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Introduction

Motivation

+ Synchronous languages are model-driven =⇒
E�ciency and reusability of system design

Formal veri�cation of system behavior

- Large size of models
Modular compilation

model-driven + modularity =⇒ global causality checking

synchronous hypothesis =⇒ responsiveness.

modularity

global causality checking
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Introduction

Motivation

+ Synchronous languages are model-driven =⇒
E�ciency and reusability of system design

Formal veri�cation of system behavior

- Large size of models
Modular compilation

We introduce :

an equational semantic allowing modular compilation

an e�cient way to check causality

a synchronous language LE
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ξ = {⊥, 1, 0,>} ;
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Notion of Circuit
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C =def ξ equation system
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1 Setp : control �ow propagation
2 Resetp : reinitialisation �ow propagation
3 RTLp : ready to leave
4 ACTIVE : register (for some instruction only)

E ` w ↪→ bb : a constructive propagation law
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statement body of program P
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LE Language

LE Equational Semantic

Parallel Operator(P1‖P2) Circuit De�nition

C(P1‖P2) = C(P1) ∪ C(P2) ∪ CP1‖P2

CP1‖P2 =

8>>>>>>>><>>>>>>>>:

SetP1 = SetP1‖P2
SetP2 = SetP1‖P2
ResetP1 = ResetP1‖P2
ResetP2 = ResetP1‖P2
ACTIVE1

+ = (RTLP1 tACTIVE1) u ¬ResetP1‖P2
ACTIVE2

+ = (RTLP2 tACTIVE2) u ¬ResetP1‖P2
RTLP1‖P2 = (RTLP1 tACTIVE1) u (RTLP2 tACTIVE2)

9>>>>>>>>=>>>>>>>>;
Parallel Operator(P1‖P2) Semantic Computation

〈P1〉E t 〈P2〉E ` C(P1‖P2) ↪→ 〈P1‖P2〉E
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Rule-based speci�cation : p
E

′,TERM−−−−−−→
E

p′

(P,E) 7−→ (P ′,E ′) i� Γ(P)
E

′, TERM−−−−−−→
E

Γ(P ′)
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LE Language

Correctness of the Equational Semantic

Behavioral Semantic

P program, E input environment,E ′ output environment :

Rule-based speci�cation : p
E

′,TERM−−−−−−→
E

p′

(P,E) 7−→ (P ′,E ′) i� Γ(P)
E

′, TERM−−−−−−→
E

Γ(P ′)

Theorem

Let P be a LE statement, O its output signal set, and EC an input
environment, the following property holds :

P
E ′,RTLP−−−−−→

E
P ′ and 〈P〉

EC
|O = E ′|O

where E = {Sx |Sx ∈ EC and S /∈W ∪ R}.

• Equational semantic o�ers a means to compile LE programs.
• Behavioral semantic ensures model-checking techniques apply.
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LE Modular Compilation

Sorting Algorithm

Causality Checking

Problem : the composition of 2 causal systems may introduce
causality cycle

Solution : preserve signal independance
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LE Modular Compilation

Sorting Algorithm

Sorting Algorithm : a PERT family

a = x t y
b = x t not y
c = a t t
d = a t c
e = a t t

ca

y

x d

b

et

c a x

b y

te

d

dependencies
Upstream

dependencies
Downstream

3      2      1       0           0      1       2      3
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LE Modular Compilation

Sorting Algorithm

CanDate and MustDate

a b c d e x y t
(1, 1) (1, 3) (2, 2) (3, 3) (2, 3) (0, 0) (0, 0) (0, 1)
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LE Modular Compilation

Link of Two Partial Orders

Partial Orders Link

A B

a = x t y
b = x t not y
c = a t t
d = a t c
e = a t t

y = m
z = a
v = w

A : a b c d e x y t
(1, 1) (1, 3) (2, 2) (3, 3) (2, 3) (0, 0) (0, 0) (0, 1)

B : a m v w y z
(0, 0) (0, 0) (1, 1) (0, 0) (1, 1) (1, 1)

Common variables : a y
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LE Modular Compilation

Link of Two Partial Orders

A : a b c d e x y t
(1, 1) (1, 3) (2, 2) (3, 3) (2, 3) (0, 0) (0, 0) (0, 1)

B : a m v w y z
(0, 0) (0, 0) (1, 1) (0, 0) (1, 1) (1, 1)

Dates Propagation

a b c d e x y
∆c(a) : (1, 1) (1, 3) (2, 2) (3, 3) (2, 3) (0, 0) (1, 1)
∆m(a) : (1, 1) (1, 3) (2, 2) (3, 3) (2, 3) (0, 0) (1, 1)
∆c(y) : (2, 2) (2, 4) (3, 3) (4, 4) (3, 4) (0, 0) (1, 1)
∆m(y) : (2, 2) (2, 4) (3, 3) (4, 4) (3, 4) (0, 0) (1, 1)

t m v w z
∆c(a) : (0, 1) (0, 0) (1, 1) (0, 0) (2, 2)
∆m(a) : (0, 1) (0, 0) (1, 1) (0, 0) (2, 2)
∆c(y) : (0, 1) (0, 0) (1, 1) (0, 0) (3, 3)
∆m(y) : (0, 1) (0, 0) (1, 1) (0, 0) (3, 3)
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LE Modular Compilation

Link of Two Partial Orders

a b c d e x y t m v w z

(2, 2) (2, 4) (3, 3) (4, 4) (3, 4) (0, 0) (1, 1) (0, 1) (0, 0) (1, 1) (0, 0) (3, 3)

Two Valid Sorts

0 : m x v t
1 : y = m

v = w
2 : b = x t not y

a = x t y
3 : c = a t t

z = a
e = a t t

4 : d = a t c

0 : m x v t
1 : y = m

v = w
2 : a = x t y
3 : c = a t t

z = a
4 : b = x t not y

e = a t t
d = a t c

sorting − 1 sorting − 2
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4 separated compilation relies on LEC internal format
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Practical Issues

The Clem Toolkit

CLEM Toolkit ://http :www.inria.fr/sophia/pulsar/projects/Clem

simulation softwarehardware
codesdescriptionsformal proofs

software
models

LE textual codes

LEC file 

already compiled LEC 

Verification

C Esterel,LustreBlif Vhdl

automaton
editor 

LE generated code

COMPILER and LINKER

TARGETS

NuSMV

CLEM

Finalization

(Galaxy)

imperative
LE textual codes

data flow
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Conclusion
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the behavioral semantic allows NuSMV model-checker usage

2 We de�ne the CLEM toolkit around LE language modular
compilation



Modular Compilation of a Synchronous Language

Conclusion and Future Work

Conclusion

Conclusion

1 LE language with 2 semantics :

the equational semantic o�ers separated compilation means
the behavioral semantic allows NuSMV model-checker usage

2 We de�ne the CLEM toolkit around LE language modular
compilation



Modular Compilation of a Synchronous Language

Conclusion and Future Work

Conclusion

Conclusion

1 LE language with 2 semantics :

the equational semantic o�ers separated compilation means
the behavioral semantic allows NuSMV model-checker usage

2 We de�ne the CLEM toolkit around LE language modular
compilation



Modular Compilation of a Synchronous Language

Conclusion and Future Work

Conclusion

Conclusion

1 LE language with 2 semantics :

the equational semantic o�ers separated compilation means
the behavioral semantic allows NuSMV model-checker usage

2 We de�ne the CLEM toolkit around LE language modular
compilation



Modular Compilation of a Synchronous Language

Conclusion and Future Work

Future Work

Future Work
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2 extension of LE to deal with data :

language improvement
semantics extension
rely on Abstract Interpretation methods (like polyhedron
intersection) to still apply model-checking techniques

3 improve LE veri�cation :

provide facilities to de�ne safety properties as observers.
prove that modular and �assume-guarantee� model-checking
techniques apply
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Conclusion and Future Work

Future Work

E ` bb ↪→ bb E (w) = bb

E ` w ↪→ bb

E ` e ↪→ bb

E ` (w = e) ↪→ bb

E ` e ↪→ ¬bb
E ` ¬e ↪→ bb
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Conclusion and Future Work

Future Work

E ` e ↪→ > or E ` e′ ↪→ >
E ` e t e′ ↪→ > E ` e ↪→ ⊥ or E ` e′ ↪→ ⊥

E ` e u e′ ↪→ ⊥

E ` e ↪→ 1[0] and E ` e′ ↪→ 0[1]

E ` e t e′ ↪→ > and E ` e u e′ ↪→ ⊥
E ` e ↪→ 1[⊥] and E ` e′ ↪→ ⊥[1]

E ` e t e′ ↪→ 1 and E ` e u e′ ↪→ ⊥

E ` e ↪→ 0[⊥] and E ` e′ ↪→ ⊥[0]

E ` e t e′ ↪→ 0

E ` e ↪→ 0[>] and E ` e′ ↪→ >[0]

E ` e u e′ ↪→ 0

E ` e ↪→ x and E ` e′ ↪→ x(x = ⊥, 0, 1,>)

E ` e t e′ ↪→ x and E ` e u e′ ↪→ x

E ` e ↪→ 1[T ] and E ` e′ ↪→ T [1]

E ` e u e′ ↪→ 1
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Conclusion and Future Work

Future Work

Synchronous languages rely on the Synchronous hypothesis

output eventsinput events

reaction (=> logical clock)

Synchronous Hypothesis

Model of event driven systems

Broadcasting of events (non blocking communication)

Reaction is atomic : input and resulting output events are
simultaneous

Succession of reactions =⇒ logical time

Synchronous systems are deterministic
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Future Work

Event driven Application Design

LE Operators

emit speed

present S { P1} else { P2}

P1 � P2 : perform P1 then P2

P1‖P2 : synchronous parallel : start P1 and P2 simultaneously
and stop when both have terminated

abort P when S : perform P until S presence

loop {P}
local S {P} : encapsulation, the scope of S is restricted to P

Run M : call of module M

pause : stop until the next reaction

wait S : stop until the next reaction in which S is present
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Conclusion and Future Work

Future Work

LE Program Example

module R2WIEO :

Input: I0,I1;

Output: O0,O1;

Run:"/home/ar/GnuStrl/CLEM_SRC/TEST/" : WIEO;

{

run WIEO[I0 \ i, O0 \ o] || run WIEO[I1 \ i, O1 \ o]

}

end

module WIEO :

Input: i;

Output: o;

wait i >> emit o

end
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Conclusion and Future Work

Future Work

State Chart like Design

Automata Design

A(M, T , Cond ,Mf ,O, λ) : automata speci�cation

init

callTransport

Transport

StartCycle

upward

forward/ENDOfCycle

downward/Temporisation

MoveDown

state4 state3
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Future Work
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Future Work

Data �ow application Design

Equation Design

E(I,O,R,D) : equation system de�nition

module ADDMM:

Input: Xi,Yi,Rin;

Output: Si, Rout;

Mealy Machine

Si = (Xi xor Yi) xor Rin;

Rout = (Xi and Yi) or (Xi and Rin) or (Yi and Rin);

end
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Conclusion and Future Work

Future Work

Causality Problem Illustration

  ||

  } 

module first:

Output: O1,O2;
loop { 
  pause >> 

  present I1 {emit O1} 

  present I2 {emit O2}

end 

  {        

Input: I1,I2; Output: O3;

module second:
Input: I3;

loop {
 pause >>  present I3 {emit O3}
}
end  

Output O;
local  L1,L2 {

  ||
  run second[ L1\I3,L2\O3]
}
end 

  run first[ L2\I1,O\O1,I\I2,L1\O2]

module final:
Input: I; 

O1 = I1
O2 = I2

O = L2
L1 = I

L2 = L1

O3 = I3

O1

I1 O3

I3O2

I2
normal evaluation

way

L1 = I
L2 = L1
O  = L2
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Future Work

Causality Problem Illustration

  ||

  } 

module first:

Output: O1,O2;
loop { 
  pause >> 

  present I1 {emit O1} 

  present I2 {emit O2}

end 

  {        

Input: I1,I2; Output: O3;

module second:
Input: I3;

loop {
 pause >>  present I3 {emit O3}
}
end  

Output O;
local  L1,L2 {

  ||
  run second[ L1\I3,L2\O3]
}
end 

  run first[ L2\I1,O\O1,I\I2,L1\O2]

module final:
Input: I; 

O1 = I1
O2 = I2

O = L2
L1 = I

L2 = L1

O3 = I3

O2

I2

O1

I1 O3

I3
wrong causality

cycle

L2 = L1
O  = L2
L1 = I
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