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i Critical Software

a Roughly speaking a critical system is a
system whose failure could have serious
consequences

o Nuclear technology

o Transportation
QAutomotive
aTrain
2 Avionics
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i Critical Software (2)

o In addition , other consequences are
relevant to determine the critical aspect of
a software:
QFinancial aspect

= Loosing of equipment, bug correction
= Equipment callback (automotive)

QBad advertising
= Intel famous bug
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* How Develop critical software ?

Classical Development V Cycle

investigation [tests of ntegrated system A1 11200
Investigation in laboratory

\ in operation

1
‘specification tests black box validation

\ /
-—_
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‘L How Develop Critical Software ?

a Cost of critical software development:
= Specification : 10%
= Design: 10%
= Development: 25%

= Integration tests: 5%
= Validation: 50%

o Fact:

QEarlier an error is detected, more expensive its
correction is.
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Cost of Error Correction

cost of
error
correction

n
»

. _.7 error detection time

f ey -t

Put the effort on the upstream phase

Synchronous Languages
10/01/2012 Introdution



i How Develop Critical Software ?

a Goals of critical software specification:

1 Define application needs
= = specific domain engineers

2 Allowing application development
= Coherency
= Completeness

2 Allowing application functional validation
= Express properties to be validated

— Formal models usage
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i Critical software specification

o First Goal: must yield a formal description
of the application needs:

aStandard to allowing communication between
computer science engineers and non computer
science ones

2 General enough to allow different kinds of
application:
= Synchronous (and/or)
= Asynchronous (and/or)
= Algorithmic
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i Example of bad understanding

Nasa lost a $125 million Mars Orbiter
because one engineering team used
metric units while another used
English metrics for a key spacecraft
operation

s : =4
e W s

] ] ] sa cimate |
For that reason, information failed orbiter was lost
September 23,

to transfer between the Mars 1999

Climate Orbiter spacecraft team in
Colorado and the mission
navigation team in California
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i Critical software specification

a Second Goal: allowing errors detection
carried out upstream:
2 Validation of the specification:
= Coherency

= Completeness
= Proofs

QTest
= Quick prototype development
= Specification simulation
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i Example of non completeness

From Ariane 5:

Simultaneous
helium tank | events ? hydrogen tank
low low

I ! I
 action 2  action 2
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i Critical Software Specification (3)

a Third goal: make easier the transition from
specification to design (refinement)
dReuse of specification simulation tests
dFormalization of design

0 Code generation
= Sequential/distributed
= Toward a target language
= Embedded/qualified code
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Relying on Formal Methods

test reuse
test coverage
test generation

simulation
proofs
no more
automatic code integration tests
generation
abstract
interpretation
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+

Synchronous Languages Verification
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Critical Software Validation

hat is a correct software?

aNo execution errors, time constraints
respected, compliance of results.

o Solutions:

At model level :
= Simulation
= Formal proofs
QAt implementation level:
= Test
= Abstract interpretation

d
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Validation Methods

o Testing

2 Run the program on set of inputs and check
the results

a Static Analysis

dExamine the source code to increase
confidence that it works as intended

o Formal Verification

2 Argue formally that the application always
works as intended
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i Testing

a Dynamic verification process applied at
implementation level.

o Feed the system (or one if its components)
with a set of input data values:

2 Input data set not too large to avoid huge time
testing procedure.

dMaximal coverage of different cases required.
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* Testing (2)

Program Testing

executions tested ok / "Testing only highlights
_ bugs but not ensure their
all program executions absence " (E. Dijkstra)
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i Static Analysis

a The aim of static analysis is to search for
errors without running the program.

a Abstract interpretation = replace data of
the program by an abstraction in order to
be able to compute program properties.

o Abstraction must ensure :
= % (P) “correct” = P correct

= But & (P) “incorrect” = ?
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‘L Static Analysis: example

abstraction: integer by intervals

1: x:=1; x1 = [1,1]
2: while (x < 1000) { ) "2 = X1 UX3 N [, 999]
31 X:=Xx+1; X3 =x2® [1,1]

4.
} x4 =x1 U x3 N [1000, «<]

Abstract interpretation theory = values are fix
point equation solutions.
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i Formal verification

a What about functional validation ?
2 Does the program compute the expected
outputs?
dRespect of time constraints (temporal
properties)
QO Intuitive partition of temporal properties:

= Safety properties: something bad never happens

= | iveness properties: something good eventually
happens
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i Safety and Liveness Properties

o Example: the beacon counter in a train:

2 Count the difference between beacons and
seconds

aDecide when the train is ontime, late, early

node train (sec, bea : bool) returns (ontime, early, late: bool)
let
diff = (0 ->pre diff) + (if bea then 1 else 0) + (if sec then -1 else 0);
early = (true -> pre ontime) and (diff > 3) or
(false -> pre early) and (diff > 1);
late = (true -> pre ontime) and (diff < -3) or
(false -> pre late) and (diff < -1);
ontime = not (early or late);
tel
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Safety and Liveness Properties

o Some properties:
1. It is impossible to be late and early;
2. It is impossible to directly pass from late to

early;
It is impossible to remain late only one instant;
4. If the train stops, it will get late

a Properties 1, 2, 3 : safety
o Property 4 : liveness

It refers to unbound future
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Checking

i Safety and Liveness Properties

o Use of model checking techniques

o Model checking goal: prove safety and
liveness properties of a system in analyzing
a model of the system.

o Model checking techniques require:
2 model of the system
d express properties

2 algorithm to check properties on the model (=
decidability)
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Model Checking Techniques

o Model = automata which is the set of
program behaviors

a Properties expression = temporal logic:
a LTL : liveness properties
2 CTL: safety properties

a Algorithm =

2 LTL : algorithm exponential wrt the formula
size and linear wrt automata size.

QCTL: algorithm linear wrt formula size and wrt

aUtomata SIZ€ Synchronous Languages
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i Properties Checking

a Liveness Property @
0 ® = automata B(®d)
0 L(B(®)) = & décidable
QD |=M : LM QB(~D)) =0
o Scade allows only to verify safety

properties, thus we will study such
properties verification techniques.

Synchronous Languages
10/01/2012 Introdution



i Safety Properties

o CTL formula characterization:
aAtomic formulas
aUsual logic operators: not, and, or (=)

2 Specific temporal operators:
 EX @, EF @, EG &
= AX @, AF &, AG &
- EU(D, ,D,), AU(D, ,D>)
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i Safety Properties Verification (1)

o Mathematical framework:

2 S : finite state, (#(S), <) is a complete lattice
with S as greater element and & as least one.

af: P(S) - P(S):
= f is monotonic iff ¥ X,y € #(S), x c y = f(x) < f(y)

= f is n-continue iff for each decreasing sequence
f(nx) = A 1(x)

= fis u-continue iff for each increasing sequence
flu x) = v f(x)
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i Safety Properties Verification (2)

o Mathematical framework:

Qif S is finite then monotonic = ~-continue et
w-continue.

o X is a fix point iff of fiff f(x) = x
ax is a least fix point (Ifp) iff Yy such that

fly) =y, xcy
QX is a greatest fix point (gfp) iff Yy such that
fly) =y, ycx
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i Safety Properties Verification (3)

a Theorem:

2f monotonic = f has a Ifp (resp glp)
a Ifp(f) = v N(D)
a gfp(f) = n (S)

Fixpoints are limits of approximations
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i Safety Properties Verification (4)

a We call Sat() the set of states where & is
true.

1 M= @ iffs., e Sat(D).

a Algorithm:
=Sat(®d) ={s| D |=5s}
= Sat(not @) = S\Sat(d)
= Sat(d1 or ®2) = Sat(d1) U Sat(d2)
= Sat (EX®D) = {s|3teSat(d),s—t} (PreSat(d))
= Sat (EG @) = gfp (T'(x) = Sat(®) n Pre(x))
= Sat (E(®1 U @2)) = /fp (I'(x) = Sat(®2) U (Sat(®1) n
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atomic formulas: a, b, ¢

b,C

EG (a or b) gfip (T'(x) = Sat(®) N Pre(x))
['({Sos S1/ S2s S3, S4t) = Sat (a or b) M Pre({sy, Sy, S, S3, Sa))
T'({Sor S1r Sar S3, S4) = {Sor S1s Sos Sat ™ {Sos S1s Sos S3, Sa)

1_‘('{SOI S1r Sy S3, S4}) = {SOI S1r Sy 54}
Synchronous Languages
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atomic formulas: a, b, ¢

b,C

EG (a or b) ['({Sos St Sar S3, S4) = {Sos St Sar Sa)

F({SOI S1r Sy 54}) = Sat (a or b) M Pre({SOl S1s SZI, 54})

1_1({501 S]_I SZI S4}) = {SOI Sll SZI 54}

S, |= EG(aorb)
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i Model checking implementation

o Problem: the size of automata

a Solution: symbolic model checking
a Usage of BDD (Binary Decision Diagram) to

encode both automata and formu
o Each Boolean function has a unic

representation
a Shannon decomposition:

= f(Xg,Xy,--X%q) = (1, Xq,.0s X)) V (O, Xq,..

d.
ue

2 Xn)

Synchronous Languages
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i Model Checking Implementation

o When applying recursively Shannon
decomposition on all variables, we obtain a
tree where leaves are either 1 or 0.

o BDD are:
1A concise representation of the Shannon tree
2 no useless node (if x then g else g < g)
2 Share common sub graphs
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& Model Checking Implementation (2)

(X3 A X0) V (( Xy VY1) A (Xo A Yo))

Xl/XO\Xl
AANVAN
/ \ /\ /\ /\

yl vyl

VAVAWA /\/\/m

g es
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& Model Checking Implementation (2)

(X3 A X0) V (( Xy VY1) A (Xo A Yo))

Xl/XO\Xl
y/ \ y/ \
/ \ /\ /\ /\

yl vyl

AN DDA
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& Model Checking Implementation (2)

(X3 A X0) V (( Xy VY1) A (Xo A Yo))

xl/xo\
0/ . / \
7\ 7\ /\

yl vyl

/NN /\/\/\/\
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& Model Checking Implementation (2)

(Xe A %6) V (( Xg VY1) A (X A Yo))
/ XO\
/ N / \
/ \ / \ / \

Y1 Y1 Y1

AVAVAYA
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& Model Checking Implementation (2)

(Xe A %6) V (( Xg VY1) A (X A Yo))
/ XO\
/ N / \
/ \ / A

Y1 Y1 Y1

/\/\/E
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& Model Checking Implementation (2)

(X3 A X0) V (( Xy VY1) A (Xo A Yo))

X4 X,
/ \ / \
0 Y1 Yo Yo
/\ /SN /N
0 1 0 Y1 Yy Vs
IAWANWA
0 10 il 1
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& Model Checking Implementation (2)

(X3 A X0) V (( Xy VY1) A (Xo A Yo))

/

0

VRN

Yo Yo

/ \

/ Xo \
X4 X4
.
Y1 -
/
0 1

0 Y1
/ \
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& Model Checking Implementation (2)

(X3 A X0) V (( Xy VY1) A (Xo A Yo))
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& Model Checking Implementation (2)

(X3 A X0) V (( Xy VY1) A (Xo A Yo))
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i Model Checking Implementation(3)

o Implicit representation of the of states set
and of the transition relation of automata
with BDD.

o BDD allows
= canonical representation
= test of emptiness immediate (bdd =0)
= complementarity immediate (1 = 0)
= union and intersection not immediate
= Pre immediate
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i Model Checking Implementation (4)

o But BDD efficiency depends on the number
of variables

o Other method: SAT-Solver

aSat-solvers answer the question: given a
propositional formula, is there exist a valuation
of the formula variables such that this formula
holds

2 first algorithm (DPLL) exponential (1960)

Synchronous Languages
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i Model Checking Implementation (4)

a SAT-Solver algorithm:
dformula = CNF formula = set of clauses
dheuristics to choose variables

adeduction engine:
= propagation
= specific reduction rule application (unit clause)
= Others reduction rules

2 conflict analysis + learning
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Model Checking Implementation (5)

a SAT-Solver usage:

1 encoding of the paths of length k by
propositional formulas

2 the existence of a path of length k (for a given
k) where a temporal property @ is true can be
reduce to the satisfaction of a propositional
formula

a theorem: given ® a temporal property and M
a model, then M |= ® = 3 n such that
M|=_® (n<|S|.2I)
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i Bounded Model Checking

a SAT-Solver are used in complement of
implicit (BDD based) methods.

oM |= O
Qverify = @ on all paths of length k (k bounded)
21 useful to quickly extract counter examples
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‘L Model Checking with Observers

o Express safety properties as observers.

o An observer is a program which observes
the program and outputs ok when the
property holds and failure when its fails

inputs program TOUtPUtS
. OK

observer _
failure
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i Properties Validation

o Taking into account the environment

awithout any assumption on the environment,
proving properties is difficult
2 but the environment is indeterminist
= Human presence no predictable
= Fault occurrence

2 Solution: use assertion to make hypothesis on
the environment and make it determinist

Synchronous Languages
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‘L Properties Validation (2)

o Express safety properties as observers.

o Express constraints about the environment
as assertions.

assertions [—— assume

inputs program outputs

observer . OK
failure

Synchronous Languages
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i Properties Validation (3)

o if assume remains true, then ok also
remains true (or failure false).

iInputs

10/01/2012

assertions [—— assume
program outputs
observer , Ok

failure

Synchronous Languages
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+

Reactive Program Model Specification
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* Reactive and Real-Time Systems

Objective

Implementation
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Reactive System Implementation

Implementatjon

_.Generators

Analysis /
Development
Platform

Property analyses
Synchronous Languages
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Reactive & Real-Time Systems

Modeling

Analysis

Programming

Development

Validation

Reactive

\ Features

Real-Time

Embedded

10/01/2012

Reactive & Real-
Time Systems

Application Areas

Automotive

Transportation

Avionics

Image Processing

Signal Processing

\

Y Telephony

Communications

Control

. Control
Industrial process

control

Smart Sensors
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System Programming

i Synchronous Approach to Reactive

Analysis

prog. style /

Declarative

Synchronous
Approach
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System Programming

Synchronous
Approach

i Synchronous Approach to Reactive

Imperative

\ Declarative

prog. style

Analysis
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System Programming

i Synchronous Approach to Reactive

Synchronous
Approach
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System Programming

Tools
Formal validation
Imperative
prog. style /

i Synchronous Approach to Reactive

Declarative

Approach

Analysis
Synchronous Syntax J

format

Graphical

/.
N

Mathematical
semantics
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System Programming

i Synchronous Approach to Reactive

Imperative

prog. style /

Declarative

Approach

Textual

Semantics format

Analysis
Synchronous Syntax J

N

Graphical

Implementation

(++) Safe
(++) Deterministic code
(+-) Efficient

synchronous Languages
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i Determinism & Reactivity

a Determinism:
The same input sequence always vyields
The same output sequence

a Reactivity:
The program must react(l) to any stimulus
Implies absence of deadlock

(1) Does not necessary generate outputs, the reaction may change
internal state only.
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Abstraction

Sensors

-

Other

&
reactive Operator
systems
| K= Abstraction
R.S. |<—p Reactive System

Actuators

Outputs Reactive Program Inputs
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+

LUSTRE Declarative Synchronous
Language
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i Languages

Say what IS or what
SHOULD BE

Declarative languages

Imperative langages

N\

Say what MUST BE
DONE

Synchronous Languages
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i LUSTRE

o LUSTRE
a1It is a very simple language (4 primitive
operators to express reactions)
dRelies on models familiar to engineers

= Equation systems
= Data flow network

aLends itself to formal verification (it is a kind of
logical language)

aVery simple (mathematical) semantics

Synchronous Languages
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i Operator Networks

o LUSTRE programs can be interpreted as
networks of operators.

o Data « flow » to operators where they are
consumed. Then, the operators generate

new data. (Data Flow description)
Operator

\
Token

(data)
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i An example of Data Flow

Synchronous Languages
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Data Flow
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Data Flow
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Data Flow
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Data Flow
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Data Flow
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* Functional Point of View

P'=P+W)S*Q
Q'=P—-W,;*Q

Synchronous Languages
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i Flows, Clocks

a A flow is a pair made of

A possibly infinite sequence of values of
a given type

A clock representing a sequence of
iInstants

X:T (X, Xoy eee s X,y vnn)

Synchronous Languages
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:h Language (1)
ariable :

Qtyped

2 If not an input variable, defined by 1 and
only 1 equation

dPredefined types: int, bool, real
Qtuples: (a,b,c)
Equation : X = E means VK, x, = e,

Assertion :

Boolean expression that should be always
true at each instant of its clock.

Synchronous Languages
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i Language (2)

Substitution principle:
If X = E then E can be substituted for X

anywhere in the program and conversely

Definition principle:
A variable is fully defined by Iits declaration
and the equation in which it appears as a
left-hand side term

Synchronous Languages
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*xpressions
real }
Constants

0,1, .. true, false, ..., 1.52, ...

int O+
j Imported
( bool types and
\operators y

| |
c.aseVkell,c =cC
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i « Combinational » Lustre

Data operators

Arithmetical: +, -, *, /, div, mod
Logical: and, or, not, xor, =>
Conditional: if .. then .. else ...
Casts: int, real

« Point-wise » operators
XopY < VK, (XopY), = X0pPY«

Synchronous Languages
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:h « Combinational » Example

t
M:int
Average Operator Elows
Y:int / e
Cooda shesage

'Definition

tel

Vkel ,M, =(X, +Y)/2

Synchronous Languages
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i Example (suite)

node Average (X,Y:int)
returns (M:int);
var S:int; -- local variable

let
S = X +Y; -- non significant order
M=S/2;

tel

By substitution, the behavior is the same

Synchronous Languages
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i « Combinational » Example (2)

a if operator

node Max (a,b : real) returns (m: real)
let

m = if (@2 >= b) then a else b;
tel

functional «if then else »; it is not a
statement

Synchronous Languages
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i « Combinational » Example (2)

a if operator
node Max (a,b : real) returns (m: real)
let
m = if (@ >= b) then a else b;
tel
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i Memorizing

Take the past into account!
pre (previous):.

(X Xy ) £ PrE(X) = Ml X
Undefined value denoting uninitialized memory: nNil

-> (Initialize): sometimes call “followed by’

X = (X, X X)) o Y = (Yo Yoo Yoo
(X=>Y)= (X, Y5 Yos--2)

Synchronous Languages
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i « Sequential » Examples

n = 0— pre(n) +1
0
O o —
pre

Synchronous Languages
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i Sequential » Examples

node MinMax (X:int) returns (min,max:int);
let
min = X => if (X < pre min) then X else
pre min;

max = X => if (X > pre max) then X else
pre max;

tel

Synchronous Languages
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‘L « Review » Example

node Count (init:int) returns (c:int);
let ¢ = init -> pre c + 2; tel

node DoubleCall (even:bool) returns (n:int);
let
n = if even then Count(0) else
Count(1);
tel

Doublecall(ff ff tt tt ff ff tt tt ff) = ?

Synchronous Languages
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‘L Recursive definitions

Temporal recursion
Usual. Use pre and ->
eg..hat=1->prenat +1

Instantaneous recursion
eg.:.X=1.0/(2.0-X)

Forbidden in Lustre, even if a solution
exists!

Be carefull with Cross-recursion. s onous Languages

10/01/2012 Introdution



i Clocks

Basic clock
Discrete time induced by the input sequence

Derivecd

when (fi

clocks (slower)

ter operator):

E when Cis the sub-sequence of E obtained by
keeping only the values of indexes e, for which

c,=true

10/01/2012
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‘L Examples of clocks

Basic cycles 1 2 3 4 5 6 7 8
Cl true false true true false true false true
Cycles of C1 1 2 3 4 5
C2 false true false true true
Cycles of C2 1 2 3
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i Example of sampling

nat,odd:int
halfBaseClock:bool
= 0 -> pre nat +1;
halfBaseClock =
true -> not pre halfBaseClock;

odd = nat when halfBaseClock;
is a flow on the basic clock;

odd is a flow on halfBaseClock
Exercice: write even

Synchronous Languages
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i Interpolation operator

« converse » of sampling

current (interpolation) :

Let E be an expression whose clock is C, current(E)
IS an expression on the clock of C, and its value at
any instant of this clock is the value of E at the last

time when ¢ was true.

current (X when C) # X
A current canyield nil

Synchronous Languages
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i Example of current
Basic cycles 1 2 3 4 5 6 7

C ff o ff tt f f ft
X X1 X2 X3 X4 x5 X6 X7/
Y = X when C X2 x4 X7

Z = current(Y) | nil x2 x2 x4 x4 x4 x/

Synchronous Languages
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i Other examples of current

X

1

2

3

4

Y

t

f

t

t

ﬁ

Hh

C

t

t

f

t

Z=X when C

H=Y when C

T=Z when H

current T

current (current T)

Synchronous Languages
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i Other examples of current

X 1 2 3 4 5 6 | 7
Y t f t t t | £ | £
C t t f t t | £ | t
Z=X when C 1 2 4 5 7
H=Y when C
T=Zwhen H
current T
current (current T)

Synchropous Langliages
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i Other examples of current
X
Y

1 2 3 4 5 6 | 7
t f t t £f | £
C t t f |t t £f | t
Z=X when C 1 2 4 5 7
H=Y when C t f t t f
T=Zwhen H
current T

current (current T)

Synchronjous Langy

ages
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i Other examples of current

X 1 2 3 4 5 6 7
Y t| £ t t £
C t | t f | t t f t
Z=X when C 1 2 4 5 7
H=Y when C t f t t f
T=Z when H 1 4 5

current T

current (current T)
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i Other examples of current

X 1 2 3 4 5 6 7
Y t £ t t t £ £
C t t £ t t f t
Z=X when C 1 2 4 5 7
H=Y when C t £ t t £
T=Z when H 1 4 5

current T 1 1 4 5 5
current (current T)
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i Other examples of current

X 1 | 2 3 4 5 6 7
Y t | £ t t t £ f
C t | t f t t f t
Z=X when C 1 | 2 4 5 7
H=Y when C t | £ t t £
T=Z when H 1 4 5

current T 1 1 4 5 5
current (current T) | 1 1 1 4 5 5 5

10/01/2012
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i The initialization issue

Y=current(X when C) where C,; = false is
erroneous.

Possible solutions:
QA Strict discipline: ensure that C, is always true.
aForce the clock to true at the first instant:
CC = true -> C; Y=current(X when CC),
2 Provide a default value D :
Y = if C then current(X when C) else
D->preY,;
Synchronous Languages
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First programs
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i Bistable

a Node Switch (on,off:bool) returns (s:bool);
such that:

S raises (false to true) if on, and falls (true to
false) if off

2 must work even off and on are the same

node Switch (on,off:bool) returns (s:bool)
let
= if (false —pre <) then not off else on;

Synchronous Languages
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i Count

a A node Count (reset, x: bool) returns (c:int)
such that:

ac is reset to 0 if reset, otherwise it is
incremented if x

node Count (reset, x: bool) returns (c:int)
let
= if reset then 0
elseif xthen (0 ->prec) +1
else (0 -> pre )

t€| Synchronous Languages
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Counters

node COUNTER (init, incr:int; reset:bool)
returns (n:int) ;
let
n = init -> if reset then init else
pre(n) + incr;

tel;
C tt £f tt tt ££f £f ¢tt
COUNTER (0,2, false) 0 2 4 6 8 10 12
COUNTER( (0,2, false)when C) 0 2 4 6
COUNTER(0,2,false)when C 0 4 6 12
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Edges

node Edge (b:bool) returns (f:bool);\
-- detection of a rising edge

let
f = false —%}(b and not pre(bﬂ);
\tel; /
e
INiti Undefined at

the first instant

Falling Edge = Edge(not c);

Synchronous Languages
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i A Stopwatch

o 1 integer output :

a 3 input buttons: on_off, reset, freeze
2on_off starts and stops the watch
areset resets the stopwatch (if not running)
0 freeze freezes the displayed time (if running)

a Local variables
2 running, freezed : bool (Switch instances)
acpt : int (Count instance)

Synchronous Languages
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A stopwatch

node Stopwatch (on_off, reset, freeze: bool)
returns (time:int)

var running, freezed: bool; cpt:int

let
running = Switch(on_off, on_off);
freezed = Switch(freeze and running,
freeze or on_off);
cpt = Count (reset and not running, running);
time = if freezed then (0 -> pre time) else cpt;

tel Synchronous Languages
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A Stopwatch with Clocks

*e Stopwatch (on_off, reset, freeze: bool)
returns (time:int)
var running, freezed : bool;
cpt_clock, time_clock : bool;
(cpt : int) when cpt_clock;
let
running = Switch(on_off, on_off);
freezed = Switch ( freeze and running,
freeze or on_off);
cpt_clock = true -> reset or running;
cpt = Count ((not running, true) when cpt_clock);
time_clock = true -> not freezed;
time = current(current(cpt) when time, GloGk)r uages
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i Modulo Counter

node Counter (incr:bool, modulo : int)
returns (cpt:int)

let
=0 -> if incr
then MOD(pre (cpt) +1, modulo)
else pre (cpt);
tel
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i Modulo Counter with Clock

node ModuloCounter (incr:bool, modulo : int)
returns (cpt:int,
: bool)
let
=0 -> if incr
then MOD(pre (cpt) +1, modulo)
else pre (cpt);
= false ->
pre(cpt) <> MOD(pre(cpt)+1);
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i Timer

node Timer (dummy:bool)

returns ( , , :bool)
var hour_clock, minute_clock, day_clock;
let
( , minute_clock) = ModuloCounter(true, 60);
( , hour_clock) =

ModuloCounter(minute_clock,60);

( , day_clock) =
ModuloCounter(hour_clock, 24);

tel
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i Numerical Examples

o Integrator node:

a7 : real function and Y its integrated value
using the trapezoid method:

a F, STEP : 2 real such that:
F.=f(x,) and X ,, = X, +STEP _,
Yo=Y, +(F,+F.,)*STEP ,,/2
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i Numerical Examples

node integrator (F, STEP, init : real)
returns (Y : real);
let
Y = init ->pre(Y) + ((F + pre(F))*STEP)/2.0
tel
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i Numerical Examples

node sincos (omega : real)

returns (sin, cos : real);

let
sin =0 a * integra

cos, 0.1, 0.0);
cos=1-o0 * integrator(sin, 0.1, 0.0);
tel
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‘L Numerical Examples

node sincos (omega : real)
returns (sin, cos : real);
let
sin = omega * integrator(cos, 0.1, 0.0);
cos = 1 —omega * integrator( , 0.1, 0.0);

tel %
[ (0.0 ->pre(sin))
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i Safety and Liveness Properties

o Example: the beacon counter in a train:

2 Count the difference between beacons and
seconds

aDecide when the train is ontime, late, early

node train (sec, bea : bool) returns (ontime, early, late: bool)
let
diff = (0 ->pre diff) + (if bea then 1 else 0) + (if sec then -1 else 0);
early = (true -> pre ontime) and (diff > 3) or
(false -> pre early) and (diff > 1);
late = (true -> pre ontime) and (diff < -3) or
(false -> pre late) and (diff < -1);
ontime = not (early or late);
tel
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Train Safety Properties

o Itis impossible to be late and early;
O ok = not (late and early)

a It is impossible to directly pass from late to
early;

a ok = true -> (not early and pre late);

a Itis impossible to remain late only one
Instant;

QO Plate = false -> pre late;
PPlate = false -> pre Plate;
ok = not (not late and Plate and not PPlate);
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* Train Assumptions

a property = assumption + observer: "/ (/e
train keeps the right speed, it remains on
time”

o observer = ok = ontime

o assumption:
anaive: assume = (bea = sec);
0 more precise : bea and sec alternate:

= SF = Switch (sec and not bea, bea and not sec);
BF = Switch (bea and not sec, sec and not bea);
assume = (SF => not sec) and (BF => not bea);
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i Model Checking with observers

Observers in Scade

P: aircraft autopilot and security system

alarm

aircraft_altitude P landing_order
_|aircraft_altitude <
~ L T
200 and _L
landing_order not | implies
()
alarm
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