Modular Compilation of a Synchronous Language

Annie Ressouche¹ and Daniel Gaffé² and Valérie Roy³

¹Inria Sophia-Antipolis Méditerranée

²Nice Sophia Antipolis University and CNRS(LEAT)

³Ecole des Mines-CMA

SERA 2008

- + Synchronous languages are model-driven ⇒
 - Efficiency and reusability of system design
 - Formal verification of system behavior
- Large size of models Modular compilation

- + Synchronous languages are model-driven ⇒
 - Efficiency and reusability of system design
 - Formal verification of system behavior
- Large size of models Modular compilation

- + Synchronous languages are model-driven ⇒
 - Efficiency and reusability of system design
 - Formal verification of system behavior
- Large size of models

Modular compilation

- + Synchronous languages are model-driven ⇒
 - Efficiency and reusability of system design
 - Formal verification of system behavior
- Large size of models
- Modular compilation

- + Synchronous languages are model-driven ⇒
 - Efficiency and reusability of system design
 - Formal verification of system behavior
- Large size of models
- Modular compilation

model-driven + modularity \implies global causality checking

- ullet synchronous hypothesis \Longrightarrow responsiveness.
- modularity
- global causality checking

- + Synchronous languages are model-driven ⇒
 - Efficiency and reusability of system design
 - Formal verification of system behavior
- Large size of models
- Modular compilation

We introduce:

- an equational semantic allowing modular compilation
- an efficient way to check causality
- a synchronous language LE

Outline

- Introduction
- 2 LE Language
 - LE Language Overview
 - LE Equational Semantic
 - Correctness of the Equational Semantic
- 3 LE Modular Compilation
 - Sorting Algorithm
 - Link of Two Partial Orders
- Practical Issues
 - Effective Compilation
 - The Clem Toolkit
- Conclusion and Future Work
 - Conclusion
 - Future Work

- Event driven application design
 - synchronous parallel
 - Run module operator to achieve separated compilation
- 2 Automata (State Chart like) design
- Oata flow application design

- Event driven application design
 - synchronous parallel
 - Run module operator to achieve separated compilation
- 2 Automata (State Chart like) design
- Oata flow application design

- Event driven application design
 - synchronous parallel
 - Run module operator to achieve separated compilation
- Automata (State Chart like) design
- Oata flow application design

- Event driven application design
 - synchronous parallel
 - Run module operator to achieve separated compilation
- Automata (State Chart like) design
- Oata flow application design

LE Equational Semantic

Mathematical Context

- ullet $\xi = \{\bot, 1, 0, \top\}$;
- notion of environment (E, \preceq)

Mathematical Context

- $\xi = \{\bot, 1, 0, \top\}$;
- notion of environment (E, \leq)

- W : wires; R : registers; S : signals (input, output, locals)
- ullet $\mathcal{C}=_{def}\xi$ equation system
- $p \longrightarrow \mathcal{C}(p)$ with 3 wires :
 - Set_p: control flow propagation
 - Reset_p: reinitialisation flow propagation

 - 4
- $E \vdash w \hookrightarrow bb$: a constructive propagation law

Mathematical Context

- $\xi = \{\bot, 1, 0, \top\}$;
- notion of environment (E, \leq)

- W: wires; R: registers; S: signals (input, output, locals)
- \bullet $\mathcal{C} =_{def} \xi$ equation system
- $p \longrightarrow \mathcal{C}(p)$ with 3 wires :
 - Set_p: control flow propagation
 - 2 Reset_p: reinitialisation flow propagation

 - 4
- $E \vdash w \hookrightarrow bb$: a constructive propagation law

LE Equational Semantic

Mathematical Context

- $\xi = \{\bot, 1, 0, \top\}$;
- notion of environment (E, ≤)

- W: wires; R: registers; S: signals (input, output, locals)
- $\mathcal{C} =_{def} \xi$ equation system
- $p \longrightarrow \mathcal{C}(p)$ with 3 wires :
 - \bullet Set_p: control flow propagation
 - 2 $Reset_p$: reinitialisation flow propagation
 - \odot RTL_p: ready to leave
 - **4** ACTIVE: register (for some instruction only)
- $E \vdash w \hookrightarrow bb$: a constructive propagation law

Mathematical Context

- $\xi = \{\bot, 1, 0, \top\}$;
- notion of environment (E, ≤)

- W: wires; R: registers; S: signals (input, output, locals)
- $\mathcal{C} =_{def} \xi$ equation system
- $p \longrightarrow \mathcal{C}(p)$ with 3 wires :
 - \bullet Set_p: control flow propagation
 - 2 $Reset_p$: reinitialisation flow propagation
 - \odot RTL_p: ready to leave
 - **4** ACTIVE: register (for some instruction only)
- $E \vdash w \hookrightarrow bb$: a constructive propagation law

Equational Semantic Definition

- p a LE statement, E: an environment $S_e(p, E) = E'$ iff $E \vdash C(p) \hookrightarrow E'$. (notation: $\langle p \rangle_E$)
- P:LE program. $(P, E) \longmapsto E'$ iff $S_e(\Gamma(P), E) = E'$, where $\Gamma(P)$ is the LE statement body of program P

Equational Semantic Definition

- p a LE statement, E: an environment $S_e(p, E) = E'$ iff $E \vdash C(p) \hookrightarrow E'$. (notation: $\langle p \rangle_E$)
- P:LE program. $(P, E) \longmapsto E'$ iff $S_e(\Gamma(P), E) = E'$, where $\Gamma(P)$ is the LE statement body of program P

Parallel Operator $(P_1||P_2)$ Circuit Definition

$$C(P_1 || P_2) = C(P_1) \cup C(P_2) \cup C_{P_1 || P_2}$$

$$C_{P_1 || P_2} = \begin{cases} Set_{P_1} = & Set_{P_1 || P_2} \\ Set_{P_2} = & Set_{P_1 || P_2} \\ Reset_{P_1} = & Reset_{P_1 || P_2} \\ Reset_{P_2} = & Reset_{P_1 || P_2} \\ ACTIVE_1^+ = & (RTL_{P_1} \sqcup ACTIVE_1) \sqcap \neg Reset_{P_1 || P_2} \\ ACTIVE_2^+ = & (RTL_{P_2} \sqcup ACTIVE_2) \sqcap \neg Reset_{P_1 || P_2} \\ RTL_{P_1 || P_2} = & (RTL_{P_1} \sqcup ACTIVE_1) \sqcap (RTL_{P_2} \sqcup ACTIVE_2) \end{cases}$$

Parallel Operator $(P_1||P_2)$ Semantic Computation

$$\langle P_1 \rangle_{\mathcal{E}} \sqcup \langle P_2 \rangle_{\mathcal{E}} \vdash \mathcal{C}(P_1 || P_2) \hookrightarrow \langle P_1 || P_2 \rangle_{\mathcal{E}}$$

Correctness of the Equational Semantic

Behavioral Semantic

P program, E input environment, E' output environment :

Rule-based specification : $p \xrightarrow{E', TERM} p'$

$$(P,E)\longmapsto (P',E') \quad \text{ iff } \quad \Gamma(P)\xrightarrow{E',\ TERM} \Gamma(P')$$

Behavioral Semantic

P program, E input environment, E' output environment :

Rule-based specification : $p \xrightarrow{E', TERM} p'$

$$(P,E)\longmapsto (P',E') \quad \text{ iff } \quad \Gamma(P)\xrightarrow{E',\ TERM} \Gamma(P')$$

Theorem

Let P be a LE statement, O its output signal set, and $E_{\mathcal{C}}$ an input environment, the following property holds :

$$P \xrightarrow{E', \mathrm{RTL}_P} P' \text{ and } \langle P \rangle_{E_{\mathcal{C}}}|_O = E'|_O$$
 where $E = \{S^x | S^x \in E_{\mathcal{C}} \text{ and } S \notin W \cup R\}.$

- Equational semantic offers a means to compile LE programs.
- Behavioral semantic ensures model-checking techniques apply.

Causality Checking

- Problem : the composition of 2 causal systems may introduce causality cycle
- Solution : preserve signal independance

Sorting Algorithm: a PERT family $a = x \sqcup y$ $b = x \sqcup not y$ $c = a \sqcup t$ $d = a \sqcup c$ $e = a \sqcup t$ $d \to c \to a \to x$ $b \to y$ $d \to c \to a \to x$ $x \to a \to c \leftarrow d$

Upstream

dependencies

Downstream

dependencies

Can Date and Must Date

Link of Two Partial Orders

Partial Orders Link

$$A \qquad B$$

$$a = x \sqcup y$$

$$b = x \sqcup not y \qquad y = m$$

$$c = a \sqcup t \qquad z = a$$

$$d = a \sqcup c \qquad v = w$$

$$e = a \sqcup t$$

A:
$$a$$
 b c d e x y t $(1,1)$ $(1,3)$ $(2,2)$ $(3,3)$ $(2,3)$ $(0,0)$ $(0,0)$ $(0,1)$

B: $a \quad m \quad v \quad w \quad y \quad z$ (0,0) (0,0) (1,1) (0,0) (1,1) (1,1) LE Modular Compilation

Link of Two Partial Orders

A:
$$a$$
 b c d e x y t $(1,1)$ $(1,3)$ $(2,2)$ $(3,3)$ $(2,3)$ $(0,0)$ $(0,0)$ $(0,1)$

B:
$$a \quad m \quad v \quad w \quad y \quad z$$

(0,0) (0,0) (1,1) (0,0) (1,1) (1,1)

Dates Propagation b d С е Χ (1,3)(2,2) $\Delta_c(a)$: (1,1)(3,3)(2,3)(0,0)(1,1) $\Delta_m(a)$: (1,1) (1,3)(2,2)(3,3)(2,3)(0,0)(1,1) $\Delta_c(y)$: (2,2) (2,4) (3,3) (4,4)(3, 4)(0,0)(1, 1) $\Delta_m(y)$: (2,2) (2,4)(3,3)(4,4)(3,4)(0,0)(1,1)t m V W z $\Delta_c(a)$: (0,0)(1,1)(0,0)(2,2)(0,1) $\Delta_m(a)$: (0,1)(0,0)(1,1)(0,0)(2,2) $\Delta_c(y): (0,1)$ (0,0)(1,1) (0,0)(3,3) $\Delta_m(y)$: (0,1)(0,0)(1,1) (0,0)(3,3)

Two Valid Sorts

- **1** P is associated with a ξ equation system $(\mathcal{C}(P))$
- $2 \xi \longrightarrow \mathcal{B}$ (BDD implementation)
- \odot compilation = \hookrightarrow propagation law implementation
- separated compilation relies on LEC internal format

- **1** P is associated with a ξ equation system $(\mathcal{C}(P))$
- $2 \xi \longrightarrow \mathcal{B}$ (BDD implementation)
- 3 compilation = \hookrightarrow propagation law implementation
- separated compilation relies on LEC internal format

- **1** P is associated with a ξ equation system $(\mathcal{C}(P))$
- $2 \xi \longrightarrow \mathcal{B}$ (BDD implementation)
- \odot compilation = \hookrightarrow propagation law implementation
- separated compilation relies on LEC internal format

- P is associated with a ξ equation system $(\mathcal{C}(P))$
- $2 \xi \longrightarrow \mathcal{B}$ (BDD implementation)
- \odot compilation = \hookrightarrow propagation law implementation
- separated compilation relies on LEC internal format

The Clem Toolkit

CLEM Toolkit://http://www.inria.fr/sophia/pulsar/projects/Clem automaton editor (Galaxy) imperative data flow LE generated code LE textual codes LE textual codes already compiled LEC CLEM COMPILER and LINKER Verification LEC file NuSMV **Finalization** simulation hardware software software **TARGETS** formal proofs descriptions codes models Esterel, Lustre Vhdl Blif

Conclusion

- 1 LE language with 2 semantics :
 - the equational semantic offers separated compilation means
- ② We define the CLEM toolkit around LE language modular compilation

Conclusion

- LE language with 2 semantics :
 - the equational semantic offers separated compilation means
 - the behavioral semantic allows NuSMV model-checker usage
- We define the CLEM toolkit around LE language modular compilation

Conclusion

- LE language with 2 semantics :
 - the equational semantic offers separated compilation means
 - the behavioral semantic allows NuSMV model-checker usage
- We define the CLEM toolkit around LE language modular compilation

Conclusion

- LE language with 2 semantics :
 - the equational semantic offers separated compilation means
 - the behavioral semantic allows NuSMV model-checker usage
- We define the CLEM toolkit around LE language modular compilation

- 1 large industrial application development
- 2 extension of LE to deal with data:
 - language improvement
 - semantics extension
 - rely on Abstract Interpretation methods (like polyhedron intersection) to still apply model-checking techniques
- 3 improve LE verification :
 - provide facilities to define safety properties as observers.
 - prove that modular and "assume-guarantee" model-checking techniques apply

- 1 large industrial application development
- 2 extension of LE to deal with data:
 - language improvement
 - semantics extension
 - rely on Abstract Interpretation methods (like polyhedron intersection) to still apply model-checking techniques
- improve LE verification :
 - provide facilities to define safety properties as observers.
 - prove that modular and "assume-guarantee" model-checking techniques apply

- 1 large industrial application development
- 2 extension of LE to deal with data :
 - language improvement
 - semantics extension
 - rely on Abstract Interpretation methods (like polyhedron intersection) to still apply model-checking techniques
- improve LE verification :
 - provide facilities to define safety properties as observers.
 - prove that modular and "assume-guarantee" model-checking techniques apply

- 1 large industrial application development
- 2 extension of LE to deal with data :
 - language improvement
 - semantics extension
 - rely on Abstract Interpretation methods (like polyhedron intersection) to still apply model-checking techniques
- improve LE verification :
 - provide facilities to define safety properties as observers.
 - prove that modular and "assume-guarantee" model-checking techniques apply

$$E \vdash bb \hookrightarrow bb$$

$$\frac{E(w) = bb}{E \vdash w \hookrightarrow bb}$$

$$\frac{E \vdash e \hookrightarrow bb}{E \vdash (w = e) \hookrightarrow bb} \qquad \frac{E \vdash e \hookrightarrow \neg bb}{E \vdash \neg e \hookrightarrow bb}$$

$$\frac{E \vdash e \hookrightarrow \top \text{ or } E \vdash e' \hookrightarrow \top}{E \vdash e \sqcup e' \hookrightarrow \top}$$

$$\frac{E \vdash e \hookrightarrow \bot \text{ or } E \vdash e' \hookrightarrow \bot}{E \vdash e \sqcap e' \hookrightarrow \bot}$$

$$\frac{E \vdash e \hookrightarrow 1[0] \text{ and } E \vdash e' \hookrightarrow 0[1]}{E \vdash e \sqcup e' \hookrightarrow \top \text{ and } E \vdash e \sqcap e' \hookrightarrow \bot}$$

$$\frac{\textit{E} \vdash \textit{e} \hookrightarrow \texttt{1}[\bot] \text{ and } \textit{E} \vdash \textit{e}' \hookrightarrow \bot[\texttt{1}]}{\textit{E} \vdash \textit{e} \sqcup \textit{e}' \hookrightarrow \texttt{1} \text{ and } \textit{E} \vdash \textit{e} \sqcap \textit{e}' \hookrightarrow \bot}$$

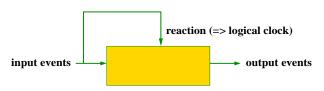
$$\frac{E \vdash e \hookrightarrow 0[\bot] \text{ and } E \vdash e' \hookrightarrow \bot[0]}{E \vdash e \sqcup e' \hookrightarrow 0}$$

$$\frac{E \vdash e \hookrightarrow 0[\top] \text{ and } E \vdash e' \hookrightarrow \top[0]}{E \vdash e \sqcap e' \hookrightarrow 0}$$

$$\frac{E \vdash e \hookrightarrow x \text{ and } E \vdash e' \hookrightarrow x(x = \bot, 0, 1, \top)}{E \vdash e \sqcup e' \hookrightarrow x \text{ and } E \vdash e \sqcap e' \hookrightarrow x} \qquad \frac{E \vdash e \hookrightarrow 1[T] \text{ and } E \vdash e' \hookrightarrow T[1]}{E \vdash e \sqcap e' \hookrightarrow 1}$$

$$\frac{E \vdash e \hookrightarrow 1[T] \text{ and } E \vdash e' \hookrightarrow T[1]}{E \vdash e \sqcap e' \hookrightarrow 1}$$

Synchronous languages rely on the Synchronous hypothesis



Synchronous Hypothesis

Model of event driven systems

- Broadcasting of events (non blocking communication)
- Reaction is atomic: input and resulting output events are simultaneous
- Succession of reactions ⇒ logical time
- Synchronous systems are deterministic

Event driven Application Design

Event driven Application Design

LE Operators

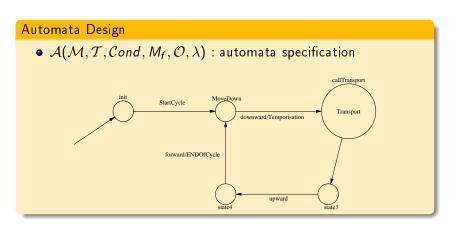
- emit speed
- present S { P1} else { P2}
- ullet $P_1\gg P_2$: perform P_1 then P_2
- \bullet $P_1 || P_2$: synchronous parallel: start P_1 and P_2 simultaneously and stop when both have terminated
- abort P when S : perform P until S presence
- loop {P}
- local $S \{P\}$: encapsulation, the scope of S is restricted to P
- Run M : call of module M
- pause: stop until the next reaction
- \bullet wait S: stop until the next reaction in which S is present

LE Program Example

```
module R2WIEO:
Input: IO, I1;
Output: 00,01;
Run:"/home/ar/GnuStrl/CLEM_SRC/TEST/" : WIEO;
{
  run WIEO[IO \ i, 00 \ o] || run WIEO[I1 \ i, 01 \ o]
end
module WIEO :
Input: i;
Output: o;
wait i >> emit o
end
```

State Chart like Design

State Chart like Design



Data flow application Design

Data flow application Design

Equation Design

```
• E(I,O,R,D): equation system definition
module ADDMM:
Input: Xi,Yi,Rin;
Output: Si, Rout;

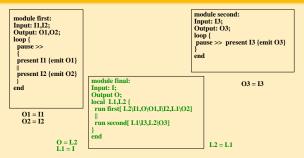
Mealy Machine

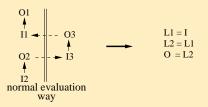
Si = (Xi xor Yi) xor Rin;
Rout = (Xi and Yi) or (Xi and Rin) or (Yi and Rin);
end

end

end
```

Causality Problem Illustration





Tutule Work

Causality Problem Illustration

