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Abstract
The accurate recognition of surgical instruments is essential for the advancement of intraoperative artificial intelligence 
(AI) systems. In this study, we assessed the YOLOv8 model’s efficacy in identifying robotic and laparoscopic instruments 
in robot-assisted abdominal surgeries. Specifically, we evaluated its ability to detect, classify, and segment seven different 
types of surgical instruments. A diverse dataset was compiled from four public and private sources, encompassing over 
7,400 frames and 17,175 annotations that represent a variety of surgical contexts and instruments. YOLOv8 was trained 
and tested on these datasets, achieving a mean average precision of 0.77 for binary detection and 0.72 for multi-instrument 
classification. Optimal performance was observed when the training set of a specific instrument reached 1300 instances. 
The model also demonstrated excellent segmentation accuracy, achieving a mean Dice score of 0.91 and a mean intersection 
over union of 0.86, with Monopolar Curved Scissors yielding the highest accuracy. Notably, YOLOv8 exhibited superior 
recognition performance for robotic instruments compared to laparoscopic tools, a difference likely attributed to the greater 
representation of robotic instruments in the training set. Furthermore, the model’s rapid inference speed of 1.12 milliseconds 
per frame highlights its suitability for real-time clinical applications. These findings confirm YOLOv8’s potential for precise 
and efficient recognition of surgical instruments using a comprehensive multi-source dataset.

Keywords Computer-assisted surgery · Computer vision · Surgical instrument detection · Instrument segmentation · 
Robotic surgery · YoloV8

Introduction

Minimally invasive surgery has transformed surgical care, 
with robotic platforms becoming increasingly prevalent in 
developed countries [1]. Every day, thousands of robotic-
assisted procedures generate vast amounts of endoscopic 
video data. This data provides an opportunity for artificial 
intelligence (AI) applications, which could soon assist sur-
geons by enhancing intraoperative decision-making [2, 3]. 
Recent advancements in computer vision (CV) and deep 
learning (DL) have driven substantial research interest, 
paving the way for AI systems capable of recognizing sur-
gical instruments to understand the surgical scene compre-
hensively [4–7]. For example, the delineation of surgical 
instruments can help with the overlay of 3D models in aug-
mented reality (AR) projections [8]. However, tracking the 
surgeon’s instruments and movements is not new. Before the 
widespread use of CV for instrument recognition, instru-
ment tracking could be accomplished using external sensors 
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such as electromagnetic, optical markers, or more recently, 
Intuitive Surgery's dV-logger® using kinematic informa-
tion[9]. Because of the inevitable intrusion into the surgical 
setup, these solutions were too restrictive to gain the inter-
est of the surgeon community. Offering simplicity through 
vision-based techniques alone, CV is now the preferred field. 
Although it has been in development for several decades, 
it is only recently that advances in machine learning (ML) 
and computing power have allowed its generalizability. The 
increased improvement in computing power, visual data 
storage, and deep learning methods are offering new ways 
of analyzing the surgical field.

From a CV perspective, surgical instrument recognition 
can be categorized in three approaches: detection, 
segmentation, and classification. Initially, detection using a 
bounding box and binary segmentation have been the most 
studied methods, yielding excellent results. Current state-of-
the-art methods have reached a precision of up to 90–95% 
[10, 11]. Initial efforts used classical ML algorithms such as 
support vector machines or naive Bayes approaches [12, 13]. 
Subsequently, CNN-based methods have been proposed in 
numerous works, showing promising results thanks to their 
strong ability to extract features from pixel-wise semantic 
segmentation. The Endoscopic Vision (EndoVis) 2017 
robotic instrument segmentation challenge was one of the 
preliminary works, where the most successful methods used 
a U-net neural network based on a fully convolutional neural 
network (FCN) structure [14].

The discrimination of instrument types and instances 
remains, however, a challenging task with unsatisfying 
results. While the initial algorithm would efficiently detect 
instruments, type-based segmentation was left at 54.2% 
in the EndoVis 2017 Challenge [14]. To improve the per-
pixel classification, some focused on adding features such 
as depth perception, saliency maps, pose estimation, or 
attention mechanism [15, 16]. Other techniques focused 
on the learning strategy through domain adaptation, data 
augmentation, or unsupervised methods [17–19]. More 
recently, transformer-based solutions have been proposed 
[16, 20]. Using attention mechanisms, these models 
can track and predict instance segmentation, which is an 
attractive strategy for dynamic objects.

Nevertheless, several problems remain. First, most 
algorithms have been only tested on the EndoVis 2017 
dataset, which includes porcine surgical images. Second, 
most published studies have used either robotic or 
laparoscopic instruments, but never both simultaneously. 
Nonetheless, robotic-assisted procedures often, if not 
always, require an assistant using laparoscopic instruments. 
Instrument recognition should logically include both sets of 
instruments for optimal understanding of the surgical scene. 
Third, there is a paucity of data on type-based segmentation 
on corrupted images: blurred, bloody, covered by smoke, 

covered by tissue, lack of light, or poor quality. Fourth, 
transformer architectures have recently become popular in 
this field, but they are known to be large, computationally 
expensive, and require large datasets and large memory [20]. 
Most reported works lack information on their real-time 
performance in surgical video. Ideally, the deep learning 
algorithm should work in real-time, incorporate robotic and 
laparoscopic instruments, and be efficient in both clean and 
occluded environments.

At this moment, some of the original algorithms have 
become robust and have stood the test of time. Our research 
aims to address these gaps. We hypothesize that a deep 
learning model, trained on a diverse, multi-source dataset 
encompassing both robotic and laparoscopic instruments, 
can achieve efficient and accurate real-time recognition 
even in varied and challenging conditions. In this study, we 
evaluate the performance of such an approach, exploring 
its potential integration into robotic surgery to enhance 
intraoperative support. To date, this paper delves into the 
current potential of neural networks to analyze day-to-
day surgical instrument activity, and study how they can 
integrate into daily robotic surgery practice.

Methods

Experiments

Model description

The You Only Look Once (YOLO) model was initially 
developed for detection tasks only but has evolved 
significantly over the years. Enhancements now enable it 
to classify, segment, estimate poses, and detect oriented 
objects. For this study, we employed the eighth version of 
this model [24]. YOLOv8 incorporates multiple detection 
heads and features a self-attention mechanism combined 
with a pyramid network for multi-scale object detection. 
This design allows the model to focus on various parts of 
an image and efficiently detect objects of different sizes and 
scales. Given the constant movement and varying scales of 
surgical instruments, YOLOv8’s capabilities make it well-
suited for this application. Moreover, its rapid run-time for 
object detection and segmentation is ideal for real-time 
surgical settings. The decision to use YOLOv8 was made 
after a a preliminary bench comparison with the Mask-R 
CNN model from Detectron 2 and the SAM on the initial 
two datasets described below.

Tasks

We aim to evaluate the performance of YOLOv8 model 
across three specific tasks related to robotic and laparoscopic 
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instruments used in robot-assisted abdominal surger-
ies. First, we focus on binary instrument detection, which 
involves detecting the presence of any instrument by drawing 
bounding boxes around them. This task helps us understand 
the model’s ability to accurately locate surgical instruments 
within the images. Second, we tested the multi-instrument 
detection, meaning the model not only localizes instruments 
but also classifies each detected instrument into predefined 
categories. This task is crucial for determining the model’s 
ability to differentiate between various types of instruments. 
Finally, we evaluate the binary and the instance segmenta-
tion performances, requiring the model to provide precise 
boundaries for each instrument, respective to its category.

Implementation details

The training for YOLO was performed in PyTorch using the 
default configuration. The model used was Yolov8n-seg. The 
training was done for 300 epochs with earlystop set to stop 
the training if there was no significant improvement during 
five epochs. The batch size used was 16, and the training had 
the usual mosaic augmentations [25]. The model was trained 
with a 11GB GeForce GTX 1080 Ti graphics card.

Datasets

EndoVis 2017 — robotic instrument segmentation [14]

EndoVis2017 is an open dataset from the MICCAI 2017 
Endoscopic Vision SubChallenge. It contains 8 x 225-frame 
robot-assisted nephrectomy videos, performed on the por-
cine abdomen, captured at 2 Hz. Ground truth labels were 
provided for left-view frames only. Six distinct surgical 
instruments were labeled, including Monopolar Curved 
Scissors, bipolar forceps, large needle drive, Prograsp For-
ceps, vessel sealer, and grasping retractor. For the purpose 
of this study, only the vessel sealer was not considered in 
our analysis.

PSI‑AVA dataset [22]

The PSI-AVA dataset contributed to the recognition of tasks 
for holistic surgical understanding. It contains 8 robotic 
surgical videos of robot-assisted radical prostatectomies, 
performed on a Da Vinci SI3000. In addition to phase and 
step annotation, seven distinct surgical instruments were 
labeled, including Monopolar Curved Scissors, bipolar 
forceps, Large Needle Driver, Prograsp Forceps, suction 
instrument, clip applier, and laparoscopic instruments. In 
total, 5804 instrument instances are available in the dataset.Ta
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Robotool dataset [23]

The RoboTool dataset was released in 2021 and contains 
514 manually annotated images from 20 robot-assisted 
abdominal surgical procedures freely available online. This 
dataset is originally annotated for binary instrument and 
background segmentation. We manually updated this dataset 
by adding the type of instrument. This dataset contains a 
wide range of interference factors in the frames, including 
smoke, blur, or darkness (Supplementary File 1).

URAS dataset

We developed our dataset using urological robot-assisted 
surgeries (URAS). Surgeries were performed on Da Vinci 
X from Intuitive Surgery® and registered using the Intuitive 
Hub under an MP4 video format. Ten surgeries were chosen 
for this study, comprising radical prostatectomy, partial 
nephrectomy, and adenomyomectomy. Anonymization 
of videos was the initial step, using a local modification 
of the IODA algorithm [26]. The resolution was reduced 
to 678 x 541 pixels and the frame rate was lowered at 10 
frames per second (fps). The following instruments were 
labeled: Monopolar Curved Scissors, bipolar forceps, large 
needle drive, Prograsp Forceps, suction instrument, and 
laparoscopic grasper. Only frames from the left eye were 
annotated. Annotations were performed by one surgical 
resident and reviewed by two urological specialists.

Training, validation, and test sets (Table 1 and 2)

The overall dataset contained 7402 frames. The training 
dataset consisted of a compilation of the training set of 
EndoVis 2017 and PSI-AVA datasets, 85% of RoboTool 
dataset, and 449 frames of URAS dataset.

The validation set comprised the corresponding EndoVis 
2017 and PSI-AVA validation set, along with 5% of the 
RoboTool dataset, and 84 frames from the URAS dataset.

We used the independent test sets provided by the EndoVis 
2017 and PSI-AVA datasets without modification to ensure 
consistency and comparability with other studies utilizing 
these datasets. For the RoboTool dataset, we selected 10% of 
the data to serve as an independent test set. For the URAS 
dataset, we chose 88 frames as the test set. To prevent any 
overlap and ensure data integrity, we divided the data into 
training, validation, and test sets on a patient-wise basis. 
This means that all video frames from a single patient were 
kept within the same set, ensuring no patient’s video frames 
appeared in both the training and test sets. This method main-
tains the independence of the test sets, guaranteeing that our 
model’s performance is evaluated on entirely unseen data and Ta
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preventing any data leakage that could artificially inflate per-
formance metrics.

Performance indicators

The quality metrics used to evaluate the performance of the 
model are described here. For the first and second tasks, we 
used Average Precision (AP) and the mean AP (mAP) as met-
rics. The AP and mAP at an Intersection over Union (IoU) 
threshold of 0.50 (AP50 and mAP50, respectively) were used 
to evaluate object detection models. A prediction is considered 
correct if the IoU between the predicted bounding box and 

the ground truth box exceeds 0.50, indicating at least a 50% 
overlap. Formally, mAP50 is given by:

where N is the number of classes. The AP for each class is 
determined by:

Where p is the precision and r is the recall defined as:

mAP50 =
1

N

N
∑

�=1

AP50
�

AP = ∫
1

r=0

p(r)dr

Fig. 1  Binary detection (A) and instance segmentation of instruments (B)

Table 3  Multi-instrument detection results

Instrument AP50 n° instances

Monopolar Curved Scissors 0.94 1360
Prograsp Forceps 0.69 989
Bipolar forceps 0.89 1450
Large Needle Driver 0.82 1403
Laparoscopic Grasper 0.45 84
Laparoscopic Clip Applier 0.55 38
Laparoscopic Vacuum 0.73 320
mAP50 0.72 –
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where True Positives (TP) are the predicted bounding boxes 
that have an IoU ≥0.50 with a ground truth box and are cor-
rectly classified. False Negatives (FN) refers to ground truth 
bounding boxes that do not have any predicted bounding box 
with an IoU ≥0.50 or are misclassified.

This metric provides a comprehensive measure of a model’s 
detection performance across different classes and varying lev-
els of object overlap, using an IoU threshold to define true 
positive detections.

For the third task, we used the IoU, also known as the Jac-
card Index, and the Dice score (DS). The respective formulas 
were as follows:

TPi , FPi , and FNi are the true positives, false positives, 
and false negatives for the i-th class, respectively. The 
true positives are foreground pixels of class i that are 
correctly identified, the false negatives are foreground 
pixels of class i that are not correctly identified, and the 
false positives are background pixels (class different from 
i) that have been annotated as class i by the model. The 
mean IoU and mean Dice score were computed for each 
dataset as well as for a separate total test set.

For instance segmentation, the performance metrics 
are calculated only when the corresponding instrument is 
correctly detected. An average Dice score and Intersection 
over Union (IoU) are computed across all classes and 
frames for each dataset, along with a Weighted Mean that 
accounts for the instrument’s test-set instances.

p =
TP

TP + FP

r =
TP

TP + FN

IoU
i
=

TP
i

TP
i
+ FP

i
+ FN

i

Dice score
i
=

2 ⋅ TP
i

2 ⋅ TP
i
+ FP

i
+ FN

i

Results

The overall use of YOLOv8 in analyzing surgical 
instruments intraoperatively can be seen in the multimedia 
file (Supplementary file 2). The online performance was 
performed with an inference speed of 1.12 ms/frame for 
all tasks.

Task 1: binary instrument detection

The binary detection of instruments across the independent 
test set, using the YOLOv8 model, reached a mAP50 of 
0.77. High scores have already been reported previously 
for binary detection, yet, our dataset includes corrupted 
frames which might decrease the ability to detect, although 
it gives more of a “real-life” exposure [27].

Task 2: multi‑instrument detection

When classification was incorporated along with detection, 
the model reached a mAP50 of 0.72 on the totally 
independent test set. The detailed performance of the 
model across different types of instruments is presented 
in Table 3. Notably, the model exhibited high precision in 
detecting Monopolar Curved Scissors (AP50: 0.94), Large 
Needle Driver (AP50: 0.82), and bipolar forceps (AP50: 
0.89), while the performance was lower for Laparoscopic 
instruments. One major reason, among others, may be 
the high number of instances available for these three 
robotic surgical instruments, exceeding 1300 instances. 
This comes in line with common surgical procedures as 
robotic instruments are handled by the primary surgeon 
while laparoscopic ones are handled by the assistant.

Task 3: binary and instrument segmentation

The binary segmentation of surgical instruments achieved an 
IoU score of 0.93 and a Dice score of 0.89. This high accuracy 

Table 4  Dice score of instance 
segmentation

Instrument Total EndoVis PSI-AVA RoboTool URAS

Monopolar Curved Scissors 0.93 0.91 0.94 0.91 0.94
Prograsp Forceps 0.86 0.89 0.80 0.84 0.78
Bipolar forceps 0.89 0.91 0.88 0.89 0.91
Large Needle Driver 0.81 0.80 0.83 0.92 –
Lap. Grasper 0.77 0.77 – 0.90
Lap. Clip Applier 0.89 0.89 –
Lap. Vacuum 0.87 0.87 0.77 0.95
Average 0.86 0.87 0.85 0.87 0.90
Weighted Mean 0.87 0.88 0.87 0.89 0.89
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demonstrates the model’s proficiency in precisely segmenting 
surgical instruments within the video frames and offers higher 
accuracy than current state-of-the-art methods (Fig. 1A).

The model demonstrated surprising multi-instrument 
segmentation capabilities, achieving an average Dice score 
of 91% and an average IoU of 86% across all instruments 
(Table 4 and 5). Notably, monopolar scissors achieved the 
highest segmentation accuracy with a Dice score of 96% and 
an IoU of 93%, indicating instrument delineation very close 
to the ground truth. The lowest performance was attained by 
the laparoscopic grasper with a Dice score of 77% and an 
IoU of 85%. Overall, these performances were stable among 
the different datasets.

Discussion

The analysis of surgical images and videos represents an 
emerging field with significant potential. Accurate AI rec-
ognition of surgical instruments within the operative field 
serves as a critical foundation for numerous advanced appli-
cations. Instrument segmentation, for instance, ensures that 
the precise location and orientation of each tool are iden-
tified relative to key anatomical structures. This real-time 
monitoring could help prevent surgical instruments from 
coming dangerously close to vital areas, such as arteries, 
thereby minimizing the risk of accidental punctures or tears. 
Moreover, sophisticated detection and segmentation tech-
niques facilitate automatic data collection on instrument use 
throughout surgical procedures. Such data can be leveraged 
to optimize surgical methods, enhance training simulations, 
or develop AI algorithms that provide real-time assistance to 
surgeons. For example, analyzing patterns in instrument use 
may reveal opportunities to improve procedural efficiency 
or pinpoint common sources of errors, contributing to bet-
ter surgical practices. Beyond these applications, detection 
and classification pave the way for more autonomous robotic 
functions. In repetitive tasks like suturing or tissue retrac-
tion, AI systems could assist automatically, reducing the sur-
geon’s workload. For example, recognizing a needle holder 
could trigger the system to perform automated stitching, 
alleviating surgeon fatigue. Ultimately, these advancements 
hold the promise of enhancing the safety, speed, and consist-
ency of robot-assisted surgeries, particularly for complex 
or minimally invasive procedures. In this investigation, the 
ability of YOLOv8 to detect and classify instruments on our 
global database was lower than expected, with an mAP50 of 
72%. However, these performances can be explained by an 
evident dependency of the algorithm on the number of anno-
tated images. Performances reached 82% or more when there 
were more than 1,300 annotations and stayed below 73% 
when there were fewer than 500. Laparoscopic instruments 
were largely less annotated than robotic instruments, due Ta
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to their often-futile presence in robot-assisted surgery. It is 
therefore reasonable that the algorithm should have difficulty 
adapting to the heterogeneity of the data. When only lapa-
roscopic instruments are considered, YOLOv8 shows great 
performances, with a mAP50 exceeding 95.6%, as shown 
by Le et al. [28]. To alleviate this problem, we could add to 
our merged database, a database dedicated to laparoscopic 
instruments such as Endoscape and/or Cholec80 [29, 30]. 
In addition, our merged database includes several corrupted 
images, which may also be the cause of training difficulties 
for the algorithm. Even if the initial intention was to create 
a set more in line with the reality of our exercise, it would 
be appropriate to specifically study images with an oversight 
or detection error, in order to understand the impact of cor-
rupted images on training.

In terms of segmentation, the model demonstrated 
outstanding multi-instrument segmentation capabilities, 
achieving an average Dice score of 0.91 and an average IoU 
of 0.86 across all instruments. Notably, the Monopolar Curved 
Scissors achieved the highest segmentation performance 
with a Dice score of 0.96 and an IoU of 0.93, indicating 
precise boundary delineation. This represents a significant 
improvement over previous methods, which often reported 
lower accuracy and struggled with the segmentation of 
various instrument types. The best current CNN-based and 
pixel-classification methods have reached performances of 
65.18% and 66.3% for instance segmentation on EndoVis 
2017, respectively for ISINet and SurgNet algorithms [16, 
31]. Transformer-based and mask-classification methods, 
such as the MATIS algorithm from Ayobi et al, have achieved 
higher accuracy than the previously cited methods, with an 
IoU as high as 71.36% [20]. Yet, the highest score in instance 
segmentation was achieved by SAM with an IoU of 88.2% 
[21]. Nevertheless, this model needed to be prompted. 
Recently, Sheng et al proposed Surgical-DeSAM to avoid 
such constraints. Their algorithm uses DETR to obtain a 
bounding box, which prompts in turn SAM. They achieved 
an IoU of 82.41% on EndoVis 2017 [32]. Despite being 
initially developed for object detection, YOLOv8 proved 
to be highly efficient for segmentation tasks. This is largely 
due to its robust architecture, which integrates a feature 
pyramid network and self-attention mechanisms, enabling it 
to effectively detect and segment objects of different sizes 
and scales. In addition, the model can perform efficiently 
even when multiple instruments are present and overlapping 
(Fig. 1B). The model showed consistency in performance 
across the different datasets, despite some having more or 
less inference factors (Tables 4 and 5).

When our algorithm is tested in real-life conditions on a 
surgical video sequence, its performance for the various tasks 
studied became apparent (Video Appendix A-3 and A-4). 

Despite an execution speed theoretically sufficient for real-
time analysis (1.12 ms/frame), we observed a lack of instru-
ment detection. This also leads to a segmentation deficit, since 
this task depends on prior instrument detection with a bound-
ing box. However, instrument classification and segmentation, 
when instruments are correctly detected, are visually correct. 
To optimize detection, beyond the approaches already men-
tioned, adding a multi-object tracking function to the algo-
rithm could be an effective solution. Multi-object tracking is 
a computer vision task that involves tracking the movements 
of several objects over time in a video sequence. The aim is 
to determine not only the class and location of each object, 
but also its trajectory throughout the video, including in situ-
ations where the objects are partially or totally obscured by 
other elements in the scene. In general, multiple-object track-
ing is a two-stage process: object detection and association 
of detected objects across frames. This type of model can be 
easily integrated with a detection model such as YOLO. A 
popular model in this field is ByteTrack, introduced in 2022 
[33]. ByteTrack is innovative in its ability to retain low con-
fidence bounding boxes, which are usually discarded after 
initial detection filtering, for use in a second association step. 
Occulted detection boxes often have confidence scores below 
threshold, but still contain relevant object information, dis-
tinguishing them from pure background detections. By pre-
serving them for association, ByteTrack improves tracking 
robustness. A very recent paper by Myo et al. tested YOLOv8 
+ ByteTrack under surgical conditions [34]. Testing the algo-
rithm on the ROBUST-MIS database of the EndoVis 2019 
challenge, they obtained better results, with a real-time seg-
mentation speed of around 45 fps, sufficient for a real-time 
application. By categorizing images according to the positions 
of separate, crossed or overlapping instruments, they also 
demonstrated that ByteTrack was able to improve segmenta-
tion performance in all categories.

Overall, our results may have different clinical impact. 
First, YOLOv8 allows full instrument segmentation, which 
will be necessary to avoid overlay of AR images in the sur-
gical fields. Second, this quick processing time is crucial 
for potential clinical real-time applications, ensuring timely 
decision-making and effective use in tasks for surgical guid-
ance and real-time diagnostics. Last but not least, it proved 
its effectiveness in classifying and segmenting despite dif-
ferent types of instruments and environments. As minimally 
invasive surgery can be laparoscopic or robotic, having a 
generalized algorithm capable of performing on both types 
of instruments could be of interest, and comes in line with 
the current evolution toward computer-aided surgery [35, 36].

The current analyzed model reveals several limitations 
that impact its effectiveness in practical surgical scenarios. 
First, if an instrument is absent from the model’s predefined 
toolset (i.e., not annotated in the GT reference frame), it 
risks misclassifying it as another instrument. For instance, 
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in Supplementary File 3a, non-fenestrated bipolar forceps 
were not included in our model, yet the model still classified 
them as bipolar forceps. Also, when the background does not 
consist of anatomic structures, such as the endobag, it leads 
to poor segmentation results. Second, when the number of 
instances of certain instruments is very low, such as with the 
clip applier and laparoscopic grasper (Table 1), the model 
struggles either to classify them incorrectly (Supplementary 
File 3c) or misses their detection entirely (Supplementary 
File 3b). This limitation underscores the model’s dependency 
on adequate training data representation. Moreover, 
instruments that are too small within the image frame pose 
a challenge for accurate classification, often leading to 
misclassifications as other tools (Supplementary File 3d). In 
addition, images with significant blur (Supplementary File 
3e) present another obstacle, as the model may not detect 
the instrument. These limitations underscore the need for 
further refinement and robustness in the model’s training 
and inference processes. Addressing these challenges could 
significantly enhance its reliability and applicability in 
real-world surgical environments, ensuring more accurate 
instrument recognition and segmentation.

Conclusion

The YOLOv8 model exhibited strong performance in 
detecting and segmenting both robotic and laparoscopic 
surgical instruments, even in complex and varied 
surgical settings. Its capability to maintain high 
accuracy, especially in binary segmentation, and its 
adaptability across diverse datasets highlight the model’s 
robustness. However, challenges remain, including the 
misclassification of instruments not included in the 
training data and difficulties with low-quality images, 
indicating the need for further enhancements. Rather 
than focusing solely on improving precision, this study 
highlights the model’s potential to optimize surgical 
assistance by streamlining workflow and supporting 
surgeons more effectively during procedures.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s11701- 025- 02284-7.
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