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Critical Software 

 Roughly speaking a critical system is a 
system whose failure could have serious 
consequences 

 Nuclear technology 

 Transportation 

Automotive 

Train 

Avionics 

 ………… 
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Critical Software (2) 

 In addition , other consequences are 
relevant to determine the critical aspect of 
a software: 

Financial aspect 

 Loosing of equipment, bug correction 

 Equipment callback (automotive) 

Bad advertising 

 Intel famous bug 
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How Develop critical software ? 

Classical Development  V Cycle  

investigation 
Qualification 
    in laboratory 
    in operation 

specification 

design 

development tests 

integration 

validation 

tests white box 

tests  black box 

tests of integrated system 
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How Develop Critical Software ?  

 Cost of critical software development: 
 Specification : 10% 

 Design: 10% 

 Development: 25% 

 Integration tests: 5% 

 Validation: 50% 

 Fact: 

Earlier an error is detected, more expensive its 
correction is. 
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Cost of Error Correction 

error detection time 

cost of 
error 

correction 

Put the effort  on the upstream phase 

development based on models 
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How Develop Critical Software ?  

 Goals of critical software specification: 

Define application needs 

  specific domain engineers 

Allowing application development 

 Coherency 

 Completeness 

Allowing application functional validation 

 Express properties to be validated 

 
 Formal models usage 
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Critical software specification 

 First Goal: must yield a formal description 
of the application needs: 

Standard to allowing communication between 
computer science engineers and non computer 
science ones 

General enough to allow different  kinds of 
application: 

 Synchronous (and/or) 

 Asynchronous (and/or) 

 Algorithmic 



10/01/2012 

Synchronous Languages 
Introdution 

Example of bad understanding 

Nasa climate 
orbiter was lost 
September 23, 

1999 

Nasa lost a $125 million Mars Orbiter 
because one engineering team used 
metric units while another used 
English metrics for a key spacecraft 
operation 

For that reason, information failed 
to transfer between the Mars 
Climate Orbiter spacecraft team in 
Colorado and the mission 
navigation team in California 
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Critical software specification  

 Second Goal: allowing errors detection 
carried out upstream: 

Validation of the specification: 

 Coherency 

 Completeness 

 Proofs  

Test 

 Quick prototype development 

 Specification simulation 
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Example of non completeness 

From Ariane 5: 

helium tank 
low 

hydrogen tank 
low 

action action 

Simultaneous 
events ? 

unspecified action 



10/01/2012 

Synchronous Languages 
Introdution 

Critical Software Specification (3) 

 Third goal: make easier the  transition from  
specification to design (refinement) 

Reuse of specification simulation tests 

Formalization of design 

Code generation 

 Sequential/distributed 

 Toward a target language 

 Embedded/qualified code 
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Relying on Formal Methods 

test reuse 
test coverage 

test generation 
MODEL 

proofs 

code 

automatic code 
generation 

functional 
validation 

abstract 
interpretation 

simulation 

no more 
integration tests 
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Synchronous Languages Verification 
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Critical Software Validation 

 What is a correct software? 

No execution errors, time constraints 
respected, compliance of results. 

 Solutions: 

At model level : 

 Simulation 

 Formal proofs 

At implementation level: 

 Test 

 Abstract interpretation 
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Validation Methods 

 Testing 

Run the program on set of inputs and check 
the results 

 Static Analysis 

Examine the source code to increase 
confidence that it works as intended  

 Formal Verification 

Argue formally that the application always 
works as intended 
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Testing  

 Dynamic verification process applied at 
implementation level. 

 Feed the system (or one if its components) 
with a set of input data values: 

Input data set not too large to avoid huge time 
testing procedure. 

Maximal coverage of different cases required. 
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Testing (2) 

Program Testing 

Concrete semantics 

Test coverage errors 

all program executions 

executions tested ok 

undetected 
failure 

“Testing only highlights 
bugs but not ensure their 
absence “ (E. Dijkstra) 
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Static Analysis 

 The aim of static analysis is to search for 
errors without running the program. 

  Abstract interpretation = replace data of 
the program by an abstraction in order to 
be able to compute program properties. 

 Abstraction must ensure : 

A(P) “correct”  P correct 

 But A(P) “incorrect”   ? 
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Static Analysis: example 

abstraction: integer by intervals 

1: x:= 1; 

2: while (x < 1000) { 

3:   x := x+1; 

4: } 

x1 = [1,1] 

x2 = x1 U x3 ∩ [-∞, 999] 

x3 = x2  [1,1] 

x4 = x1 U x3  ∩ [1000, ∞] 

Abstract interpretation theory  values are fix 

point equation solutions. 
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Formal verification 

 What about functional validation ? 

Does the program compute the expected 
outputs? 

Respect of time constraints (temporal 
properties)  

Intuitive partition of temporal properties: 

 Safety properties: something bad never happens 

 Liveness properties: something good eventually 
happens 
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Safety and Liveness Properties 

 Example: the beacon counter in a train: 

Count the difference between beacons and 
seconds 

Decide when the train is ontime, late, early 
node train (sec, bea : bool) returns (ontime, early, late: bool) 
   let 
        diff = (0 ->pre diff) + (if bea then 1 else 0) + (if sec then -1 else 0); 
        early = (true -> pre ontime) and (diff > 3) or 
                    (false -> pre early) and (diff > 1); 
        late  = (true -> pre ontime) and (diff < -3)  or 
                   (false -> pre late) and (diff < -1); 
        ontime = not (early or late); 
   tel 
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Safety and Liveness Properties 

 Some properties: 

1. It is impossible to be late and early; 

2.  It is impossible to directly pass from late to 
early; 

3. It is impossible to remain late only one instant; 

4. If the train stops, it will eventually get late 

 Properties 1, 2, 3 : safety 

 Property 4 : liveness 

It refers to unbound future 
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Safety and Liveness Properties 
Checking 

 Use of model checking techniques 

 Model checking goal: prove safety and 
liveness properties of a system in analyzing 
a model of the system. 

 Model checking techniques require: 

 model of the system  

 express properties 

 algorithm to check properties on the model (  
decidability) 
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Model Checking Techniques 

 Model = automata which is the set of  
program behaviors 

 Properties expression = temporal logic: 

 LTL : liveness properties  

 CTL: safety properties 

 Algorithm = 

 LTL : algorithm  exponential wrt the formula 
size and linear wrt automata size. 

CTL: algorithm linear wrt formula size  and wrt 
automata size 
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Properties Checking 

 Liveness Property  : 

   automata  B( ) 

 L(B( )) =   décidable 

  |= M  : L(M  B(~ )) =  

  Scade  allows  only to verify safety 
properties, thus we will study such 
properties verification techniques. 
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Safety Properties 

 CTL formula characterization: 

Atomic formulas 

Usual logic operators: not, and, or ( )  

Specific temporal operators: 

 EX , EF , EG  

 AX , AF , AG  

 EU( 1 , 2), AU( 1 , 2) 
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Safety Properties Verification (1) 

 Mathematical framework:  
 S : finite state, (P (S), ) is a complete lattice 

with S as greater element and  as least one. 

 f : P (S)              P (S) : 

 f is monotonic iff  x,y  P (S), x  y  f(x)  f(y) 

  f is -continue iff for each decreasing sequence  
f(  xi) =  f(xi) 

  f is -continue iff for each increasing sequence   
f(  xi) =  f(xi) 
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Safety Properties Verification (2) 

 Mathematical framework:  

 if S is finite then monotonic   -continue et 
-continue. 

  x is a fix  point iff of f iff f(x) = x 

x is a least fix point (lfp) iff y  such that     
f(y) = y, x  y 

x is a greatest fix point (gfp) iff y  such that     
f(y) = y, y  x 
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Safety Properties Verification (3) 

 Theorem: 

f monotonic  f has a lfp (resp glp) 

  lfp(f) =  fn( ) 

 gfp(f) =  fn(S) 

 

Fixpoints are limits of approximations  
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Safety Properties Verification (4) 

 We call Sat( ) the set of states where  is 
true. 

  M |=     iff sinit  Sat( ). 

 Algorithm: 
 Sat( )  = { s |  |= s} 

  Sat(not ) = S\Sat( ) 

  Sat( 1 or 2) = Sat( 1) U Sat( 2) 

  Sat (EX ) =  {s |  t  Sat( ) , s → t}   (Pre Sat( )) 

  Sat (EG ) = gfp ( (x) =  Sat( )  Pre(x)) 

  Sat (E( 1 U 2)) = lfp ( (x) = Sat( 2) U (Sat( 1)  
Pre(x)) 
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Example 

s0 
s1 

s2 

s3 s4 

atomic formulas: a, b, c a b 

a,b,c 

c 
b,c 

EG (a or b)  gfp ( (x) =  Sat( )  Pre(x)) 

({s0, s1, s2, s3, s4}) = Sat (a or b)  Pre({s0, s1, s2, s3, s4}) 

({s0, s1, s2, s3, s4}) = {s0, s1, s2, s4}  {s0, s1, s2, s3, s4} 

({s0, s1, s2, s3, s4}) = {s0, s1, s2, s4} 
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Example 

s0 
s1 

s2 

s3 s4 

atomic formulas: a, b, c a b 

a,b,c 

c 
b,c 

EG (a or b) ({s0, s1, s2, s3, s4}) = {s0, s1, s2, s4} 

({s0, s1, s2, s4}) = Sat (a or b)  Pre({s0, s1, s2,, s4}) 

({s0, s1, s2,  s4}) = {s0, s1, s2, s4} 

S0 |= EG( a or b) 
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Model checking implementation 

 Problem: the size of automata 

 Solution: symbolic model checking 

 Usage of BDD (Binary Decision Diagram) to 
encode both automata and formula. 

 Each Boolean function  has a unique 
representation 

 Shannon decomposition: 
 f(x0,x1,…,xn) = f(1, x1,…., xn) v f(0, x1,…,xn) 
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Model Checking Implementation 

 When applying  recursively Shannon 
decomposition on all variables, we obtain a 
tree where leaves are either 1 or 0. 

 BDD  are: 

A concise representation of the Shannon tree 

 no useless node (if x then g else g  g) 

Share common sub graphs 
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Model Checking Implementation (2) 

(x1  x0) v (( x1 v y1)  (x0  y0)) 

x0 

x1 

y0 

y1 y1 

y0 

y1 y1 

0 0 0 0 0 1 0 1 

x1 

y0 

y1 y1 

y0 

y1 y1 

0 1 0 0 0 1 1 

0 1 

1 
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Model Checking Implementation (2) 

(x1  x0) v (( x1 v y1)  (x0  y0)) 

x0 

x1 

y0 

y1 y1 

y0 

y1 y1 

0 0 0 0 0 1 0 1 

x1 

y0 

y1 y1 

y0 

y1 y1 

0 1 0 0 0 1 1 

0 1 

1 
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Model Checking Implementation (2) 

(x1  x0) v (( x1 v y1)  (x0  y0)) 

x0 

x1 

y0 

y1 y1 

0 1 0 1 

x1 

y0 

y1 y1 

y0 

y1 y1 

0 1 0 0 0 1 1 

0 1 

1 

0 
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Model Checking Implementation (2) 

(x1  x0) v (( x1 v y1)  (x0  y0)) 

x0 

x1 

y1 

0 1 

x1 

y0 

y1 y1 

y0 

y1 y1 

0 1 0 0 0 1 1 

0 1 

1 

0 
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Model Checking Implementation (2) 

(x1  x0) v (( x1 v y1)  (x0  y0)) 

x0 

x1 

y1 

0 1 

x1 

y0 

y1 y1 

y0 

y1 

0 1 0 1 1 

0 1 

1 

0 

0 
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Model Checking Implementation (2) 

(x1  x0) v (( x1 v y1)  (x0  y0)) 

x0 

x1 

y1 

0 1 

x1 

y0 

y1 y1 

y0 

y1 

0 1 0 1 1 

0 1 

1 

0 

0 
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Model Checking Implementation (2) 

(x1  x0) v (( x1 v y1)  (x0  y0)) 

x0 

x1 

y1 

0 1 

x1 

y0 

y1 

y0 

1 

0 1 

1 

0 

0 
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Model Checking Implementation (2) 

(x1  x0) v (( x1 v y1)  (x0  y0)) 

x0 

x1 

y1 

0 1 

x1 

y0 
y0 

0 1 

0 

0 1 
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Model Checking Implementation (2) 

(x1  x0) v (( x1 v y1)  (x0  y0)) 

x0 

x1 

y1 

1 

x1 

y0 
y0 

0 1 

0 
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Model Checking Implementation(3) 

 Implicit representation of the of states set 
and of the transition relation of automata 
with BDD. 

  BDD allows 
 canonical representation 

 test of emptiness immediate (bdd =0) 

 complementarity immediate (1 = 0) 

 union and intersection  not immediate 

 Pre immediate 
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 Model Checking Implementation (4) 

 But BDD efficiency depends on the number 
of variables 

 Other method: SAT-Solver 

Sat-solvers answer the question: given a 
propositional formula, is there exist a valuation 
of the formula variables such that this formula 
holds 

 first algorithm (DPLL) exponential (1960)  
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 Model Checking Implementation (4) 

 SAT-Solver algorithm: 

formula  CNF formula  set of clauses 

heuristics to choose variables 

deduction engine: 

 propagation  

 specific reduction rule application (unit clause) 

 Others reduction rules 

 conflict analysis + learning 
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Model Checking  Implementation (5) 

 SAT-Solver usage: 

 encoding of the paths  of length k by 
propositional formulas 

 the existence of a path of length k (for a given 
k) where a temporal property  is true can be 
reduce to the satisfaction of a propositional 
formula  

 theorem: given  a temporal property and M 
a model, then M |=    n  such that           
M |= n   ( n < |S| . 2 | |) 
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Bounded Model Checking 

 SAT-Solver are used in complement of 
implicit (BDD based) methods. 

 M |=  

verify ¬  on all paths of length k (k bounded) 

 useful to quickly extract counter examples  
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Model Checking with Observers 

 Express safety properties as observers. 

 An observer is a program which observes 
the program and outputs ok when the 
property holds and failure when its fails 

program 

observer 

inputs outputs 

ok 
failure 
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Properties Validation 

 Taking into account the environment 

without any assumption on the environment, 
proving properties is difficult 

 but the environment is indeterminist 

 Human presence no predictable 

 Fault occurrence 

 … 

Solution: use assertion to make hypothesis on 
the environment and make it determinist 
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Properties Validation (2) 

 Express safety properties as observers. 

 Express constraints about the environment 
as assertions. 

program 

observer 

inputs outputs 

ok 
failure 

assertions assume 
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Properties Validation (3) 

 if assume remains true, then ok  also 
remains true  (or failure false). 

program 

observer 

inputs outputs 

ok 
failure 

assertions assume 
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Reactive Program Model Specification 
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Reactive and Real-Time Systems  

System to be controlled 
+  

Expected behavior 

Implementation 
Objective 
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Reactive System Implementation 

Analysis 
Tools 

System to be controlled 
+  

Expected behavior  

Implementation 

Models 

Generators 

Means 

Property analyses 

Analysis /  
Development 

Platform  
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Reactive & Real-Time Systems 

Reactive & Real-

Time Systems

Application Areas

Features

Development

Transportation

Telephony

Industrial process 

control

Automotive

Avionics

Control

Communications

Signal Processing

Image Processing

….

Smart Sensors

Control

Reactive

Real-Time

Embedded

Modeling

Analysis

Programming

Validation
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Synchronous Approach to Reactive 
System Programming 

Synchronous 

Approach

Syntax

Semantics

Analysis
prog. style

format

Imperative

Declarative

Textual

Graphical

Esterel 
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Synchronous Approach to Reactive 
System Programming 

Synchronous 

Approach

Syntax

Semantics

Analysis
prog. style

format

Imperative

Declarative

Textual

Graphical

Lustre 
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Synchronous Approach to Reactive 
System Programming 

Synchronous 

Approach

Syntax

Semantics

Analysis
prog. style

format

Imperative

Declarative

Textual

Graphical

Scade 
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Synchronous Approach to Reactive 
System Programming 

Synchronous 

Approach

Syntax

Semantics

Analysis
prog. style

format

Imperative

Declarative

Textual

Graphical

Mathematical 

semantics 

Tools 

Formal validation 
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Synchronous Approach to Reactive 
System Programming 

Synchronous 

Approach

Syntax

Semantics

Analysis
prog. style

format

Imperative

Declarative

Textual

Graphical

Implementation

(++) Safe 

(++) Deterministic     code 

(+-)  Efficient 
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Determinism & Reactivity 

 Determinism: 

The same input sequence always yields  

The same output sequence 

 Reactivity: 

The program must react(1) to any stimulus 

Implies absence of deadlock 

 
(1) Does not necessary generate outputs, the reaction may change  

internal state only. 
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Abstraction 

Reactive SystemR.S.

Sensors

Actuators

Other 

reactive 

systems

Operator

Reactive Program 

Environ-

ment 

Inputs Outputs 

Abstraction 

Signals or Flows = 

Abstraction of 

Communications 
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LUSTRE Declarative Synchronous 
Language             
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Languages 

Declarative languages  

Imperative langages 

Say what IS or what 

SHOULD BE 

Say what MUST BE 

DONE 
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LUSTRE 

  LUSTRE  

It is a very simple language (4 primitive 
operators to express reactions) 

Relies on models familiar to engineers 

 Equation systems 

 Data flow network 

Lends itself to formal verification (it is a kind of 
logical language) 

Very simple (mathematical) semantics 
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Operator Networks 

 LUSTRE  programs can be interpreted as 
networks of operators. 

 Data « flow » to operators where they are 
consumed. Then, the operators generate 
new data. (Data Flow description). 

op1 

op2 

op3 

Operator 

Token 

(data) 
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An example of Data Flow 
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Data Flow 
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Data Flow 
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Data Flow 
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Data Flow 
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Data Flow 
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Functional Point of View 

DIT FFT 

P P’ 

Q Q’ 
*'

*'

k

N

k

N

P

Q

W

W

P Q

P Q
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Flows, Clocks 

 A flow is a pair made of 

A possibly infinite sequence of values of 
a given type 

A clock representing a sequence of 
instants 

X:T      (x1, x2, … , xn,  … ) 
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Language (1) 

Variable : 

typed 

If not an input variable, defined by 1 and 
only 1 equation 

Predefined types: int, bool, real 

tuples: (a,b,c) 

X = E   means  k, xk  = ek  Equation : 

Assertion : 

Boolean expression that should be always 
 true at each instant of its clock. 
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Substitution principle:  
if X = E  then E can be substituted for X 

anywhere in the program and conversely 

Definition principle: 

A variable is fully defined by its declaration 

and the equation in which it appears as a  

left-hand side term 

Language (2) 
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Constants 
0, 1, …, true, false, …,  1.52, ... 

Expressions 

+ 

Imported  

types and  

operators 

: , kc k c c

int 

bool 

real 
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 « Combinational » Lustre 

Data operators 

Arithmetical: +, -, *, /, div, mod 

Logical: and, or, not, xor, => 

Conditional:  if … then … else ... 

Casts: int, real 

YopXYopXkYopX kkk
)(,

« Point-wise » operators 
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« Combinational » Example 

node Average (X,Y:int)  

 returns (M:int); 

let 

 M = (X + Y) / 2; 

tel 

Average 

X:int 

Y:int 

M:int 

, ( ) / 2k k k kk M X Y

Operator 
Flows 

Result 

Definition 
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Example (suite) 

node Average (X,Y:int)  

 returns (M:int); 

var S:int;  -- local variable 

let 

 S = X + Y; -- non significant order 

 M = S / 2; 

tel 

 
By substitution, the behavior is the same 
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« Combinational » Example (2) 

 if operator 

  node Max (a,b : real) returns (m: real) 
let  
    m = if (a >= b) then a else b; 
tel 

functional «if then else »; it is not a 
statement 
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« Combinational » Example (2) 

 if operator 

  node Max (a,b : real) returns (m: real) 
let  
    m = if (a >= b) then a else b; 
tel 

let  
    if (a >= b) then m = a ; 
   else  m = b; 
tel 
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Memorizing 

Take the past into account! 

1 2 1 1( , , , , ) : ( ) nil, , , ,n nX x x x pre X x x

pre (previous): 

-> (initialize):  sometimes call “followed by” 

1 2 1 2

1 2

( , , , , ) , ( , , , , ) :

( ) ( , , , , )

n n

n

X x x x Y y y y

X Y x y y

Undefined value denoting uninitialized memory: nil 



10/01/2012 

Synchronous Languages 
Introdution 

« Sequential » Examples 

 

  

n   =   0   pre(n) +1 

+ 1 

0 

 

pre 

n 
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Sequential » Examples 

node MinMax (X:int) returns (min,max:int); 

let 

 min = X -> if (X < pre min) then X else 
pre min; 

 max = X -> if (X > pre max) then X else 
pre max; 

tel 
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« Review » Example   
  

node Count (init:int) returns (c:int); 
 let c = init -> pre c + 2; tel 
 
 node DoubleCall (even:bool) returns (n:int); 
 let 
  n = if even then Count(0) else 
    Count(1); 
 tel 
 
 Doublecall(ff ff tt tt ff ff tt tt ff) = ? 
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Recursive definitions 

Temporal recursion 

 Usual. Use pre and -> 

 e.g.: nat = 1 -> pre nat + 1 

 

Instantaneous recursion 

 e.g.: X = 1.0 / (2.0 – X) 

 Forbidden in Lustre, even if a solution 
exists! 

 Be carefull with cross-recursion. 
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Clocks 

Basic clock 

 Discrete time induced by the input sequence 

 Derived clocks (slower) 

when (filter operator): 
   E when C is the sub-sequence of E obtained by 
keeping only the values of indexes ek for which 

ck=true 
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Examples of clocks 

Basic cycles 

 

 

C1 

 

Cycles of C1 

 

 

C2 

 

Cycles of C2 

1 

 

 

true 

 

1 

 

 

false 

2 

 

 

false 

 

 

 

 

 

3 

 

 

true 

 

2 

 

 

true 

 

1 

4 

 

 

true 

 

3 

 

 

false 

 

 

5 

 

 

false 

 

 

 

 

 

 

 

6 

 

 

true 

 

4 

 

 

true 

 

2 

7 

 

 

false 

 

 

 

 

 

 

 

8 

 

 

true 

 

5 

 

 

true 

 

3 
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Example of sampling 

nat,odd:int 

halfBaseClock:bool 

nat = 0 -> pre nat +1; 

halfBaseClock =  

 true -> not pre halfBaseClock; 

odd = nat when halfBaseClock; 
nat is a flow on the basic clock; 
odd is a flow on halfBaseClock 

Exercice: write even 
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Interpolation operator 

« converse » of sampling 

current (interpolation) : 
Let E be an expression whose clock is C, current(E)  
is an expression on the clock of C, and its value at 
any instant of this clock is the value of E at the last 
time when c was true. 

current (X when C) ≠ X 

current can yield nil 
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Example of current 

Basic cycles 

 

C 

 

X 

 

Y = X when C 

 

Z = current(Y) 

1 

 

ff 

 

x1 

 

 

 

nil 

2 

 

tt 

 

x2 

 

x2 

 

x2 

3 

 

ff 

 

x3 

 

 

 

x2 

4 

 

tt 

 

x4 

 

x4 

 

x4 

5 

 

ff 

 

x5 

 

 

 

x4 

6 

 

ff 

 

x6 

 

 

 

x4 

7 

 

tt 

 

x7 

 

x7 

 

x7 
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Other examples of current 

X 1 2 3 4 5 6 7 

Y t f t t t f f 

C t t f t t f t 

Z=X when C 

H=Y when C 

T=Z when H 

current T 

current (current T) 
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Other examples of current 

X 1 2 3 4 5 6 7 

Y t f t t t f f 

C t t f t t f t 

Z=X when C 1 2 4 5 7 

H=Y when C 

T=Z when H 

current T 

current (current T) 
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Other examples of current 

X 1 2 3 4 5 6 7 

Y t f t t t f f 

C t t f t t f t 

Z=X when C 1 2 4 5 7 

H=Y when C t f t t f 

T=Z when H 

current T 

current (current T) 
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Other examples of current 

X 1 2 3 4 5 6 7 

Y t f t t t f f 

C t t f t t f t 

Z=X when C 1 2 4 5 7 

H=Y when C t f t t f 

T=Z when H 1 4 5 

current T 

current (current T) 
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Other examples of current 

X 1 2 3 4 5 6 7 

Y t f t t t f f 

C t t f t t f t 

Z=X when C 1 2 4 5 7 

H=Y when C t f t t f 

T=Z when H 1 4 5 

current T 1 1 4 5 5 

current (current T) 
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Other examples of current 

X 1 2 3 4 5 6 7 

Y t f t t t f f 

C t t f t t f t 

Z=X when C 1 2 4 5 7 

H=Y when C t f t t f 

T=Z when H 1 4 5 

current T 1 1 4 5 5 

current (current T) 1 1 1 4 5 5 5 
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The initialization issue 

Y=current(X when C) where C1 = false is 
erroneous. 

Possible solutions: 

Strict discipline: ensure that C1 is always true. 

Force the clock to true at the first instant: 

CC = true -> C; Y=current(X when CC); 

Provide a default value D : 

Y = if C then current(X when C) else  

     D -> pre Y; 
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First programs 
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Bistable 

 Node Switch (on,off:bool) returns (s:bool); 
such that: 

S raises (false to true) if on, and falls (true to 
false) if off 

 must work even off and on are the same 

node Switch (on,off:bool) returns (s:bool) 
let 
    s = if (false    pre s) then not off else on; 
tel 
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Count 

 A node Count (reset, x: bool) returns (c:int) 
such that: 

c is reset to 0 if reset, otherwise it is 
incremented if x 

node Count (reset, x: bool) returns (c:int) 
let 
  c = if reset then 0 
        else if x then (0 -> pre c) + 1 
        else (0 -> pre c) 
tel 
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Counters 

node COUNTER (init, incr:int; reset:bool) 

        returns (n:int); 

let 

   n = init -> if reset then init else 

                  pre(n) + incr; 

tel; 

C 

 

COUNTER(0,2,false) 

 

COUNTER((0,2,false)when C) 

 

COUNTER(0,2,false)when C 

 

tt 

 

0 

 

0 

 

0 

ff 

 

2 

 

 

 

 

tt 

 

4 

 

2 

 

4 

tt 

 

6 

 

4 

 

6 

ff 

 

8 

 

 

 

 

ff 

 

10 

 

 

 

 

tt 

 

12 

 

6 

 

12 
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Undefined at  

the first instant 

initial 

Edges 

node Edge (b:bool) returns (f:bool); 

-- detection of a rising edge 

let 

   f = false -> (b and not pre(b)); 

tel; 

Falling_Edge = Edge(not c); 
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A Stopwatch 

 1 integer output : time 

 3 input buttons: on_off, reset, freeze 

on_off starts and stops the watch 

reset resets the stopwatch (if not running) 

 freeze freezes the displayed time (if running) 

 Local variables 

 running, freezed : bool (Switch instances) 

cpt : int (Count instance) 
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A stopwatch 

node Stopwatch (on_off, reset, freeze: bool) 

returns (time:int) 

var running, freezed: bool; cpt:int 

let 
  running = Switch(on_off, on_off); 
  freezed = Switch(freeze and running, 
                            freeze or on_off); 
  cpt = Count (reset and not running, running); 
  time = if freezed then (0 -> pre time) else cpt; 
tel 
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A Stopwatch with Clocks 
node Stopwatch (on_off, reset, freeze: bool) 
                         returns (time:int) 
var running, freezed : bool; 
      cpt_clock, time_clock : bool; 
      (cpt : int) when cpt_clock; 
let 
   running = Switch(on_off, on_off); 
   freezed = Switch ( freeze and running, 
                               freeze or on_off); 
   cpt_clock = true -> reset or running; 
   cpt = Count ((not running, true) when cpt_clock); 
   time_clock = true -> not freezed; 
   time = current(current(cpt) when time_clock); 
tel 
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Modulo Counter 

node Counter (incr:bool, modulo : int)  
                     returns (cpt:int) 
 
  let 
     cpt = 0 -> if incr  
                     then MOD(pre (cpt) +1, modulo) 
                     else pre (cpt); 
  tel 
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Modulo Counter with Clock 

node ModuloCounter (incr:bool, modulo : int)  
                     returns (cpt:int, 
                                  modulo_clock: bool) 
  let 
     cpt = 0 -> if incr  
                     then MOD(pre (cpt) +1, modulo) 
                     else pre (cpt); 
     modulo_clock = false ->  
                        pre(cpt) <> MOD(pre(cpt)+1); 
   tel 
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Timer 

node Timer (dummy:bool) 
                  returns (hour, minute, second:bool) 
var hour_clock, minute_clock, day_clock; 
let 
   (second, minute_clock) = ModuloCounter(true, 60); 
   (minute, hour_clock) = 
                             ModuloCounter(minute_clock,60); 
   (hour, day_clock) = 
                             ModuloCounter(hour_clock, 24); 
tel 
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Numerical Examples 

 Integrator node: 

f  : real function and Y its integrated value 
using the trapezoid method: 

 F, STEP : 2 real such that: 

Fn = f(xn)  and xn+1 =  xn + STEP n+1 

 
Yn+1 = Yn + (Fn + Fn+1) * STEP n+1/2 
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Numerical Examples 

node integrator (F, STEP, init : real) 

            returns (Y : real); 

let 

   Y =  init ->pre(Y) + ((F + pre(F))*STEP)/2.0 

tel 
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Numerical Examples 

node sincos (omega : real) 

      returns (sin, cos : real); 

let 

  sin = omega * integrator(cos, 0.1, 0.0); 

  cos = 1 – omega * integrator(sin, 0.1, 0.0); 

tel 
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Numerical Examples 

node sincos (omega : real) 

      returns (sin, cos : real); 

let 

  sin = omega * integrator(cos, 0.1, 0.0); 

  cos = 1 – omega * integrator(   , 0.1, 0.0); 

tel 

(0.0 ->pre(sin)) 
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Safety and Liveness Properties 

 Example: the beacon counter in a train: 

Count the difference between beacons and 
seconds 

Decide when the train is ontime, late, early 
node train (sec, bea : bool) returns (ontime, early, late: bool) 
   let 
        diff = (0 ->pre diff) + (if bea then 1 else 0) + (if sec then -1 else 0); 
        early = (true -> pre ontime) and (diff > 3) or 
                    (false -> pre early) and (diff > 1); 
        late  = (true -> pre ontime) and (diff < -3)  or 
                   (false -> pre late) and (diff < -1); 
        ontime = not (early or late); 
   tel 
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 Train Safety Properties 

 It is impossible to be late and early; 

 ok = not (late and early) 

 It is impossible to directly pass from late to 
early; 

 ok = true -> (not early and pre late); 

 It is impossible to remain late only one 
instant; 

 Plate = false -> pre late;                                         
PPlate = false -> pre Plate;                                                     
ok = not (not late and Plate and not PPlate); 
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Train Assumptions 

 property = assumption + observer: “ if the 
train keeps the right speed, it remains on 
time”   

 observer =  ok = ontime 

 assumption: 

naïve: assume = (bea = sec); 

 more precise : bea and sec alternate: 

 SF = Switch (sec and  not bea, bea and not sec);         
BF = Switch (bea and not sec, sec and not bea);        
assume = (SF => not sec) and (BF => not bea); 

 

 



10/01/2012 

Synchronous Languages 
Introdution 

Model Checking with observers  

Observers in Scade 

P: aircraft autopilot and security system 

P aircraft_altitude landing_order 

 aircraft_altitude 

200 

landing_order not 

alarm 

alarm 

and 

implies 
 


