
Modular Compilation of a Synchronous Language

Modular Compilation of a Synchronous Language

Annie Ressouche1 and Daniel Ga�é2 and Valérie Roy3

1Inria Sophia-Antipolis Méditerranée

2Nice Sophia Antipolis University and CNRS(LEAT)

3Ecole des Mines-CMA

SERA 2008

Modular Compilation of a Synchronous Language

Introduction

Motivation

+ Synchronous languages are model-driven =⇒
E�ciency and reusability of system design

Formal veri�cation of system behavior

- Large size of models
Modular compilation

Modular Compilation of a Synchronous Language

Introduction

Motivation

+ Synchronous languages are model-driven =⇒
E�ciency and reusability of system design

Formal veri�cation of system behavior

- Large size of models
Modular compilation

Modular Compilation of a Synchronous Language

Introduction

Motivation

+ Synchronous languages are model-driven =⇒
E�ciency and reusability of system design

Formal veri�cation of system behavior

- Large size of models
Modular compilation

Modular Compilation of a Synchronous Language

Introduction

Motivation

+ Synchronous languages are model-driven =⇒
E�ciency and reusability of system design

Formal veri�cation of system behavior

- Large size of models
Modular compilation

Modular Compilation of a Synchronous Language

Introduction

Motivation

+ Synchronous languages are model-driven =⇒
E�ciency and reusability of system design

Formal veri�cation of system behavior

- Large size of models
Modular compilation

model-driven + modularity =⇒ global causality checking

synchronous hypothesis =⇒ responsiveness.

modularity

global causality checking

Modular Compilation of a Synchronous Language

Introduction

Motivation

+ Synchronous languages are model-driven =⇒
E�ciency and reusability of system design

Formal veri�cation of system behavior

- Large size of models
Modular compilation

We introduce :

an equational semantic allowing modular compilation

an e�cient way to check causality

a synchronous language LE

Modular Compilation of a Synchronous Language

Introduction

Outline

1 Introduction

2 LE Language
LE Language Overview
LE Equational Semantic
Correctness of the Equational Semantic

3 LE Modular Compilation
Sorting Algorithm
Link of Two Partial Orders

4 Practical Issues
E�ective Compilation
The Clem Toolkit

5 Conclusion and Future Work
Conclusion
Future Work

Modular Compilation of a Synchronous Language

LE Language

LE Language Overview

LE Language

LE language allows 3 kinds of design :
1 Event driven application design

synchronous parallel
Run module operator to achieve separated compilation

2 Automata (State Chart like) design

3 Data �ow application design

Modular Compilation of a Synchronous Language

LE Language

LE Language Overview

LE Language

LE language allows 3 kinds of design :
1 Event driven application design

synchronous parallel
Run module operator to achieve separated compilation

2 Automata (State Chart like) design

3 Data �ow application design

Modular Compilation of a Synchronous Language

LE Language

LE Language Overview

LE Language

LE language allows 3 kinds of design :
1 Event driven application design

synchronous parallel
Run module operator to achieve separated compilation

2 Automata (State Chart like) design

3 Data �ow application design

Modular Compilation of a Synchronous Language

LE Language

LE Language Overview

LE Language

LE language allows 3 kinds of design :
1 Event driven application design

synchronous parallel
Run module operator to achieve separated compilation

2 Automata (State Chart like) design

3 Data �ow application design

Modular Compilation of a Synchronous Language

LE Language

LE Equational Semantic

Mathematical Context

ξ = {⊥, 1, 0,>} ;
notion of environment (E, �)

Modular Compilation of a Synchronous Language

LE Language

LE Equational Semantic

Mathematical Context

ξ = {⊥, 1, 0,>} ;
notion of environment (E, �)

Notion of Circuit

W : wires ; R : registers ; S : signals (input, output, locals)

C =def ξ equation system

p −→ C(p) with 3 wires :
1 Setp : control �ow propagation
2 Resetp : reinitialisation �ow propagation
3 RTLp : ready to leave
4 ACTIVE : register (for some instruction only)

E ` w ↪→ bb : a constructive propagation law

Modular Compilation of a Synchronous Language

LE Language

LE Equational Semantic

Mathematical Context

ξ = {⊥, 1, 0,>} ;
notion of environment (E, �)

Notion of Circuit

W : wires ; R : registers ; S : signals (input, output, locals)

C =def ξ equation system

p −→ C(p) with 3 wires :
1 Setp : control �ow propagation
2 Resetp : reinitialisation �ow propagation
3 RTLp : ready to leave
4 ACTIVE : register (for some instruction only)

E ` w ↪→ bb : a constructive propagation law

Modular Compilation of a Synchronous Language

LE Language

LE Equational Semantic

Mathematical Context

ξ = {⊥, 1, 0,>} ;
notion of environment (E, �)

Notion of Circuit

W : wires ; R : registers ; S : signals (input, output, locals)

C =def ξ equation system

p −→ C(p) with 3 wires :
1 Setp : control �ow propagation
2 Resetp : reinitialisation �ow propagation
3 RTLp : ready to leave
4 ACTIVE : register (for some instruction only)

E ` w ↪→ bb : a constructive propagation law

Modular Compilation of a Synchronous Language

LE Language

LE Equational Semantic

Mathematical Context

ξ = {⊥, 1, 0,>} ;
notion of environment (E, �)

Notion of Circuit

W : wires ; R : registers ; S : signals (input, output, locals)

C =def ξ equation system

p −→ C(p) with 3 wires :
1 Setp : control �ow propagation
2 Resetp : reinitialisation �ow propagation
3 RTLp : ready to leave
4 ACTIVE : register (for some instruction only)

E ` w ↪→ bb : a constructive propagation law

Modular Compilation of a Synchronous Language

LE Language

LE Equational Semantic

Equational Semantic De�nition

p a LE statement, E : an environment
Se(p,E) = E ′ i� E ` C(p) ↪→ E ′. (notation : 〈p〉

E
)

P :LE program.
(P,E) 7−→ E ′ i� Se(Γ(P),E) = E ′, where Γ(P) is the LE
statement body of program P

Modular Compilation of a Synchronous Language

LE Language

LE Equational Semantic

Equational Semantic De�nition

p a LE statement, E : an environment
Se(p,E) = E ′ i� E ` C(p) ↪→ E ′. (notation : 〈p〉

E
)

P :LE program.
(P,E) 7−→ E ′ i� Se(Γ(P),E) = E ′, where Γ(P) is the LE
statement body of program P

Modular Compilation of a Synchronous Language

LE Language

LE Equational Semantic

Parallel Operator(P1‖P2) Circuit De�nition

C(P1‖P2) = C(P1) ∪ C(P2) ∪ CP1‖P2

CP1‖P2 =

8>>>>>>>><>>>>>>>>:

SetP1 = SetP1‖P2
SetP2 = SetP1‖P2
ResetP1 = ResetP1‖P2
ResetP2 = ResetP1‖P2
ACTIVE1

+ = (RTLP1 tACTIVE1) u ¬ResetP1‖P2
ACTIVE2

+ = (RTLP2 tACTIVE2) u ¬ResetP1‖P2
RTLP1‖P2 = (RTLP1 tACTIVE1) u (RTLP2 tACTIVE2)

9>>>>>>>>=>>>>>>>>;
Parallel Operator(P1‖P2) Semantic Computation

〈P1〉E t 〈P2〉E ` C(P1‖P2) ↪→ 〈P1‖P2〉E

Modular Compilation of a Synchronous Language

LE Language

Correctness of the Equational Semantic

Behavioral Semantic

P program, E input environment,E ′ output environment :

Rule-based speci�cation : p
E

′,TERM−−−−−−→
E

p′

(P,E) 7−→ (P ′,E ′) i� Γ(P)
E

′, TERM−−−−−−→
E

Γ(P ′)

Modular Compilation of a Synchronous Language

LE Language

Correctness of the Equational Semantic

Behavioral Semantic

P program, E input environment,E ′ output environment :

Rule-based speci�cation : p
E

′,TERM−−−−−−→
E

p′

(P,E) 7−→ (P ′,E ′) i� Γ(P)
E

′, TERM−−−−−−→
E

Γ(P ′)

Theorem

Let P be a LE statement, O its output signal set, and EC an input
environment, the following property holds :

P
E ′,RTLP−−−−−→

E
P ′ and 〈P〉

EC
|O = E ′|O

where E = {Sx |Sx ∈ EC and S /∈W ∪ R}.

• Equational semantic o�ers a means to compile LE programs.
• Behavioral semantic ensures model-checking techniques apply.

Modular Compilation of a Synchronous Language

LE Modular Compilation

Sorting Algorithm

Causality Checking

Problem : the composition of 2 causal systems may introduce
causality cycle

Solution : preserve signal independance

Modular Compilation of a Synchronous Language

LE Modular Compilation

Sorting Algorithm

Sorting Algorithm : a PERT family

a = x t y
b = x t not y
c = a t t
d = a t c
e = a t t

ca

y

x d

b

et

c a x

b y

te

d

dependencies
Upstream

dependencies
Downstream

3 2 1 0 0 1 2 3

Modular Compilation of a Synchronous Language

LE Modular Compilation

Sorting Algorithm

CanDate and MustDate

a b c d e x y t
(1, 1) (1, 3) (2, 2) (3, 3) (2, 3) (0, 0) (0, 0) (0, 1)

Modular Compilation of a Synchronous Language

LE Modular Compilation

Link of Two Partial Orders

Partial Orders Link

A B

a = x t y
b = x t not y
c = a t t
d = a t c
e = a t t

y = m
z = a
v = w

A : a b c d e x y t
(1, 1) (1, 3) (2, 2) (3, 3) (2, 3) (0, 0) (0, 0) (0, 1)

B : a m v w y z
(0, 0) (0, 0) (1, 1) (0, 0) (1, 1) (1, 1)

Common variables : a y

Modular Compilation of a Synchronous Language

LE Modular Compilation

Link of Two Partial Orders

A : a b c d e x y t
(1, 1) (1, 3) (2, 2) (3, 3) (2, 3) (0, 0) (0, 0) (0, 1)

B : a m v w y z
(0, 0) (0, 0) (1, 1) (0, 0) (1, 1) (1, 1)

Dates Propagation

a b c d e x y
∆c(a) : (1, 1) (1, 3) (2, 2) (3, 3) (2, 3) (0, 0) (1, 1)
∆m(a) : (1, 1) (1, 3) (2, 2) (3, 3) (2, 3) (0, 0) (1, 1)
∆c(y) : (2, 2) (2, 4) (3, 3) (4, 4) (3, 4) (0, 0) (1, 1)
∆m(y) : (2, 2) (2, 4) (3, 3) (4, 4) (3, 4) (0, 0) (1, 1)

t m v w z
∆c(a) : (0, 1) (0, 0) (1, 1) (0, 0) (2, 2)
∆m(a) : (0, 1) (0, 0) (1, 1) (0, 0) (2, 2)
∆c(y) : (0, 1) (0, 0) (1, 1) (0, 0) (3, 3)
∆m(y) : (0, 1) (0, 0) (1, 1) (0, 0) (3, 3)

Modular Compilation of a Synchronous Language

LE Modular Compilation

Link of Two Partial Orders

a b c d e x y t m v w z

(2, 2) (2, 4) (3, 3) (4, 4) (3, 4) (0, 0) (1, 1) (0, 1) (0, 0) (1, 1) (0, 0) (3, 3)

Two Valid Sorts

0 : m x v t
1 : y = m

v = w
2 : b = x t not y

a = x t y
3 : c = a t t

z = a
e = a t t

4 : d = a t c

0 : m x v t
1 : y = m

v = w
2 : a = x t y
3 : c = a t t

z = a
4 : b = x t not y

e = a t t
d = a t c

sorting − 1 sorting − 2

Modular Compilation of a Synchronous Language

Practical Issues

E�ective Compilation

E�ective Compilation

1 P is associated with a ξ equation system (C(P))

2 ξ −→ B (BDD implementation)

3 compilation = ↪→ propagation law implementation

4 separated compilation relies on LEC internal format

Modular Compilation of a Synchronous Language

Practical Issues

E�ective Compilation

E�ective Compilation

1 P is associated with a ξ equation system (C(P))

2 ξ −→ B (BDD implementation)

3 compilation = ↪→ propagation law implementation

4 separated compilation relies on LEC internal format

Modular Compilation of a Synchronous Language

Practical Issues

E�ective Compilation

E�ective Compilation

1 P is associated with a ξ equation system (C(P))

2 ξ −→ B (BDD implementation)

3 compilation = ↪→ propagation law implementation

4 separated compilation relies on LEC internal format

Modular Compilation of a Synchronous Language

Practical Issues

E�ective Compilation

E�ective Compilation

1 P is associated with a ξ equation system (C(P))

2 ξ −→ B (BDD implementation)

3 compilation = ↪→ propagation law implementation

4 separated compilation relies on LEC internal format

Modular Compilation of a Synchronous Language

Practical Issues

The Clem Toolkit

CLEM Toolkit ://http :www.inria.fr/sophia/pulsar/projects/Clem

simulation softwarehardware
codesdescriptionsformal proofs

software
models

LE textual codes

LEC file

already compiled LEC

Verification

C Esterel,LustreBlif Vhdl

automaton
editor

LE generated code

COMPILER and LINKER

TARGETS

NuSMV

CLEM

Finalization

(Galaxy)

imperative
LE textual codes

data flow

Modular Compilation of a Synchronous Language

Conclusion and Future Work

Conclusion

Conclusion

1 LE language with 2 semantics :

the equational semantic o�ers separated compilation means
the behavioral semantic allows NuSMV model-checker usage

2 We de�ne the CLEM toolkit around LE language modular
compilation

Modular Compilation of a Synchronous Language

Conclusion and Future Work

Conclusion

Conclusion

1 LE language with 2 semantics :

the equational semantic o�ers separated compilation means
the behavioral semantic allows NuSMV model-checker usage

2 We de�ne the CLEM toolkit around LE language modular
compilation

Modular Compilation of a Synchronous Language

Conclusion and Future Work

Conclusion

Conclusion

1 LE language with 2 semantics :

the equational semantic o�ers separated compilation means
the behavioral semantic allows NuSMV model-checker usage

2 We de�ne the CLEM toolkit around LE language modular
compilation

Modular Compilation of a Synchronous Language

Conclusion and Future Work

Conclusion

Conclusion

1 LE language with 2 semantics :

the equational semantic o�ers separated compilation means
the behavioral semantic allows NuSMV model-checker usage

2 We de�ne the CLEM toolkit around LE language modular
compilation

Modular Compilation of a Synchronous Language

Conclusion and Future Work

Future Work

Future Work

1 large industrial application development
2 extension of LE to deal with data :

language improvement
semantics extension
rely on Abstract Interpretation methods (like polyhedron
intersection) to still apply model-checking techniques

3 improve LE veri�cation :

provide facilities to de�ne safety properties as observers.
prove that modular and �assume-guarantee� model-checking
techniques apply

Modular Compilation of a Synchronous Language

Conclusion and Future Work

Future Work

Future Work

1 large industrial application development
2 extension of LE to deal with data :

language improvement
semantics extension
rely on Abstract Interpretation methods (like polyhedron
intersection) to still apply model-checking techniques

3 improve LE veri�cation :

provide facilities to de�ne safety properties as observers.
prove that modular and �assume-guarantee� model-checking
techniques apply

Modular Compilation of a Synchronous Language

Conclusion and Future Work

Future Work

Future Work

1 large industrial application development
2 extension of LE to deal with data :

language improvement
semantics extension
rely on Abstract Interpretation methods (like polyhedron
intersection) to still apply model-checking techniques

3 improve LE veri�cation :

provide facilities to de�ne safety properties as observers.
prove that modular and �assume-guarantee� model-checking
techniques apply

Modular Compilation of a Synchronous Language

Conclusion and Future Work

Future Work

Future Work

1 large industrial application development
2 extension of LE to deal with data :

language improvement
semantics extension
rely on Abstract Interpretation methods (like polyhedron
intersection) to still apply model-checking techniques

3 improve LE veri�cation :

provide facilities to de�ne safety properties as observers.
prove that modular and �assume-guarantee� model-checking
techniques apply

Modular Compilation of a Synchronous Language

Conclusion and Future Work

Future Work

E ` bb ↪→ bb E (w) = bb

E ` w ↪→ bb

E ` e ↪→ bb

E ` (w = e) ↪→ bb

E ` e ↪→ ¬bb
E ` ¬e ↪→ bb

Modular Compilation of a Synchronous Language

Conclusion and Future Work

Future Work

E ` e ↪→ > or E ` e′ ↪→ >
E ` e t e′ ↪→ > E ` e ↪→ ⊥ or E ` e′ ↪→ ⊥

E ` e u e′ ↪→ ⊥

E ` e ↪→ 1[0] and E ` e′ ↪→ 0[1]

E ` e t e′ ↪→ > and E ` e u e′ ↪→ ⊥
E ` e ↪→ 1[⊥] and E ` e′ ↪→ ⊥[1]

E ` e t e′ ↪→ 1 and E ` e u e′ ↪→ ⊥

E ` e ↪→ 0[⊥] and E ` e′ ↪→ ⊥[0]

E ` e t e′ ↪→ 0

E ` e ↪→ 0[>] and E ` e′ ↪→ >[0]

E ` e u e′ ↪→ 0

E ` e ↪→ x and E ` e′ ↪→ x(x = ⊥, 0, 1,>)

E ` e t e′ ↪→ x and E ` e u e′ ↪→ x

E ` e ↪→ 1[T] and E ` e′ ↪→ T [1]

E ` e u e′ ↪→ 1

Modular Compilation of a Synchronous Language

Conclusion and Future Work

Future Work

Synchronous languages rely on the Synchronous hypothesis

output eventsinput events

reaction (=> logical clock)

Synchronous Hypothesis

Model of event driven systems

Broadcasting of events (non blocking communication)

Reaction is atomic : input and resulting output events are
simultaneous

Succession of reactions =⇒ logical time

Synchronous systems are deterministic

Modular Compilation of a Synchronous Language

Conclusion and Future Work

Future Work

Event driven Application Design

Modular Compilation of a Synchronous Language

Conclusion and Future Work

Future Work

Event driven Application Design

LE Operators

emit speed

present S { P1} else { P2}

P1 � P2 : perform P1 then P2

P1‖P2 : synchronous parallel : start P1 and P2 simultaneously
and stop when both have terminated

abort P when S : perform P until S presence

loop {P}
local S {P} : encapsulation, the scope of S is restricted to P

Run M : call of module M

pause : stop until the next reaction

wait S : stop until the next reaction in which S is present

Modular Compilation of a Synchronous Language

Conclusion and Future Work

Future Work

LE Program Example

module R2WIEO :

Input: I0,I1;

Output: O0,O1;

Run:"/home/ar/GnuStrl/CLEM_SRC/TEST/" : WIEO;

{

run WIEO[I0 \ i, O0 \ o] || run WIEO[I1 \ i, O1 \ o]

}

end

module WIEO :

Input: i;

Output: o;

wait i >> emit o

end

Modular Compilation of a Synchronous Language

Conclusion and Future Work

Future Work

State Chart like Design

Modular Compilation of a Synchronous Language

Conclusion and Future Work

Future Work

State Chart like Design

Automata Design

A(M, T , Cond ,Mf ,O, λ) : automata speci�cation

init

callTransport

Transport

StartCycle

upward

forward/ENDOfCycle

downward/Temporisation

MoveDown

state4 state3

Modular Compilation of a Synchronous Language

Conclusion and Future Work

Future Work

Data �ow application Design

Modular Compilation of a Synchronous Language

Conclusion and Future Work

Future Work

Data �ow application Design

Equation Design

E(I,O,R,D) : equation system de�nition

module ADDMM:

Input: Xi,Yi,Rin;

Output: Si, Rout;

Mealy Machine

Si = (Xi xor Yi) xor Rin;

Rout = (Xi and Yi) or (Xi and Rin) or (Yi and Rin);

end

Modular Compilation of a Synchronous Language

Conclusion and Future Work

Future Work

Causality Problem Illustration

 ||

 }

module first:

Output: O1,O2;
loop {
 pause >>

 present I1 {emit O1}

 present I2 {emit O2}

end

 {

Input: I1,I2; Output: O3;

module second:
Input: I3;

loop {
 pause >> present I3 {emit O3}
}
end

Output O;
local L1,L2 {

 ||
 run second[L1\I3,L2\O3]
}
end

 run first[L2\I1,O\O1,I\I2,L1\O2]

module final:
Input: I;

O1 = I1
O2 = I2

O = L2
L1 = I

L2 = L1

O3 = I3

O1

I1 O3

I3O2

I2
normal evaluation

way

L1 = I
L2 = L1
O = L2

Modular Compilation of a Synchronous Language

Conclusion and Future Work

Future Work

Causality Problem Illustration

 ||

 }

module first:

Output: O1,O2;
loop {
 pause >>

 present I1 {emit O1}

 present I2 {emit O2}

end

 {

Input: I1,I2; Output: O3;

module second:
Input: I3;

loop {
 pause >> present I3 {emit O3}
}
end

Output O;
local L1,L2 {

 ||
 run second[L1\I3,L2\O3]
}
end

 run first[L2\I1,O\O1,I\I2,L1\O2]

module final:
Input: I;

O1 = I1
O2 = I2

O = L2
L1 = I

L2 = L1

O3 = I3

O2

I2

O1

I1 O3

I3
wrong causality

cycle

L2 = L1
O = L2
L1 = I

	Introduction
	LE Language
	LE Language Overview
	LE Equational Semantic
	Correctness of the Equational Semantic

	LE Modular Compilation
	Sorting Algorithm
	Link of Two Partial Orders

	Practical Issues
	Effective Compilation
	The Clem Toolkit

	Conclusion and Future Work
	Conclusion
	Future Work

