Synchronous Languages:
!'_ Embedded Critical Real Time Software

A. Ressouche*

(*) Inria Sophia Antipolis-Méditerranée

i Critical Software

a Roughly speaking a critical system is a
system whose failure could have serious
consequences

o Nuclear technology

o Transportation
QAutomotive
aTrain
2 Avionics

Synchronous Languages
10/01/2012 Introdution

i Critical Software (2)

o In addition , other consequences are
relevant to determine the critical aspect of
a software:
QFinancial aspect

= Loosing of equipment, bug correction
= Equipment callback (automotive)

QBad advertising
= Intel famous bug

Synchronous Languages
10/01/2012 Introdution

* How Develop critical software ?

Classical Development V Cycle

investigation [tests of ntegrated system A1 11200
Investigation in laboratory

\ in operation

1
‘specification tests black box validation

\ /
-—_

10/01/2012 Introdution

‘L How Develop Critical Software ?

a Cost of critical software development:
= Specification : 10%
= Design: 10%
= Development: 25%

= Integration tests: 5%
= Validation: 50%

o Fact:

QEarlier an error is detected, more expensive its
correction is.

Synchronous Languages
10/01/2012 Introdution

Cost of Error Correction

cost of
error
correction

n
»

. _.7 error detection time

f ey -t

Put the effort on the upstream phase

Synchronous Languages
10/01/2012 Introdution

i How Develop Critical Software ?

a Goals of critical software specification:

1 Define application needs
= = specific domain engineers

2 Allowing application development
= Coherency
= Completeness

2 Allowing application functional validation
= Express properties to be validated

— Formal models usage

Synchronous Languages
10/01/2012 Introdution

i Critical software specification

o First Goal: must yield a formal description
of the application needs:

aStandard to allowing communication between
computer science engineers and non computer
science ones

2 General enough to allow different kinds of
application:
= Synchronous (and/or)
= Asynchronous (and/or)
= Algorithmic

Synchronous Languages
10/01/2012 Introdution

i Example of bad understanding

Nasa lost a $125 million Mars Orbiter
because one engineering team used
metric units while another used
English metrics for a key spacecraft
operation

s : =4
e W s

]]] sa cimate |
For that reason, information failed orbiter was lost
September 23,

to transfer between the Mars 1999

Climate Orbiter spacecraft team in
Colorado and the mission
navigation team in California

Synchronous Languages
10/01/2012 Introdution

i Critical software specification

a Second Goal: allowing errors detection
carried out upstream:
2 Validation of the specification:
= Coherency

= Completeness
= Proofs

QTest
= Quick prototype development
= Specification simulation

Synchronous Languages
10/01/2012 Introdution

i Example of non completeness

From Ariane 5:

Simultaneous
helium tank | events ? hydrogen tank
low low

I ! I
 action 2 action 2

Synchronous Languages
10/01/2012 Introdution

i Critical Software Specification (3)

a Third goal: make easier the transition from
specification to design (refinement)
dReuse of specification simulation tests
dFormalization of design

0 Code generation
= Sequential/distributed
= Toward a target language
= Embedded/qualified code

Synchronous Languages
10/01/2012 Introdution

Relying on Formal Methods

test reuse
test coverage
test generation

simulation
proofs
no more
automatic code integration tests
generation
abstract
interpretation

Synchronous Languages
10/01/2012 Introdution

+

Synchronous Languages Verification

Synchronous Languages
10/01/2012 Introdution

Critical Software Validation

hat is a correct software?

aNo execution errors, time constraints
respected, compliance of results.

o Solutions:

At model level :
= Simulation
= Formal proofs
QAt implementation level:
= Test
= Abstract interpretation

d

Synchronous Languages
10/01/2012 Introdution

Validation Methods

o Testing

2 Run the program on set of inputs and check
the results

a Static Analysis

dExamine the source code to increase
confidence that it works as intended

o Formal Verification

2 Argue formally that the application always
works as intended

Synchronous Languages
10/01/2012 Introdution

i Testing

a Dynamic verification process applied at
implementation level.

o Feed the system (or one if its components)
with a set of input data values:

2 Input data set not too large to avoid huge time
testing procedure.

dMaximal coverage of different cases required.

Synchronous Languages
10/01/2012 Introdution

* Testing (2)

Program Testing

executions tested ok / "Testing only highlights
_ bugs but not ensure their
all program executions absence " (E. Dijkstra)

Synchronous Languages
10/01/2012 Introdution

i Static Analysis

a The aim of static analysis is to search for
errors without running the program.

a Abstract interpretation = replace data of
the program by an abstraction in order to
be able to compute program properties.

o Abstraction must ensure :
= % (P) “correct” = P correct

= But & (P) “incorrect” = ?

Synchronous Languages
10/01/2012 Introdution

‘L Static Analysis: example

abstraction: integer by intervals

1: x:=1; x1 = [1,1]
2: while (x < 1000) {) "2 = X1 UX3 N [, 999]
31 X:=Xx+1; X3 =x2® [1,1]

4.
} x4 =x1 U x3 N [1000, «<]

Abstract interpretation theory = values are fix
point equation solutions.

Synchronous Languages
10/01/2012 Introdution

i Formal verification

a What about functional validation ?
2 Does the program compute the expected
outputs?
dRespect of time constraints (temporal
properties)
QO Intuitive partition of temporal properties:

= Safety properties: something bad never happens

= | iveness properties: something good eventually
happens

Synchronous Languages
10/01/2012 Introdution

i Safety and Liveness Properties

o Example: the beacon counter in a train:

2 Count the difference between beacons and
seconds

aDecide when the train is ontime, late, early

node train (sec, bea : bool) returns (ontime, early, late: bool)
let
diff = (0 ->pre diff) + (if bea then 1 else 0) + (if sec then -1 else 0);
early = (true -> pre ontime) and (diff > 3) or
(false -> pre early) and (diff > 1);
late = (true -> pre ontime) and (diff < -3) or
(false -> pre late) and (diff < -1);
ontime = not (early or late);
tel

Synchronous Languages
10/01/2012 Introdution

Safety and Liveness Properties

o Some properties:
1. It is impossible to be late and early;
2. It is impossible to directly pass from late to

early;
It is impossible to remain late only one instant;
4. If the train stops, it will get late

a Properties 1, 2, 3 : safety
o Property 4 : liveness

It refers to unbound future

SYMNCNrornous Ldnygudyes

10/01/2012 Introdution

Checking

i Safety and Liveness Properties

o Use of model checking techniques

o Model checking goal: prove safety and
liveness properties of a system in analyzing
a model of the system.

o Model checking techniques require:
2 model of the system
d express properties

2 algorithm to check properties on the model (=
decidability)

Synchronous Languages
10/01/2012 Introdution

Model Checking Techniques

o Model = automata which is the set of
program behaviors

a Properties expression = temporal logic:
a LTL : liveness properties
2 CTL: safety properties

a Algorithm =

2 LTL : algorithm exponential wrt the formula
size and linear wrt automata size.

QCTL: algorithm linear wrt formula size and wrt

aUtomata SIZ€ Synchronous Languages
10/01/2012 Introdution

i Properties Checking

a Liveness Property @
0 ® = automata B(®d)
0 L(B(®)) = & décidable
QD |=M : LM QB(~D)) =0
o Scade allows only to verify safety

properties, thus we will study such
properties verification techniques.

Synchronous Languages
10/01/2012 Introdution

i Safety Properties

o CTL formula characterization:
aAtomic formulas
aUsual logic operators: not, and, or (=)

2 Specific temporal operators:
 EX @, EF @, EG &
= AX @, AF &, AG &
- EU(D, ,D,), AU(D, ,D>)

Synchronous Languages
10/01/2012 Introdution

i Safety Properties Verification (1)

o Mathematical framework:

2 S : finite state, (#(S), <) is a complete lattice
with S as greater element and & as least one.

af: P(S) - P(S):
= f is monotonic iff ¥ X,y € #(S), x c y = f(x) < f(y)

= f is n-continue iff for each decreasing sequence
f(nx) = A 1(x)

= fis u-continue iff for each increasing sequence
flu x) = v f(x)

Synchronous Languages
10/01/2012 Introdution

i Safety Properties Verification (2)

o Mathematical framework:

Qif S is finite then monotonic = ~-continue et
w-continue.

o X is a fix point iff of fiff f(x) = x
ax is a least fix point (Ifp) iff Yy such that

fly) =y, xcy
QX is a greatest fix point (gfp) iff Yy such that
fly) =y, ycx

Synchronous Languages
10/01/2012 Introdution

i Safety Properties Verification (3)

a Theorem:

2f monotonic = f has a Ifp (resp glp)
a Ifp(f) = v N(D)
a gfp(f) = n (S)

Fixpoints are limits of approximations

Synchronous Languages
10/01/2012 Introdution

i Safety Properties Verification (4)

a We call Sat() the set of states where & is
true.

1 M= @ iffs., e Sat(D).

a Algorithm:
=Sat(®d) ={s| D |=5s}
= Sat(not @) = S\Sat(d)
= Sat(d1 or ®2) = Sat(d1) U Sat(d2)
= Sat (EX®D) = {s|3teSat(d),s—t} (PreSat(d))
= Sat (EG @) = gfp (T'(x) = Sat(®) n Pre(x))
= Sat (E(®1 U @2)) = /fp (I'(x) = Sat(®2) U (Sat(®1) n

Synchronous Languages
10/0 1/§)E§(X)) Introdution

atomic formulas: a, b, ¢

b,C

EG (a or b) gfip (T'(x) = Sat(®) N Pre(x))
['({Sos S1/ S2s S3, S4t) = Sat (a or b) M Pre({sy, Sy, S, S3, Sa))
T'({Sor S1r Sar S3, S4) = {Sor S1s Sos Sat ™ {Sos S1s Sos S3, Sa)

1_‘('{SOI S1r Sy S3, S4}) = {SOI S1r Sy 54}
Synchronous Languages

10/01/2012 Introdution

atomic formulas: a, b, ¢

b,C

EG (a or b) ['({Sos St Sar S3, S4) = {Sos St Sar Sa)

F({SOI S1r Sy 54}) = Sat (a or b) M Pre({SOl S1s SZI, 54})

1_1({501 S]_I SZI S4}) = {SOI Sll SZI 54}

S, |= EG(aorb)

Synchronous Languages
10/01/2012 Introdution

i Model checking implementation

o Problem: the size of automata

a Solution: symbolic model checking
a Usage of BDD (Binary Decision Diagram) to

encode both automata and formu
o Each Boolean function has a unic

representation
a Shannon decomposition:

= f(Xg,Xy,--X%q) = (1, Xq,.0s X)) V (O, Xq,..

d.
ue

2 Xn)

Synchronous Languages

10/01/2012

Introdution

i Model Checking Implementation

o When applying recursively Shannon
decomposition on all variables, we obtain a
tree where leaves are either 1 or 0.

o BDD are:
1A concise representation of the Shannon tree
2 no useless node (if x then g else g < g)
2 Share common sub graphs

Synchronous Languages
10/01/2012 Introdution

& Model Checking Implementation (2)

(X3 A X0) V ((Xy VY1) A (Xo A Yo))

Xl/XO\Xl
AANVAN
/ \ /\ /\ /\

yl vyl

VAVAWA /\/\/m

g es

10/01/2012 I t d t

& Model Checking Implementation (2)

(X3 A X0) V ((Xy VY1) A (Xo A Yo))

Xl/XO\Xl
y/ \ y/ \
/ \ /\ /\ /\

yl vyl

AN DDA

Synchro g ages
10/01/2012 In t d t

& Model Checking Implementation (2)

(X3 A X0) V ((Xy VY1) A (Xo A Yo))

xl/xo\
0/ . / \
7\ 7\ /\

yl vyl

/NN /\/\/\/\

10/01/2012 I t d t

g es

& Model Checking Implementation (2)

(Xe A %6) V ((Xg VY1) A (X A Yo))
/ XO\
/ N / \
/ \ / \ / \

Y1 Y1 Y1

AVAVAYA

Synchro g ages
10/01/2012 In t d t

& Model Checking Implementation (2)

(Xe A %6) V ((Xg VY1) A (X A Yo))
/ XO\
/ N / \
/ \ / A

Y1 Y1 Y1

/\/\/E

Synchro g ages
10/01/2012 In t d t

& Model Checking Implementation (2)

(X3 A X0) V ((Xy VY1) A (Xo A Yo))

X4 X,
/ \ / \
0 Y1 Yo Yo
/\ /SN /N
0 1 0 Y1 Yy Vs
IAWANWA
0 10 il 1
10/01/2012

& Model Checking Implementation (2)

(X3 A X0) V ((Xy VY1) A (Xo A Yo))

/

0

VRN

Yo Yo

/ \

/ Xo \
X4 X4
.
Y1 -
/
0 1

0 Y1
/ \

Synchrohous Languages

10/01/2012 Introdation

& Model Checking Implementation (2)

(X3 A X0) V ((Xy VY1) A (Xo A Yo))

Synchronous Languages
10/01/2012 Introdution

& Model Checking Implementation (2)

(X3 A X0) V ((Xy VY1) A (Xo A Yo))

Synchronous Languages
10/01/2012 Introdution

i Model Checking Implementation(3)

o Implicit representation of the of states set
and of the transition relation of automata
with BDD.

o BDD allows
= canonical representation
= test of emptiness immediate (bdd =0)
= complementarity immediate (1 = 0)
= union and intersection not immediate
= Pre immediate

Synchronous Languages
10/01/2012 Introdution

i Model Checking Implementation (4)

o But BDD efficiency depends on the number
of variables

o Other method: SAT-Solver

aSat-solvers answer the question: given a
propositional formula, is there exist a valuation
of the formula variables such that this formula
holds

2 first algorithm (DPLL) exponential (1960)

Synchronous Languages
10/01/2012 Introdution

i Model Checking Implementation (4)

a SAT-Solver algorithm:
dformula = CNF formula = set of clauses
dheuristics to choose variables

adeduction engine:
= propagation
= specific reduction rule application (unit clause)
= Others reduction rules

2 conflict analysis + learning

Synchronous Languages
10/01/2012 Introdution

Model Checking Implementation (5)

a SAT-Solver usage:

1 encoding of the paths of length k by
propositional formulas

2 the existence of a path of length k (for a given
k) where a temporal property @ is true can be
reduce to the satisfaction of a propositional
formula

a theorem: given ® a temporal property and M
a model, then M |= ® = 3 n such that
M|=_® (n<|S|.2I)

Synchronous Languages
10/01/2012 Introdution

i Bounded Model Checking

a SAT-Solver are used in complement of
implicit (BDD based) methods.

oM |= O
Qverify = @ on all paths of length k (k bounded)
21 useful to quickly extract counter examples

Synchronous Languages
10/01/2012 Introdution

‘L Model Checking with Observers

o Express safety properties as observers.

o An observer is a program which observes
the program and outputs ok when the
property holds and failure when its fails

inputs program TOUtPUtS
. OK

observer _
failure

Synchronous Languages
10/01/2012 Introdution

i Properties Validation

o Taking into account the environment

awithout any assumption on the environment,
proving properties is difficult
2 but the environment is indeterminist
= Human presence no predictable
= Fault occurrence

2 Solution: use assertion to make hypothesis on
the environment and make it determinist

Synchronous Languages
10/01/2012 Introdution

‘L Properties Validation (2)

o Express safety properties as observers.

o Express constraints about the environment
as assertions.

assertions [—— assume

inputs program outputs

observer . OK
failure

Synchronous Languages
10/01/2012 Introdution

i Properties Validation (3)

o if assume remains true, then ok also
remains true (or failure false).

iInputs

10/01/2012

assertions [—— assume
program outputs
observer , Ok

failure

Synchronous Languages
Introdution

+

Reactive Program Model Specification

Synchronous Languages
10/01/2012 Introdution

* Reactive and Real-Time Systems

Objective

Implementation

Synchronous Languages
10/01/2012 Introdution

Reactive System Implementation

Implementatjon

_.Generators

Analysis /
Development
Platform

Property analyses
Synchronous Languages
10/01/2012 Introdution

Reactive & Real-Time Systems

Modeling

Analysis

Programming

Development

Validation

Reactive

\ Features

Real-Time

Embedded

10/01/2012

Reactive & Real-
Time Systems

Application Areas

Automotive

Transportation

Avionics

Image Processing

Signal Processing

\

Y Telephony

Communications

Control

. Control
Industrial process

control

Smart Sensors

Synchronous Languages
Introdution

System Programming

i Synchronous Approach to Reactive

Analysis

prog. style /

Declarative

Synchronous
Approach

Synchronous Languages
10/01/2012 Introdution

System Programming

Synchronous
Approach

i Synchronous Approach to Reactive

Imperative

\ Declarative

prog. style

Analysis

Synchronous Languages
10/01/2012 Introdution

System Programming

i Synchronous Approach to Reactive

Synchronous
Approach

Synchronous Languages
10/01/2012 Introdution

System Programming

Tools
Formal validation
Imperative
prog. style /

i Synchronous Approach to Reactive

Declarative

Approach

Analysis
Synchronous Syntax J

format

Graphical

/.
N

Mathematical
semantics

Synchronous Languages
10/01/2012 Introdution

System Programming

i Synchronous Approach to Reactive

Imperative

prog. style /

Declarative

Approach

Textual

Semantics format

Analysis
Synchronous Syntax J

N

Graphical

Implementation

(++) Safe
(++) Deterministic code
(+-) Efficient

synchronous Languages
10/01/2012 Introdution

i Determinism & Reactivity

a Determinism:
The same input sequence always vyields
The same output sequence

a Reactivity:
The program must react(l) to any stimulus
Implies absence of deadlock

(1) Does not necessary generate outputs, the reaction may change
internal state only.

Synchronous Languages
10/01/2012 Introdution

Abstraction

Sensors

-

Other

&
reactive Operator
systems
| K= Abstraction
R.S. |<—p Reactive System

Actuators

Outputs Reactive Program Inputs

Synchronous Languages
10/01/2012 Introdution

+

LUSTRE Declarative Synchronous
Language

Synchronous Languages
10/01/2012 Introdution

i Languages

Say what IS or what
SHOULD BE

Declarative languages

Imperative langages

N\

Say what MUST BE
DONE

Synchronous Languages
10/01/2012 Introdution

i LUSTRE

o LUSTRE
a1It is a very simple language (4 primitive
operators to express reactions)
dRelies on models familiar to engineers

= Equation systems
= Data flow network

aLends itself to formal verification (it is a kind of
logical language)

aVery simple (mathematical) semantics

Synchronous Languages
10/01/2012 Introdution

i Operator Networks

o LUSTRE programs can be interpreted as
networks of operators.

o Data « flow » to operators where they are
consumed. Then, the operators generate

new data. (Data Flow description)
Operator

\
Token

(data)

Synchronous Languages
10/01/2012 Introdution

i An example of Data Flow

Synchronous Languages
10/01/2012 Introdution

Data Flow

Synchronous Languages
10/01/2012 Introdution

Data Flow

Synchronous Languages
10/01/2012 Introdution

Data Flow

Synchronous Languages
10/01/2012 Introdution

Data Flow

Synchronous Languages
10/01/2012 Introdution

Data Flow

Synchronous Languages
10/01/2012 Introdution

* Functional Point of View

P'=P+W)S*Q
Q'=P—-W,;*Q

Synchronous Languages
10/01/2012 Introdution

i Flows, Clocks

a A flow is a pair made of

A possibly infinite sequence of values of
a given type

A clock representing a sequence of
iInstants

X:T (X, Xoy eee s X,y vnn)

Synchronous Languages
10/01/2012 Introdution

:h Language (1)
ariable :

Qtyped

2 If not an input variable, defined by 1 and
only 1 equation

dPredefined types: int, bool, real
Qtuples: (a,b,c)
Equation : X = E means VK, x, = e,

Assertion :

Boolean expression that should be always
true at each instant of its clock.

Synchronous Languages
10/01/2012 Introdution

i Language (2)

Substitution principle:
If X = E then E can be substituted for X

anywhere in the program and conversely

Definition principle:
A variable is fully defined by Iits declaration
and the equation in which it appears as a
left-hand side term

Synchronous Languages
10/01/2012 Introdution

*xpressions
real }
Constants

0,1, .. true, false, ..., 1.52, ...

int O+
j Imported
(bool types and
\operators y

| |
c.aseVkell,c =cC
Synchronous Languages
10/01/2012 Introdution

i « Combinational » Lustre

Data operators

Arithmetical: +, -, *, /, div, mod
Logical: and, or, not, xor, =>
Conditional: if .. then .. else ...
Casts: int, real

« Point-wise » operators
XopY < VK, (XopY), = X0pPY«

Synchronous Languages
10/01/2012 Introdution

:h « Combinational » Example

t
M:int
Average Operator Elows
Y:int / e
Cooda shesage

'Definition

tel

Vkel ,M, =(X, +Y)/2

Synchronous Languages
10/01/2012 Introdution

i Example (suite)

node Average (X,Y:int)
returns (M:int);
var S:int; -- local variable

let
S = X +Y; -- non significant order
M=S/2;

tel

By substitution, the behavior is the same

Synchronous Languages
10/01/2012 Introdution

i « Combinational » Example (2)

a if operator

node Max (a,b : real) returns (m: real)
let

m = if (@2 >= b) then a else b;
tel

functional «if then else »; it is not a
statement

Synchronous Languages
10/01/2012 Introdution

i « Combinational » Example (2)

a if operator
node Max (a,b : real) returns (m: real)
let
m = if (@ >= b) then a else b;
tel

Synchronous Languages
10/01/2012 Introdution

i Memorizing

Take the past into account!
pre (previous):.

(X Xy) £ PrE(X) = Ml X
Undefined value denoting uninitialized memory: nNil

-> (Initialize): sometimes call “followed by’

X = (X, X X)) o Y = (Yo Yoo Yoo
(X=>Y)= (X, Y5 Yos--2)

Synchronous Languages
10/01/2012 Introdution

i « Sequential » Examples

n = 0— pre(n) +1
0
O o —
pre

Synchronous Languages
10/01/2012 Introdution

i Sequential » Examples

node MinMax (X:int) returns (min,max:int);
let
min = X => if (X < pre min) then X else
pre min;

max = X => if (X > pre max) then X else
pre max;

tel

Synchronous Languages
10/01/2012 Introdution

‘L « Review » Example

node Count (init:int) returns (c:int);
let ¢ = init -> pre c + 2; tel

node DoubleCall (even:bool) returns (n:int);
let
n = if even then Count(0) else
Count(1);
tel

Doublecall(ff ff tt tt ff ff tt tt ff) = ?

Synchronous Languages
10/01/2012 Introdution

‘L Recursive definitions

Temporal recursion
Usual. Use pre and ->
eg..hat=1->prenat +1

Instantaneous recursion
eg.:.X=1.0/(2.0-X)

Forbidden in Lustre, even if a solution
exists!

Be carefull with Cross-recursion. s onous Languages

10/01/2012 Introdution

i Clocks

Basic clock
Discrete time induced by the input sequence

Derivecd

when (fi

clocks (slower)

ter operator):

E when Cis the sub-sequence of E obtained by
keeping only the values of indexes e, for which

c,=true

10/01/2012

Synchronous Languages
Introdution

‘L Examples of clocks

Basic cycles 1 2 3 4 5 6 7 8
Cl true false true true false true false true
Cycles of C1 1 2 3 4 5
C2 false true false true true
Cycles of C2 1 2 3

Synchronous Languages
10/01/2012 Introdution

i Example of sampling

nat,odd:int
halfBaseClock:bool
= 0 -> pre nat +1;
halfBaseClock =
true -> not pre halfBaseClock;

odd = nat when halfBaseClock;
is a flow on the basic clock;

odd is a flow on halfBaseClock
Exercice: write even

Synchronous Languages
10/01/2012 Introdution

i Interpolation operator

« converse » of sampling

current (interpolation) :

Let E be an expression whose clock is C, current(E)
IS an expression on the clock of C, and its value at
any instant of this clock is the value of E at the last

time when ¢ was true.

current (X when C) # X
A current canyield nil

Synchronous Languages
10/01/2012 Introdution

i Example of current
Basic cycles 1 2 3 4 5 6 7

C ff o ff tt f f ft
X X1 X2 X3 X4 x5 X6 X7/
Y = X when C X2 x4 X7

Z = current(Y) | nil x2 x2 x4 x4 x4 x/

Synchronous Languages
10/01/2012 Introdution

i Other examples of current

X

1

2

3

4

Y

t

f

t

t

ﬁ

Hh

C

t

t

f

t

Z=X when C

H=Y when C

T=Z when H

current T

current (current T)

Synchronous Languages

10/01/2012 Introdution

i Other examples of current

X 1 2 3 4 5 6 | 7
Y t f t t t | £ | £
C t t f t t | £ | t
Z=X when C 1 2 4 5 7
H=Y when C
T=Zwhen H
current T
current (current T)

Synchropous Langliages

10/01/2012 Introdution

i Other examples of current
X
Y

1 2 3 4 5 6 | 7
t f t t £f | £
C t t f |t t £f | t
Z=X when C 1 2 4 5 7
H=Y when C t f t t f
T=Zwhen H
current T

current (current T)

Synchronjous Langy

ages

10/01/2012

Introdution

i Other examples of current

X 1 2 3 4 5 6 7
Y t| £ t t £
C t | t f | t t f t
Z=X when C 1 2 4 5 7
H=Y when C t f t t f
T=Z when H 1 4 5

current T

current (current T)

Syrchrormoustanguages—
10/01/2012 Introdution

i Other examples of current

X 1 2 3 4 5 6 7
Y t £ t t t £ £
C t t £ t t f t
Z=X when C 1 2 4 5 7
H=Y when C t £ t t £
T=Z when H 1 4 5

current T 1 1 4 5 5
current (current T)

Synchronous Languages
10/01/2012 Introdution

i Other examples of current

X 1 | 2 3 4 5 6 7
Y t | £ t t t £ f
C t | t f t t f t
Z=X when C 1 | 2 4 5 7
H=Y when C t | £ t t £
T=Z when H 1 4 5

current T 1 1 4 5 5
current (current T) | 1 1 1 4 5 5 5

10/01/2012

Synchronous Languages
Introdution

i The initialization issue

Y=current(X when C) where C,; = false is
erroneous.

Possible solutions:
QA Strict discipline: ensure that C, is always true.
aForce the clock to true at the first instant:
CC = true -> C; Y=current(X when CC),
2 Provide a default value D :
Y = if C then current(X when C) else
D->preY,;
Synchronous Languages

10/01/2012 Introdution

First programs

Synchronous Languages
10/01/2012 Introdution

i Bistable

a Node Switch (on,off:bool) returns (s:bool);
such that:

S raises (false to true) if on, and falls (true to
false) if off

2 must work even off and on are the same

node Switch (on,off:bool) returns (s:bool)
let
= if (false —pre <) then not off else on;

Synchronous Languages
10/01/2012 Introdution

i Count

a A node Count (reset, x: bool) returns (c:int)
such that:

ac is reset to 0 if reset, otherwise it is
incremented if x

node Count (reset, x: bool) returns (c:int)
let
= if reset then 0
elseif xthen (0 ->prec) +1
else (0 -> pre)

t€| Synchronous Languages
10/01/2012 Introdution

Counters

node COUNTER (init, incr:int; reset:bool)
returns (n:int) ;
let
n = init -> if reset then init else
pre(n) + incr;

tel;
C tt £f tt tt ££f £f ¢tt
COUNTER (0,2, false) 0 2 4 6 8 10 12
COUNTER((0,2, false)when C) 0 2 4 6
COUNTER(0,2,false)when C 0 4 6 12

Synchronous Languages
10/01/2012 Introdution

Edges

node Edge (b:bool) returns (f:bool);\
-- detection of a rising edge

let
f = false —%}(b and not pre(bﬂ);
\tel; /
e
INiti Undefined at

the first instant

Falling Edge = Edge(not c);

Synchronous Languages
10/01/2012 Introdution

i A Stopwatch

o 1 integer output :

a 3 input buttons: on_off, reset, freeze
2on_off starts and stops the watch
areset resets the stopwatch (if not running)
0 freeze freezes the displayed time (if running)

a Local variables
2 running, freezed : bool (Switch instances)
acpt : int (Count instance)

Synchronous Languages
10/01/2012 Introdution

A stopwatch

node Stopwatch (on_off, reset, freeze: bool)
returns (time:int)

var running, freezed: bool; cpt:int

let
running = Switch(on_off, on_off);
freezed = Switch(freeze and running,
freeze or on_off);
cpt = Count (reset and not running, running);
time = if freezed then (0 -> pre time) else cpt;

tel Synchronous Languages
10/01/2012 Introdution

A Stopwatch with Clocks

*e Stopwatch (on_off, reset, freeze: bool)
returns (time:int)
var running, freezed : bool;
cpt_clock, time_clock : bool;
(cpt : int) when cpt_clock;
let
running = Switch(on_off, on_off);
freezed = Switch (freeze and running,
freeze or on_off);
cpt_clock = true -> reset or running;
cpt = Count ((not running, true) when cpt_clock);
time_clock = true -> not freezed;
time = current(current(cpt) when time, GloGk)r uages

te]O/O 1/2012 Introdution

i Modulo Counter

node Counter (incr:bool, modulo : int)
returns (cpt:int)

let
=0 -> if incr
then MOD(pre (cpt) +1, modulo)
else pre (cpt);
tel

Synchronous Languages
10/01/2012 Introdution

i Modulo Counter with Clock

node ModuloCounter (incr:bool, modulo : int)
returns (cpt:int,
: bool)
let
=0 -> if incr
then MOD(pre (cpt) +1, modulo)
else pre (cpt);
= false ->
pre(cpt) <> MOD(pre(cpt)+1);

Synchronous Languages
10/01/2012 Introdution

i Timer

node Timer (dummy:bool)

returns (, , :bool)
var hour_clock, minute_clock, day_clock;
let
(, minute_clock) = ModuloCounter(true, 60);
(, hour_clock) =

ModuloCounter(minute_clock,60);

(, day_clock) =
ModuloCounter(hour_clock, 24);

tel

Synchronous Languages
10/01/2012 Introdution

i Numerical Examples

o Integrator node:

a7 : real function and Y its integrated value
using the trapezoid method:

a F, STEP : 2 real such that:
F.=f(x,) and X ,, = X, +STEP _,
Yo=Y, +(F,+F.,)*STEP ,,/2

Synchronous Languages
10/01/2012 Introdution

i Numerical Examples

node integrator (F, STEP, init : real)
returns (Y : real);
let
Y = init ->pre(Y) + ((F + pre(F))*STEP)/2.0
tel

Synchronous Languages
10/01/2012 Introdution

i Numerical Examples

node sincos (omega : real)

returns (sin, cos : real);

let
sin =0 a * integra

cos, 0.1, 0.0);
cos=1-o0 * integrator(sin, 0.1, 0.0);
tel

Synchronous Languages
10/01/2012 Introdution

‘L Numerical Examples

node sincos (omega : real)
returns (sin, cos : real);
let
sin = omega * integrator(cos, 0.1, 0.0);
cos = 1 —omega * integrator(, 0.1, 0.0);

tel %
[(0.0 ->pre(sin))

Synchronous Languages
10/01/2012 Introdution

i Safety and Liveness Properties

o Example: the beacon counter in a train:

2 Count the difference between beacons and
seconds

aDecide when the train is ontime, late, early

node train (sec, bea : bool) returns (ontime, early, late: bool)
let
diff = (0 ->pre diff) + (if bea then 1 else 0) + (if sec then -1 else 0);
early = (true -> pre ontime) and (diff > 3) or
(false -> pre early) and (diff > 1);
late = (true -> pre ontime) and (diff < -3) or
(false -> pre late) and (diff < -1);
ontime = not (early or late);
tel

Synchronous Languages
10/01/2012 Introdution

Train Safety Properties

o Itis impossible to be late and early;
O ok = not (late and early)

a It is impossible to directly pass from late to
early;

a ok = true -> (not early and pre late);

a Itis impossible to remain late only one
Instant;

QO Plate = false -> pre late;
PPlate = false -> pre Plate;
ok = not (not late and Plate and not PPlate);

Synchronous Languages
10/01/2012 Introdution

* Train Assumptions

a property = assumption + observer: "/ (/e
train keeps the right speed, it remains on
time”

o observer = ok = ontime

o assumption:
anaive: assume = (bea = sec);
0 more precise : bea and sec alternate:

= SF = Switch (sec and not bea, bea and not sec);
BF = Switch (bea and not sec, sec and not bea);
assume = (SF => not sec) and (BF => not bea);

Synchronous Languages
10/01/2012 Introdution

i Model Checking with observers

Observers in Scade

P: aircraft autopilot and security system

alarm

aircraft_altitude P landing_order
_|aircraft_altitude <
~ L T
200 and _L
landing_order not | implies
()
alarm

Synchronous Languages
10/01/2012 Introdution

