Specifically GMM, Fisher vectors and Support Vector
Machine (SVM) were tested in classifying the 3 levels of chronic
depression severity. Conclusions related to the fact that velocity
and acceleration of facial movement were able to strongly map
onto depression severity symptoms, which was found consistent
with clinical data and theory.

3 PROPOSED METHOD

Deviating from the above, we here propose a novel approach for
apathy detection from video that employs face and behavioural
dynamics-based statistical features/descriptor and their temporal
relation. In what follows, we describe the basic steps of our

Fig. 2. Overall proposed framework for apathy classification incorporat-
ing video level pre-processing, feature extraction, statistical descriptors
and classification.

proposed method, namely feature extraction and classification.
The overall diagram is illustrated in Figure 2.

In our setting, classifying apathy based on facial appearance
and behavior entails subtle categories, which are challenging to
distinguish, even for clinical experts. Motivated by such subtle
categories, as well as by the limited duration of videos we have
access to, we propose to employ statistical features from video
segments/clips to represent videos in our dataset. We note that
temporal patterns associated with the collected face videos are
weak for classification and related persistence is of higher signifi-
cance. The representation is fed separately to the proposed GRU-
based architecture, which is based on bi-directional deep temporal
classifier and their temporally related features are combined in
deeper levels, used for final classification.

3.1 Feature Extraction
For extracting features, we firstly divide each face video into N
number of overlapping segments/clips. Hence from each video
segment with F number of frames, we firstly calculate the per-
frame features (described below) and obtain temporal information
by calculating statistical inference/descriptor for each clip. In this
context, standard deviation, mean and max variation pertained to
feature intensities represent the statistical descriptor. Heuristically,
we choose a sliding window size of 150 frames. Non-uniform
length of videos is tackled by employing dynamic overlapping
of sliding windows. Such dense sampling is necessitated, as we
seek to find temporal statistical synergy among clips. While over-
lapping clips contain naturally redundant information, at a local
look, i.e., features pertained to eye gaze and AUs are significantly
different and hence the statistical representation is not repetitive.

In the following, we proceed to explain employed features
related to (a) face dynamics, as well as (b) emotion.

3.1.1 Eye gaze
We postulate that eye gaze is a pertinent cue in apathy detection,
as it represents an indicator for human interaction and emotion.
Towards exploiting eye gaze, we firstly seek to obtain frame-wise
gaze prediction. Moreover, in assessing gaze change, we monitor
gaze shift w.r.t. an arbitrary target. We note that gaze constitutes
more than eye movement. A gaze shift can include movement of
the head and torso, all of which must be considered, so that the
overall movement is natural, and the emotional display is coherent.

Hence, in this paper, we consider the eye gaze direction vectors
and gaze direction in radians in world coordinates predicted for
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both, left and right eye. In order to generally analyze the eye state
of subjects, we further calculate the temporal trajectory of the
mean locations of all the eye 2D and 3D landmarks.

3.1.2 Head pose
Similar to eye gaze, head pose constitutes a pertinent cue in as-
sessing social interaction and hence we include related features in
our framework. Specifically, head location and head pose direction
vector of each frame represent the pose feature. In addition, 2D
and 3D 68 facial landmarks are calculated and mean positions of
all landmarks render the head pose state.

3.1.3 Local and global motion
We estimate rigid head movements by tracking the facial land-
marks. Hereby, nose and inner eye corner landmarks are employed
for computing rigid head movement, referred to as global head
motion. In contrast, the non-rigid facial landmark movements,
associated to lips, eyes, eyebrows, and chin characterize inter-
action or emotion expression. Specifically, the average movement
of facial landmarks around these regions in successive frames is
computed as the local motion feature. In addition to mean, and
variance, we also utilize in the statistical descriptors minimum,
maximum, mean, median, skewness and kurtosis as motion repre-
sentation using motion information (separately for global and local
motion). Further, we append the b-bin histograms of motion values
with the intention of preserving motion intensity distribution
information in the motion representation, thereby creating a vector
of b+7 dimensions. An example of extracted head pose, AUs, eye
gaze and detected landmarks is presented in Figure 3.

Fig. 3. Face dynamics extracted by our approach: gaze, AUs, landmarks
and head pose.

3.1.4 Action Units
Given that an individual with apathy usually exhibits blunted
emotion, we expect that action units (AUs) will be an additional
indicator for apathy, which we proceed to exploit. Specifically, we
adapt the information from 18 AUs in our framework, namely AU
1, 2, 4, 5, 6, 7, 9, 10, 12, 14, 15, 17, 20, 23, 25, 26, 28, and 45, as
introduced by Ghayoumi and Bansal [33] for expression analysis.
Consequently, we consider individual AUs and their respective
frequency as features.

We note that gaze, AUs and pose features are computed based
on the OpenFace 2.0 toolkit1.

3.1.5 Valence-arousal (VA)
W.r.t. emotion, we extract VA in our framework. Valence in terms
of emotion may relate to the intrinsic attractiveness of goodness
i.e., positive valence or averseness i.e., badness (negative valence)
in an event or situation. In addition, the specific term describes
the tone of feelings, affect, certain behaviours (for example,

1. https://github.com/TadasBaltrusaitis/OpenFace

Fig. 4. Architecture used for VA feature extraction.

approach and avoidance), goal attainment or non-attainment. The
term also characterizes specific emotions. Theoretically, valence
can measure stress as negative valence or oppositely pleasure or
happiness as a positive valence. Therefore, here valence is bene-
ficial in indicating exhibited emotions i.e., negativity or passivity,
as reflected by the subject.

Arousal is defined as the physiological and psychological state
of awoken or sense stimulated in terms of emotion. Therefore,
arousal is instrumental in measuring degree consciousness for an
expressed emotion.

Intuitively VA are powerful measures for characterizing mental
states and in our work. States of arousal can be positive and
negative, therefore can be considered as an important tool for our
use case. Hence, it can be concluded from the above discussion
that the VA will be a highly effective feature for our problem in
hand.

Consequently, we here extract a single value for valence and
a single value for arousal in each frame. Details are presented
in Fig. 4. In particular, we use a ResNet-80 architecture, which
at the end incorporates two single-unit fully connected layers,
for valence and for arousal, respectively. Moreover, similar to
described features, we extract the statistical information pertained
to VA for each video clip, forming a descriptor. Again, related
statistics include mean, standard deviation, max variation of the
feature intensities, minimum, maximum, median, standard devi-
ation, skewness, and kurtosis from VA-intensities are employed
to obtain the statistical descriptor. We train our VA-model via
AffectNet dataset [34] and then proceed to extract VA in our
dataset.

3.1.6 Emotion Features
Classically, emotion recognition has been studied based on the
six-expression model [18]. However, based on discussion with
clinicians, we found that in our context this model is not suitable
and simplified the model to a three category-model of expressions,
including positive (compounding happy and surprise), negative
(compounding angry, disgust, fear and sadness), and neutral, as
introduced by Happy et al. [7]. This reduced choice of emotion
categories stemmed from the rather flat expressions exhibited by
participants.

Therefore, we train a convolutional neural network (CNN)
model for expression classification with these three categories.
In particular, a pre-trained VGG-Face [35] is utilized for transfer
learning, as it has shown to be robust in facial feature extraction
against variations such as pose and illumination [36], [37]. In order
to fine-tune the last few layers of the network we introduce a set
of skip-connections to the architecture. The details of the CNN
architecture [7] used in our experiments are illustrated in Figure
5. The log probabilities of the Softmax layer i.e., the emotion
intensities corresponding to each category are represented as a
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Fig. 5. Facial expression recognition framework. (conv: convolutional layer, fc: fully convolutional layer, pool: pooling layer)

TABLE 1
Summary of features used for apathy detection and related extracted

statistical measures.

Feature Cues Dime- Statistical
nsion measures

Gaze
gaze direction vectors 12 standard

gaze direction in radians 4 deviation,
2D & 3D eye landmarks 10 mean and

Pose
head location 6 the max

head pose vector 6 variation
2D & 3D facial landmarks 10 (SDMMV)

AU AU presence frequency 18
AU intensity 51

Emotion emotion 45 SDMMV+
and duration histogram bin

VA VA intensities 18 SDMMV+ min
max, median,

skewness,
and kurtosis

Local landmark 40 SDMMV+ min
and global movement max, median,

motion skewness,
and kurtosis

histogram bin

histogram vector. In addition to standard deviation, a mean and
max variation of each clip, a histogram vector for each expression
and its duration are considered here. For each clip b bins of a
histogram for each expression are extracted, which are further
combined to jointly obtain 3× b dimensional feature vector for 3
classes as a representation of expression intensities for each clip.
The duration of a dominant expression is calculated as the e-th
expression that is dominant for ne number of frames out of total
N number of video frames. Then we formulate te = ne

N as the
expression duration of e-th expression. The expression duration
(tpos, tneg, tneut) is appended to the expression representation,
resulting in a 3× (b+ 1) dimensional feature vector.

A detailed summary of the features used for apathy detection
is enlisted in Table 1.

3.2 Feature Classification Framework
As mentioned above, apathy entails three dimensions, namely be-
havioural/cognitive, emotion, as well as social interaction. There-
fore, we consider both, local and global information, proposing
a dynamic temporal modelling employing small video segments,
which extracts the high level statistical descriptor (their persis-
tence) analyzing face behavior and such features are fed to the
proposed GRU structure to classify a video.

GRU is a popular gating technique employed in recurrent
neural networks [38], which have been successfully employed
in natural language processing [39] and speech signal modelling
[40]. GRU is composed of a cell, a reset gate and an update gate
as illustrated by the following equation.

zt = σt(Wzxt + Uzht−1 + bz) (1)

rt = σt(Wrxt + Urht−1 + br), (2)

where xt denotes an input vector; ht represents an output vector;
W, U and b are weight parameters and bias vector, respectively;
σt denotes a sigmoid activation function; zt is the update gate and
rt is the reset gate. The candidate activation vector is defined as
follows.

ĥt = φt(Whxt + Uh(rt � ht−1) + bh), (3)

where the operator � denotes the Hadamard product. Hence, the
output vector is defined as

ht = (1− zt)� ht−1 + zt � ĥt. (4)

As illustrated in Fig. 6, we streamline the GRU-structure to
model the temporal relation between adjacent video segments
and obtain a temporal relation of the features extracted and then
concatenate them by timestamps per feature for final classification.
Next, we proceed to explain the overall GRU architecture.

First layer. The input feature of this layer is a different feature
generated for each segment, and the output of the GRU cell is
the refined feature vector as a fully connected layer. The fully
connected network containing 128 hidden layers is targeted to
obtain temporal features for each segment for each feature. Hence
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in our context the reset gate, update gate and candidate activation
vector is defined as

zn = σn(Wzxnf + Uzhn−1 + bz), (5)

rn = σn(Wrxnf + Urhn−1 + br), (6)

ĥn = φn(Whxnf + Uh(rn � hn−1) + bh), (7)

where xnf represents the input vector for the n − th clip from
the f − th feature. The output of the GRU is mapped to a fully
connected layer (FC). The output of the 1st layer of the GRU
architecture for fth feature is

O1f = FC1f , FC2f , ......, FCnf . (8)

Second or deep layer. At this layer of the GRU network
we concatenate the temporal representation of each feature per
clip, as obtained from the previous layer. In other words, fully
connected features obtained from the first clip for all features are
concatenated, and which act as input of the GRU unit of this layer.
Similarly, all features from each clip are concatenated and fed to
a GRU unit. Hence in our context the reset gate, update gate and
candidate activation vector are defined as

zn = σn(Wz(FC11

⊕
FC12

⊕
...

⊕
FC1f )+Uzhn−1+bz)

(9)

rn = σn(Wr(FC11

⊕
FC12

⊕
...

⊕
FC1f )+Urhn−1+br)

(10)

ĥn = φn(Wh(FC11

⊕
FC12

⊕
...1f ) + Uh(rn−1) + bh),

(11)

where FC11 signifies the fully connected feature from the first
layer of the GRU from the first clip, first feature and

⊕
denotes

the concatenation operation.
Then, the output of the GRU is passed to another set of

128 unit hidden layer fully connected network containing one
hidden layer and concatenated to a single-cell FC output layer
representing classification. The classification label of the whole
video is computed as a combination of all FCs from the second
set of the fully connected layer. Specifically, we employ a binary
cross-entropy loss for the classification and hence the single-cell
value acts as output. Both, first and second layered GRU units in
our GRU architecture are bi-directional for related bi-directional
gated unit. The output feature dimension of our GRU is set to 512,
and the hidden layer of the fully connected layer is 128. Rectified
linear unit (ReLU) is used as the activation function, and a dropout
layer with the dropout rate of 0.5 is applied to avoid overfitting.

4 EXPERIMENTS AND DISCUSSION

In this section we proceed to describe the employed dataset, pre-
processing techniques employed both at video and image level,
implementation details, performance measures, evaluation strategy
and results obtained, as well as insight and analysis of the rigorous
experiments performed in this work.

4.1 Dataset Description

The dataset was recorded at the Nice Memory Research Center
located at the Institute Claude Pompidou in the Nice University
Hospital. Patients suffering from subjective memory complaint to
severe cognitive impairment were included in the study. Demo-
graphics and clinical details pertained to the subjects are provided
in Table 2. Among apathy and control subjects, the number of
female patients were 38% and 62%, respectively.

The patient-clinician interview involved (i) the collection
of demographic details, (ii) a standardized neuropsychological
assessment, and (iii) a short positive and negative experience
narration. The one-on-one interview included the (ii) completion
of a battery of cognitive tests including apathy and general
behavioural scales (Apathy Inventory, Neuropsychiatric Inventory
(NPI-apathy) and classical cognitive tests (Mini-Mental State
Examination (MMSE), Clinical Dementia Rate Scale) To elicit
spontaneous facial expressions, the participants were asked to
narrate some positive and negative events or experiences from
their past (“tell me a positive/negative event of your life in one
minute”). Videos were acquired at a frame rate of 30fps by tablets
(IPADs of fifth and sixth generation) controlled by the clinician.
The tablet and environment were kept uniform. We note that the
acquired videos include natural pose variations, facial occlusions
(e.g., through hands), as well as relatively subtle expressions, see
for examples Figure 1. We had to rerecord few videos, where high
motion from the subject was exhibited.

4.2 Pre-processing

Prior to the main framework, we detect faces from the dataset-
videos using MTCNN proposed in [41], followed by face align-
ment by positioning both eyes at a fixed distance parallel to the
horizontal axis. The aligned faces are re-sized to 224 × 224
resolution, constituting the input for all further feature extraction.
To pre-process videos, for each long video, we firstly use an
overlapping sliding window to get n segments. For each segment,
we calculate features and use the features for further computation.
A small value of n will lead to missing local information, whereas
a large value of n would cause the model to fail to obtain
the general information. In this paper, we choose n=150 as the
appropriate number of segments.

4.3 Implementation details

For emotion, the CNN model is trained to classify the face into
three expression classes, namely positive, negative and neutral. We
use in-the-wild (AffectNet [34]) dataset to train the CNN model.
The Adam optimizer with β1 = 0.9, β2 = 0.999 and a learning
rate of 0.0001 is used for training.

The facial landmarks are detected using DLIB [42] library,
in order to compute the motion features. In motion and emotion
feature extraction, we consider the histograms with 10 bins (b =

TABLE 2
Demographic data of patients used in experiments. The mean values
are reported with corresponding standard deviations in parenthesis.

Number of
Patients Age MMSE NPI-Apathy

Apathy 18 73.5 (7.7) 22.6 (3.1) 6.2 (2.6)
Control 27 71.7 (8.8) 25.4 (3.6) 0.4 (0.8)
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Fig. 6. The proposed GRU-based architecture for apathy classification. Videos are provided as input, which are divided into clips. Features are
extracted from each clip-frame, based on which a statistical descriptor is formed, which serves as input to the proposed GRU architecture.

10) for both motion and emotion feature extraction. The extracted
features are further normalized to zero mean and unit variance
before feeding into the classifier.

From the OpenFace 2.0 toolkit Gaze, Pose and AU features are
extracted. For the VA model, L1 loss with Adam optimizer with
β1 = 0.9, β2 = 0.999 and a learning rate of 0.001 is used.

For the GRU-based architecture for classification binary cross-
entropy loss function is used and with Adam optimizer with an
initial learning rate of 0.001. The max iteration is set to 20000.
The model performing best on the validation set is chosen for
testing.

4.4 Evaluation Strategy and Performance Measure

Given the limited number of samples in the dataset, we evaluate
the performance using leave-one-subject-out (LOSO) [32], in
which samples from one patient constitute the testing set, while the
remaining data is used to train the model. All classification models
in our experiments are trained with LOSO. For validation, the
positive and negative videos from one person are kept apart from
training. Therefore, while performing the experiment fusing the
positive and negative narration videos from 43 subjects, 86 videos
are used for training, the remaining positive and negative narration
from one subject each is used for validation and testing. Without
fusion, we have 43 videos for training, 1 each for validation and
testing. When in the non-fused experiment, negative and positive
narration are not classified in the same category, the subject is
considered as misclassified. We report experimental results w.r.t.
average of accuracy, F1-score, and area under the curve (AUC).

4.5 Experimental Results

We here proceed to describe the extensive experimental study of
various feature performances. Firstly, we present a performance
comparison of various features without fusing the features of
positive and negative narrations with different architectures of
GRU (single layer, single layer bi-directional and deep layer)
along with our proposed architecture (deep-bi) in Table 3. Here,
the performance without fusion is obtained using features from
individual videos for classification. The best results are found
employing VA (90.69%) followed by emotion and AU. We note
that performance of motion features are less accurate. Among
motion features, gaze and local features produce the best results
followed by pose and global features. The reason behind such per-
formance is that emotional blunting is more prominent in apathetic
patients. Moreover, for most features and for most performance
measures, the results improve employing deeper GRU and further
by the bi-directional counterpart. Improvement by employing bi-
directional GRU solicits that the direction of the temporal synergy
of this feature is effective. As shown in Table 3, all performance
metrics improve in most cases, when features are fused from both
narrations. We also observe the improvement in F1-score and AUC
both with emotion and face dynamics-based features.

As per Table 4, the combination of features improves the
performance significantly. In single layers and its bi-directional
version feature fusion is done by stream approach, i.e. the output
of the GRU for each features are mapped to an FC layer which
acts as the final feature. For the sake of brevity, we report only the
combination that produces best improvement. The combination of
gaze, pose, AU, VA and emotion naturally induces best result, with
feature fusion. Specifically, the feature combination achieves an
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TABLE 3
Apathy classification accuracy of different features with and without the fusion of features from positive and negative narration.

Without fusion of positive and negative narration After fusion of positive and negative narration
Features used GRU type Accuracy F1-score AUC Accuracy F1-score AUC
Local Motion Single layered 69.76 0.568 0.697 72.09 0.601 0.718

Single-bi 69.76 0.580 0.694 69.76 0.628 0.708
Deep layered 72.09 0.599 0.701 72.09 0.641 0.721

Proposed 74.41 0.615 0.727 74.41 0.670 0.739
Global Motion Single layered 62.79 0.578 0.627 69.76 0.639 0.698

Single-bi 65.11 0.590 0.651 72.09 0.641 0.711
Deep layered 67.44 0.599 0.671 72.09 0.650 0.712

Proposed 69.76 0.619 0.690 74.41 0.661 0.710
Emotion Single layered 81.39 0.809 0.812 83.72 0.831 0.831

Single-bi 83.72 0.821 0.829 83.72 0.831 0.837
Deep layered 86.04 0.851 0.857 86.04 0.858 0.861

Proposed 88.37 0.881 0.882 88.37 0.880 0.881
Gaze Single layered 69.76 0.599 0.699 72.09 0.641 0.720

Single-bi 72.09 0.605 0.711 74.41 0.655 0.731
Deep layered 72.09 0.634 0.721 76.74 0.673 0.755

Proposed 74.41 0.655 0.737 76.74 0.670 0.761
Pose Single layered 62.79 0.556 0.623 69.76 0.597 0.690

Single-bi 69.76 0.561 0.657 72.09 0.621 0.703
Deep layered 69.76 0.575 0.671 74.41 0.645 0.733

Proposed 72.09 0.599 0.701 0.768 0.695 0.750
AU Single layered 79.06 0.771 0.793 81.39 0.810 0.811

Single-bi 81.39 0.790 0.800 83.72 0.830 0.832
Deep layered 83.72 0.821 0.822 86.04 0.859 0.859

Proposed 86.04 0.855 0.854 88.37 0.889 0.879
VA Single layered 83.72 0.821 0.823 86.04 0.850 0.857

Single-bi 86.04 0.855 0.856 88.37 0.876 0.878
Deep layered 88.37 0.880 0.881 88.37 0.881 0.883

Proposed 90.69 0.891 0.897 90.69 0.895 0.908

accuracy of 95.34%, 0.945 of F1 score and AUC of 0.949, which
is almost 5% accurate, 0.07 in F1 measure and 0.04 in AUC higher
when employed individually. This shows the complementary na-
ture included in face dynamics and emotion features. However,
the performance is reduced, when both global and local motions
features are taken into account with the above mentioned feature
combination. This might be due to the redundant information
that is encoded in local and global motion features. Another
pertinent observation is that the use of emotion features or a
combination with face dynamics always outperforms the motion
features. Similar to the previous scenario, feature fusion for most
combinations and for most performance measures bring to the fore
improved accuracy employing deeper GRU and its bi-directional
version. In addition, the performance metrics improve in most
cases, when features are fused from both narrations.

4.6 Detailed analysis

We proceed to analyze videos that were miss-classified by the best
model. We find that few videos are misclassified, among them
one of an apathetic individual and another one from a healthy
individual. Both videos are of a short duration <20 sec, for which
reason we assume that misclassification occurred. In other words,
we believe that misclassification is due to the short duration of the
videos.

The remaining analysis is conducted for the best
feature combination, as reported in Table 4, namely
Gaze+AU+Pose+VA+emotion. Given that we deal with an

imbalanced-class classification problem, F1 is the representative
performance metric to evaluate the accuracy of the different
feature combinations. However, the best feature combination ex-
hibited also superiority w.r.t. the other metrics too. The associated
confusion matrix is depicted in Figure 7, further demonstrating
the effectiveness of our proposed method. The obtained results are
highly encouraging and have been received with excitement by
involved clinicians.

Fig. 7. The confusion matrix of the proposed method for best feature
combination.

The loss curves of the best classification model employing the
proposed GRU architecture are illustrated in Figure 8. It can been
concluded from the curves that the proposed method converges by
30 epochs, hence it does not require large training duration, even
when trained from scratch.
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TABLE 4
Apathy classification accuracy of different feature fusion by proposed version of GRU architecture based classification with and without the fusion

of features from positive and negative narration.

Without fusion of positive and negative narration After fusion of positive and negative narration
Features used GRU type Accuracy F1-score AUC Accuracy F1-score AUC
Global+Local Motion Single layered 62.79 0.588 0.629 69.76 0.639 0.698

Single-bi 65.11 0.599 0.658 72.09 0.649 0.716
Deep layered 67.44 0.599 0.676 72.09 0.657 0.716

Proposed 69.76 0.623 0.699 74.41 0.669 0.715
Global+Local Motion+VA Single layered 79.06 0.789 0.793 81.39 0.817 0.818

Single-bi 81.39 0.799 0.806 83.72 0.837 0.838
Deep layered 83.72 0.827 0.828 86.04 0.861 0.867

Proposed 86.04 0.857 0.859 88.37 0.870 0.871
Global+Local Motion+AU Single layered 79.06 0.791 0.793 81.39 0.821 0.826

Single-bi 81.39 0.789 0.811 83.72 0.845 0.845
Deep layered 83.72 0.810 0.831 86.04 0.870 0.877

Proposed 86.04 0.846 0.856 88.37 0.881 0.886
Global+Local Motion+Emotion Single layered 81.39 0.801 0.801 83.72 0.839 0.821

Single-bi 83.72 0.827 0.822 83.72 0.841 0.841
Deep layered 86.04 0.841 0.841 86.04 0.861 0.867

Proposed 88.37 0.861 0.869 88.37 0.889 0.887
Gaze+AU+Pose Single layered 83.72 0.828 0.831 86.04 0.860 0.858

Single-bi 86.04 0.851 0.851 88.37 0.882 0.870
Deep layered 88.37 0.881 0.880 90.69 0.904 0.901

Proposed 90.69 0.900 0.894 93.02 0.930 0.923
Gaze+AU+Pose+Emotion Single layered 86.04 0.856 0.850 88.37 0.873 0.875

Single-bi 88.37 0.870 0.878 90.69 0.901 0.901
Deep layered 90.69 0.891 0.891 93.02 0.923 0.922

Proposed 90.69 0.891 0.889 93.02 0.932 0.921
Gaze+AU+Pose+VA Single layered 86.04 0.858 0.859 88.37 0.881 0.880

Single-bi 88.37 0.873 0.881 90.69 0.903 0.904
Deep layered 90.69 0.895 0.897 93.02 0.930 0.929

Proposed 90.69 0.896 0.893 93.02 0.939 0.929
Gaze+AU+Pose+VA Single layered 86.04 0.857 0.859 88.37 0.879. 0.882
+Emotion Single-bi 88.37 0.879 0.881 90.69 0.903 0.901

Deep layered 90.69 0.895 0.899 93.02 0.928 0.929
Proposed 90.69 0.905 0.901 95.34 0.945 0.949

Fig. 8. Loss curve of the proposed method for best feature combination.

Next, we analyze the receiver operating characteristic curve
(ROC) of different proposed architectures, for the purpose of
determining the best feature combination. Figure 9 provides the
detailed ROC plots, indicating the effectiveness of our framework.

We here present a fine-grained analysis of the classification
confidence as indicated by the box plots in Figure 10 and Fig-
ure 11. On the y-axis we have the prediction confidence of the best
model and on the x-axis are the groups of healthy and apathetic
individuals. The obtained confidence of output prediction is in the
range of y[0 1] scale for each prediction (the original prediction
from the binary cross entropy loss). A prediction closer to zero
signifies stronger apathy, whereas closer to 1 signifies control or
healthy individuals.

We observe that the median probabilities are gravitating to-
wards better prediction (closer to 0 for apathy, and closer to 1 for
control individuals) for most settings. This exhibits that our model

Fig. 9. ROC-curve for the proposed architecture for best feature combi-
nation.

entails a satisfactory discrimination in predictions. In addition, we
do not find outliers in the plot. Further, we proceed to analyze
the plot for each video category (positive and negative narration),
as well as related fusion for male and then for female. The
plots indicate that males exhibit more distinct features as opposed
to females. However, for both, male and female, the fusion of
positive and negative narration videos brings to the fore higher
apathy classification accuracy. While negative videos are more
informative than positive videos for female population whereas
for male population it was the opposite.
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(a)

(b)

(c)

Fig. 10. Box plots of classification confidence for females pertained to
(a) fused negative and positive narration video, (b) negative narration
videos, and (c) positive narration videos.

4.7 Comparison with the state-of-the-art

For comparison with state-of-the-art, we select the most related
work to ours. All reported results are conducted with the same
dataset, as well as the same evaluation strategy. We provide
comparison results w.r.t. F1 and AUC, as summarised in Table
5. Our proposed method outperforms other models, such as the
one presented by Chung et al. [9], as well as by Happy et al., [7],
[8]. In particular, we note that the classification-accuracy of our
method is 10-15% superior, 0.17-0.11 better with respect to F1
and 0.11-0.15 better in terms of AUC. Moreover, in our previous
work we employed clinical scores along with mid-level features
related to facial behavior based emotion and face dynamics.
Hence, such a solution necessitates clinical information and the
participation of practitioners to some extent. In contrast, we only
use features extracted from face videos. Moreover, our proposed
method showcases the lowest false positive and false negative
rates. In addition, we compare our work with four face dynamic-
based emotion recognition works [19]–[22], as well as an emotion
based cognitive health analysis work [43], on the same dataset
and using the same protocol. Our proposed method outperforms
named works.

5 CONCLUSIONS

This work aims at advancing current apathy diagnosis methods,
which require the patient’s presence in a clinic and necessitate
time-consuming clinical interviews, which are inherently costly
and inconvenient for both, patients and clinical staff. We presented

(a)

(b)

(c)

Fig. 11. Box plots of classification confidence for male pertained to
(a) fused negative and positive narration video, (b) negative narration
videos, and (c) positive narration videos.

a novel automatic apathy detection method, employing statisti-
cal descriptors based on facial emotion and dynamic features,
classified by a GRU. We validated our model on videos from
healthy and apathetic individuals, who narrated negative and
positive episodes in their lives. To characterize apathy based on
such videos, we extracted a set of features including expression,
eye gaze, pose and AUs. An apathy classification model was
firstly trained without and then with fusing positive and negative
videos. Best classification accuracy was yielded by fusing features
pertained to emotion, VA, AU, gaze and pose and classifying them
by a deep-bidirectional version of GRU. Our model significantly
outperformed state-of-art frameworks.

Our work carries the premise for automatic and efficient apathy
diagnostics. Future work involves the development of models
related to few shot learning and weakly annotation refinement,

TABLE 5
Comparison with state-of-the-art methods w.r.t. recognition accuracy,

F1 and AUC.

Method Accuracy F1 AUC
[7] 83.72 0.836 0.833
[9] 79.06 0.771 0.790
[8] 80.00 0.786 0.791
[19] 67.00 0.711 0.721
[22] 71.00 0.706 0.722
[20] 73.00 0.733 0.729
[21] 80.00 0.816 0.801
[43] 71.00 0.717 0.731

Proposed method 95.34 0.945 0.949
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in order to mitigate dependence on annotation. Further, we will
explore the correlation of features from different facial regions for
apathy detection.

We note that the diagnosis and follow-up of affect and moti-
vation disorders such as apathy is an important issue, especially
when associated with cognitive impairment. Today, in addition
to biological markers such as brain imaging, there are already
many sensors of potential interest. The simultaneous assessment
of speech and facial expression is particularly important. In this
context the combination of video and audio sensors is a challenge
that must be addressed in future.
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degree from Télécom ParisTech/Eurecom in im-
age processing and biometrics in 2011. Her re-
search is in computer vision and specifically in
designing algorithms that seek to learn suitable
representations of the human face in interpreta-

tion and generation. She is recipient among others of the Best Poster
Award at IEEE FG 2019, winner of the Bias Estimation in Face Analytics
(BEFA) Challenge at ECCV 2018 (in the team with Abhijit Das and
Francois Bremond) and Best Paper Award (Runner up) at the IEEE
International Conference on Identity, Security and Behavior Analysis
(ISBA 2017).

S L Happy has completed the joint MS –
PhD degree from Indian Institute of Technology
Kharagpur, India in 2018. Currently, he is work-
ing as a postdoctoral researcher at Inria Sophia
Antipolis, France. His research interests include
machine learning, computer vision, hyperspec-
tral image classification, medical image analysis,
and facial expression analysis.

Hu Han is an Associate Professor of the Insti-
tute of Computing Technology (ICT), Chinese
Academy of Sciences (CAS). He received the
B.S. degree from Shandong University, and the
Ph.D. degree from ICT, CAS, in 2005 and 2011,
respectively, both in computer science. Before
joining the faculty at ICT, CAS in 2015, he has
been a Research Associate at PRIP lab in the
Department of Computer Science and Engineer-
ing at Michigan State University, and a Visiting
Researcher at Google in Mountain View. His re-

search interests include computer vision, pattern recognition, and image
processing, with applications to biometrics and medical image analysis.
He has authored or co-authored over 60 papers in refereed journals
and conferences including IEEE TPAMI/TIP/TIFS/TMI/TBIOM, CVPR,
ECCV, NeurIPS, and MICCAI. He was a recipient of the IEEE Signal
Processing Society Best Paper Award (2020), IEEE FG 2019 Best
Poster Presentation Award, and CCBR 2016/2018 Best Student/Poster
Awards. He is a member of the IEEE.

Radia Zeghari a post doc researcher at
CoBTeK. Her PhD was related to the use of
new technologies to assess apathy in neurocog-
nitive disorders. She is interested in new as-
sessment methods of cognitive dysfunctions and
neuropsychiatric disorders using digital biomark-
ers for instance. She is also currently working on
projects involving remote cognitive and psychi-
atric assessment.



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 13

Philippe Robert is professor of Psychiatry at the
Nice School of Medicine, Director of the Nice
Memory Centre for Care and Research (CMRR),
Director of the Cognition, Behaviour & Technol-
ogy Unit (CoBTeK) at the Nice-Sophia Antipolis,
and president of the Association IA (Innovation
Alzheimer – affect – Autism). His domains of
expertise include behavioural and psychological
symptoms of dementia, apathy assessment and
treatment, and the use of new technologies for
diagnosis and stimulation of patients with neu-

ropsychiatric diseases.

Shiguang Shan received Ph.D. degree in com-
puter science from the Institute of Computing
Technology (ICT), Chinese Academy of Sci-
ences (CAS), Beijing, China, in 2004. He has
been a full Professor of this institute since
2010 and now the deputy director of CAS Key
Lab of Intelligent Information Processing. He is
also a member of CAS Center for Excellence
in Brain Science and Intelligence Technology.
His research interests cover computer vision,
pattern recognition, and machine learning. He

has published more than 300 papers, with totally more than 15,000
Google scholar citations. He served as Area Chair for many inter-
national conferences including ICCV’11, ICASSP’14, ICPR’12/’14/’19,
ACCV’12/’16/’18, FG’13/’18/’20, BTAS’18 and CVPR’19/’20. And he has
been Associate Editor of several journals including IEEE T-IP, Neuro-
computing, CVIU, and PRL. He was a recipient of the China’s State
Natural Science Award in 2015, and China’s State S&T Progress Award
in 2005 for his research work.

Francois Bremond received the PhD degree
from INRIA in video understanding in 1997, and
he pursued his research work as a post doc-
torate at the University of Southern California
(USC) on the interpretation of videos taken from
Unmanned Air-borne Vehicle (UAV). In 2007, he
received the HDR degree (Habilitation a Diriger
des Recherches) from Nice University on Scene
Understanding. He created the STARS team on
the 1st of January 2012. He is research direc-
tor at INRIA Sophia Antipolis, France. He has

conducted research work in video understanding since 1993 at Sophia-
Antipolis. He is author or co-author of more than 140 scientific papers
published in international journals and conferences in video understand-
ing. He is a handling editor for MVA and a reviewer for several inter-
national journals (CVIU, IJPRAI, IJHCS, PAMI,AIJ, Eurasip, JASP) and
conferences (CVPR, ICCV, AVSS, VS, ICVS). He has (co-)supervised
13 PhD theses. He is an EC INFSO and French ANR Expert for review-
ing projects.

Xilin Chen is a professor with the Institute of
Computing Technology, Chinese Academy of
Sciences (CAS). He has authored one book and
more than 300papers in refereed journals and
proceedings in the areas of computer vision,
pattern recognition, image processing, and mul-
timodal interfaces. He is currently an associate
editor of the IEEE Transactions on Multimedia,
and a Senior Editor of the Journal of Visual Com-
munication and Image Representation, a leading
editor of the Journal of Computer Science and

Technology, and an associate editor-in-chief of the Chinese Journal of
Computers, and Chinese Journal of Pattern Recognition and Artificial
Intelligence. He served as an Organizing Committee member for many
conferences, including general co-chair of FG’13 / FG’18, program co-
chair of ICMI 2010. He has been an area chair of CVPR 2017 / 2019 /
2020, and ICCV 2019. He is a fellow of the ACM, IEEE, IAPR, and CCF.


