
Synchronous Languages:
Embedded Critical Real Time Software

A. Ressouche*

 (*) Inria Sophia Antipolis-Méditerranée

10/01/2012

Synchronous Languages
Introdution

Critical Software

 Roughly speaking a critical system is a
system whose failure could have serious
consequences

 Nuclear technology

 Transportation

Automotive

Train

Avionics

 …………

10/01/2012

Synchronous Languages
Introdution

Critical Software (2)

 In addition , other consequences are
relevant to determine the critical aspect of
a software:

Financial aspect

 Loosing of equipment, bug correction

 Equipment callback (automotive)

Bad advertising

 Intel famous bug

10/01/2012

Synchronous Languages
Introdution

How Develop critical software ?

Classical Development V Cycle

investigation
Qualification
 in laboratory
 in operation

specification

design

development tests

integration

validation

tests white box

tests black box

tests of integrated system

10/01/2012

Synchronous Languages
Introdution

How Develop Critical Software ?

 Cost of critical software development:
 Specification : 10%

 Design: 10%

 Development: 25%

 Integration tests: 5%

 Validation: 50%

 Fact:

Earlier an error is detected, more expensive its
correction is.

10/01/2012

Synchronous Languages
Introdution

Cost of Error Correction

error detection time

cost of
error

correction

Put the effort on the upstream phase

development based on models

10/01/2012

Synchronous Languages
Introdution

How Develop Critical Software ?

 Goals of critical software specification:

Define application needs

 specific domain engineers

Allowing application development

 Coherency

 Completeness

Allowing application functional validation

 Express properties to be validated

 Formal models usage

10/01/2012

Synchronous Languages
Introdution

Critical software specification

 First Goal: must yield a formal description
of the application needs:

Standard to allowing communication between
computer science engineers and non computer
science ones

General enough to allow different kinds of
application:

 Synchronous (and/or)

 Asynchronous (and/or)

 Algorithmic

10/01/2012

Synchronous Languages
Introdution

Example of bad understanding

Nasa climate
orbiter was lost
September 23,

1999

Nasa lost a $125 million Mars Orbiter
because one engineering team used
metric units while another used
English metrics for a key spacecraft
operation

For that reason, information failed
to transfer between the Mars
Climate Orbiter spacecraft team in
Colorado and the mission
navigation team in California

10/01/2012

Synchronous Languages
Introdution

Critical software specification

 Second Goal: allowing errors detection
carried out upstream:

Validation of the specification:

 Coherency

 Completeness

 Proofs

Test

 Quick prototype development

 Specification simulation

10/01/2012

Synchronous Languages
Introdution

Example of non completeness

From Ariane 5:

helium tank
low

hydrogen tank
low

action action

Simultaneous
events ?

unspecified action

10/01/2012

Synchronous Languages
Introdution

Critical Software Specification (3)

 Third goal: make easier the transition from
specification to design (refinement)

Reuse of specification simulation tests

Formalization of design

Code generation

 Sequential/distributed

 Toward a target language

 Embedded/qualified code

10/01/2012

Synchronous Languages
Introdution

Relying on Formal Methods

test reuse
test coverage

test generation
MODEL

proofs

code

automatic code
generation

functional
validation

abstract
interpretation

simulation

no more
integration tests

10/01/2012

Synchronous Languages
Introdution

Synchronous Languages Verification

10/01/2012

Synchronous Languages
Introdution

Critical Software Validation

 What is a correct software?

No execution errors, time constraints
respected, compliance of results.

 Solutions:

At model level :

 Simulation

 Formal proofs

At implementation level:

 Test

 Abstract interpretation

10/01/2012

Synchronous Languages
Introdution

Validation Methods

 Testing

Run the program on set of inputs and check
the results

 Static Analysis

Examine the source code to increase
confidence that it works as intended

 Formal Verification

Argue formally that the application always
works as intended

10/01/2012

Synchronous Languages
Introdution

Testing

 Dynamic verification process applied at
implementation level.

 Feed the system (or one if its components)
with a set of input data values:

Input data set not too large to avoid huge time
testing procedure.

Maximal coverage of different cases required.

10/01/2012

Synchronous Languages
Introdution

Testing (2)

Program Testing

Concrete semantics

Test coverage errors

all program executions

executions tested ok

undetected
failure

“Testing only highlights
bugs but not ensure their
absence “ (E. Dijkstra)

10/01/2012

Synchronous Languages
Introdution

Static Analysis

 The aim of static analysis is to search for
errors without running the program.

 Abstract interpretation = replace data of
the program by an abstraction in order to
be able to compute program properties.

 Abstraction must ensure :

A(P) “correct” P correct

 But A(P) “incorrect” ?

10/01/2012

Synchronous Languages
Introdution

Static Analysis: example

abstraction: integer by intervals

1: x:= 1;

2: while (x < 1000) {

3: x := x+1;

4: }

x1 = [1,1]

x2 = x1 U x3 ∩ [-∞, 999]

x3 = x2 [1,1]

x4 = x1 U x3 ∩ [1000, ∞]

Abstract interpretation theory values are fix

point equation solutions.

10/01/2012

Synchronous Languages
Introdution

Formal verification

 What about functional validation ?

Does the program compute the expected
outputs?

Respect of time constraints (temporal
properties)

Intuitive partition of temporal properties:

 Safety properties: something bad never happens

 Liveness properties: something good eventually
happens

10/01/2012

Synchronous Languages
Introdution

Safety and Liveness Properties

 Example: the beacon counter in a train:

Count the difference between beacons and
seconds

Decide when the train is ontime, late, early
node train (sec, bea : bool) returns (ontime, early, late: bool)
 let
 diff = (0 ->pre diff) + (if bea then 1 else 0) + (if sec then -1 else 0);
 early = (true -> pre ontime) and (diff > 3) or
 (false -> pre early) and (diff > 1);
 late = (true -> pre ontime) and (diff < -3) or
 (false -> pre late) and (diff < -1);
 ontime = not (early or late);
 tel

10/01/2012

Synchronous Languages
Introdution

Safety and Liveness Properties

 Some properties:

1. It is impossible to be late and early;

2. It is impossible to directly pass from late to
early;

3. It is impossible to remain late only one instant;

4. If the train stops, it will eventually get late

 Properties 1, 2, 3 : safety

 Property 4 : liveness

It refers to unbound future

10/01/2012

Synchronous Languages
Introdution

Safety and Liveness Properties
Checking

 Use of model checking techniques

 Model checking goal: prove safety and
liveness properties of a system in analyzing
a model of the system.

 Model checking techniques require:

 model of the system

 express properties

 algorithm to check properties on the model (
decidability)

10/01/2012

Synchronous Languages
Introdution

Model Checking Techniques

 Model = automata which is the set of
program behaviors

 Properties expression = temporal logic:

 LTL : liveness properties

 CTL: safety properties

 Algorithm =

 LTL : algorithm exponential wrt the formula
size and linear wrt automata size.

CTL: algorithm linear wrt formula size and wrt
automata size

10/01/2012

Synchronous Languages
Introdution

Properties Checking

 Liveness Property :

 automata B()

 L(B()) = décidable

 |= M : L(M B(~)) =

 Scade allows only to verify safety
properties, thus we will study such
properties verification techniques.

10/01/2012

Synchronous Languages
Introdution

Safety Properties

 CTL formula characterization:

Atomic formulas

Usual logic operators: not, and, or ()

Specific temporal operators:

 EX , EF , EG

 AX , AF , AG

 EU(1 , 2), AU(1 , 2)

10/01/2012

Synchronous Languages
Introdution

Safety Properties Verification (1)

 Mathematical framework:
 S : finite state, (P (S),) is a complete lattice

with S as greater element and as least one.

 f : P (S) P (S) :

 f is monotonic iff x,y P (S), x y f(x) f(y)

 f is -continue iff for each decreasing sequence
f(xi) = f(xi)

 f is -continue iff for each increasing sequence
f(xi) = f(xi)

10/01/2012

Synchronous Languages
Introdution

Safety Properties Verification (2)

 Mathematical framework:

 if S is finite then monotonic -continue et
-continue.

 x is a fix point iff of f iff f(x) = x

x is a least fix point (lfp) iff y such that
f(y) = y, x y

x is a greatest fix point (gfp) iff y such that
f(y) = y, y x

10/01/2012

Synchronous Languages
Introdution

Safety Properties Verification (3)

 Theorem:

f monotonic f has a lfp (resp glp)

 lfp(f) = fn()

 gfp(f) = fn(S)

Fixpoints are limits of approximations

10/01/2012

Synchronous Languages
Introdution

Safety Properties Verification (4)

 We call Sat() the set of states where is
true.

 M |= iff sinit Sat().

 Algorithm:
 Sat() = { s | |= s}

 Sat(not) = S\Sat()

 Sat(1 or 2) = Sat(1) U Sat(2)

 Sat (EX) = {s | t Sat() , s → t} (Pre Sat())

 Sat (EG) = gfp ((x) = Sat() Pre(x))

 Sat (E(1 U 2)) = lfp ((x) = Sat(2) U (Sat(1)
Pre(x))

10/01/2012

Synchronous Languages
Introdution

Example

s0
s1

s2

s3 s4

atomic formulas: a, b, c a b

a,b,c

c
b,c

EG (a or b) gfp ((x) = Sat() Pre(x))

({s0, s1, s2, s3, s4}) = Sat (a or b) Pre({s0, s1, s2, s3, s4})

({s0, s1, s2, s3, s4}) = {s0, s1, s2, s4} {s0, s1, s2, s3, s4}

({s0, s1, s2, s3, s4}) = {s0, s1, s2, s4}

10/01/2012

Synchronous Languages
Introdution

Example

s0
s1

s2

s3 s4

atomic formulas: a, b, c a b

a,b,c

c
b,c

EG (a or b) ({s0, s1, s2, s3, s4}) = {s0, s1, s2, s4}

({s0, s1, s2, s4}) = Sat (a or b) Pre({s0, s1, s2,, s4})

({s0, s1, s2, s4}) = {s0, s1, s2, s4}

S0 |= EG(a or b)

10/01/2012

Synchronous Languages
Introdution

Model checking implementation

 Problem: the size of automata

 Solution: symbolic model checking

 Usage of BDD (Binary Decision Diagram) to
encode both automata and formula.

 Each Boolean function has a unique
representation

 Shannon decomposition:
 f(x0,x1,…,xn) = f(1, x1,…., xn) v f(0, x1,…,xn)

10/01/2012

Synchronous Languages
Introdution

Model Checking Implementation

 When applying recursively Shannon
decomposition on all variables, we obtain a
tree where leaves are either 1 or 0.

 BDD are:

A concise representation of the Shannon tree

 no useless node (if x then g else g  g)

Share common sub graphs

10/01/2012

Synchronous Languages
Introdution

Model Checking Implementation (2)

(x1 x0) v ((x1 v y1) (x0 y0))

x0

x1

y0

y1 y1

y0

y1 y1

0 0 0 0 0 1 0 1

x1

y0

y1 y1

y0

y1 y1

0 1 0 0 0 1 1

0 1

1

10/01/2012

Synchronous Languages
Introdution

Model Checking Implementation (2)

(x1 x0) v ((x1 v y1) (x0 y0))

x0

x1

y0

y1 y1

y0

y1 y1

0 0 0 0 0 1 0 1

x1

y0

y1 y1

y0

y1 y1

0 1 0 0 0 1 1

0 1

1

10/01/2012

Synchronous Languages
Introdution

Model Checking Implementation (2)

(x1 x0) v ((x1 v y1) (x0 y0))

x0

x1

y0

y1 y1

0 1 0 1

x1

y0

y1 y1

y0

y1 y1

0 1 0 0 0 1 1

0 1

1

0

10/01/2012

Synchronous Languages
Introdution

Model Checking Implementation (2)

(x1 x0) v ((x1 v y1) (x0 y0))

x0

x1

y1

0 1

x1

y0

y1 y1

y0

y1 y1

0 1 0 0 0 1 1

0 1

1

0

10/01/2012

Synchronous Languages
Introdution

Model Checking Implementation (2)

(x1 x0) v ((x1 v y1) (x0 y0))

x0

x1

y1

0 1

x1

y0

y1 y1

y0

y1

0 1 0 1 1

0 1

1

0

0

10/01/2012

Synchronous Languages
Introdution

Model Checking Implementation (2)

(x1 x0) v ((x1 v y1) (x0 y0))

x0

x1

y1

0 1

x1

y0

y1 y1

y0

y1

0 1 0 1 1

0 1

1

0

0

10/01/2012

Synchronous Languages
Introdution

Model Checking Implementation (2)

(x1 x0) v ((x1 v y1) (x0 y0))

x0

x1

y1

0 1

x1

y0

y1

y0

1

0 1

1

0

0

10/01/2012

Synchronous Languages
Introdution

Model Checking Implementation (2)

(x1 x0) v ((x1 v y1) (x0 y0))

x0

x1

y1

0 1

x1

y0
y0

0 1

0

0 1

10/01/2012

Synchronous Languages
Introdution

Model Checking Implementation (2)

(x1 x0) v ((x1 v y1) (x0 y0))

x0

x1

y1

1

x1

y0
y0

0 1

0

10/01/2012

Synchronous Languages
Introdution

Model Checking Implementation(3)

 Implicit representation of the of states set
and of the transition relation of automata
with BDD.

 BDD allows
 canonical representation

 test of emptiness immediate (bdd =0)

 complementarity immediate (1 = 0)

 union and intersection not immediate

 Pre immediate

10/01/2012

Synchronous Languages
Introdution

 Model Checking Implementation (4)

 But BDD efficiency depends on the number
of variables

 Other method: SAT-Solver

Sat-solvers answer the question: given a
propositional formula, is there exist a valuation
of the formula variables such that this formula
holds

 first algorithm (DPLL) exponential (1960)

10/01/2012

Synchronous Languages
Introdution

 Model Checking Implementation (4)

 SAT-Solver algorithm:

formula  CNF formula  set of clauses

heuristics to choose variables

deduction engine:

 propagation

 specific reduction rule application (unit clause)

 Others reduction rules

 conflict analysis + learning

10/01/2012

Synchronous Languages
Introdution

Model Checking Implementation (5)

 SAT-Solver usage:

 encoding of the paths of length k by
propositional formulas

 the existence of a path of length k (for a given
k) where a temporal property is true can be
reduce to the satisfaction of a propositional
formula

 theorem: given a temporal property and M
a model, then M |= n such that
M |= n (n < |S| . 2 | |)

10/01/2012

Synchronous Languages
Introdution

Bounded Model Checking

 SAT-Solver are used in complement of
implicit (BDD based) methods.

 M |=

verify ¬ on all paths of length k (k bounded)

 useful to quickly extract counter examples

10/01/2012

Synchronous Languages
Introdution

Model Checking with Observers

 Express safety properties as observers.

 An observer is a program which observes
the program and outputs ok when the
property holds and failure when its fails

program

observer

inputs outputs

ok
failure

10/01/2012

Synchronous Languages
Introdution

Properties Validation

 Taking into account the environment

without any assumption on the environment,
proving properties is difficult

 but the environment is indeterminist

 Human presence no predictable

 Fault occurrence

 …

Solution: use assertion to make hypothesis on
the environment and make it determinist

10/01/2012

Synchronous Languages
Introdution

Properties Validation (2)

 Express safety properties as observers.

 Express constraints about the environment
as assertions.

program

observer

inputs outputs

ok
failure

assertions assume

10/01/2012

Synchronous Languages
Introdution

Properties Validation (3)

 if assume remains true, then ok also
remains true (or failure false).

program

observer

inputs outputs

ok
failure

assertions assume

10/01/2012

Synchronous Languages
Introdution

Reactive Program Model Specification

10/01/2012

Synchronous Languages
Introdution

Reactive and Real-Time Systems

System to be controlled
+

Expected behavior

Implementation
Objective

10/01/2012

Synchronous Languages
Introdution

Reactive System Implementation

Analysis
Tools

System to be controlled
+

Expected behavior

Implementation

Models

Generators

Means

Property analyses

Analysis /
Development

Platform

10/01/2012

Synchronous Languages
Introdution

Reactive & Real-Time Systems

Reactive & Real-

Time Systems

Application Areas

Features

Development

Transportation

Telephony

Industrial process

control

Automotive

Avionics

Control

Communications

Signal Processing

Image Processing

….

Smart Sensors

Control

Reactive

Real-Time

Embedded

Modeling

Analysis

Programming

Validation

10/01/2012

Synchronous Languages
Introdution

Synchronous Approach to Reactive
System Programming

Synchronous

Approach

Syntax

Semantics

Analysis
prog. style

format

Imperative

Declarative

Textual

Graphical

Esterel

10/01/2012

Synchronous Languages
Introdution

Synchronous Approach to Reactive
System Programming

Synchronous

Approach

Syntax

Semantics

Analysis
prog. style

format

Imperative

Declarative

Textual

Graphical

Lustre

10/01/2012

Synchronous Languages
Introdution

Synchronous Approach to Reactive
System Programming

Synchronous

Approach

Syntax

Semantics

Analysis
prog. style

format

Imperative

Declarative

Textual

Graphical

Scade

10/01/2012

Synchronous Languages
Introdution

Synchronous Approach to Reactive
System Programming

Synchronous

Approach

Syntax

Semantics

Analysis
prog. style

format

Imperative

Declarative

Textual

Graphical

Mathematical

semantics

Tools

Formal validation

10/01/2012

Synchronous Languages
Introdution

Synchronous Approach to Reactive
System Programming

Synchronous

Approach

Syntax

Semantics

Analysis
prog. style

format

Imperative

Declarative

Textual

Graphical

Implementation

(++) Safe

(++) Deterministic code

(+-) Efficient

10/01/2012

Synchronous Languages
Introdution

Determinism & Reactivity

 Determinism:

The same input sequence always yields

The same output sequence

 Reactivity:

The program must react(1) to any stimulus

Implies absence of deadlock

(1) Does not necessary generate outputs, the reaction may change

internal state only.

10/01/2012

Synchronous Languages
Introdution

Abstraction

Reactive SystemR.S.

Sensors

Actuators

Other

reactive

systems

Operator

Reactive Program

Environ-

ment

Inputs Outputs

Abstraction

Signals or Flows =

Abstraction of

Communications

10/01/2012

Synchronous Languages
Introdution

LUSTRE Declarative Synchronous
Language

10/01/2012

Synchronous Languages
Introdution

Languages

Declarative languages

Imperative langages

Say what IS or what

SHOULD BE

Say what MUST BE

DONE

10/01/2012

Synchronous Languages
Introdution

LUSTRE

 LUSTRE

It is a very simple language (4 primitive
operators to express reactions)

Relies on models familiar to engineers

 Equation systems

 Data flow network

Lends itself to formal verification (it is a kind of
logical language)

Very simple (mathematical) semantics

10/01/2012

Synchronous Languages
Introdution

Operator Networks

 LUSTRE programs can be interpreted as
networks of operators.

 Data « flow » to operators where they are
consumed. Then, the operators generate
new data. (Data Flow description).

op1

op2

op3

Operator

Token

(data)

10/01/2012

Synchronous Languages
Introdution

An example of Data Flow

10/01/2012

Synchronous Languages
Introdution

Data Flow

10/01/2012

Synchronous Languages
Introdution

Data Flow

10/01/2012

Synchronous Languages
Introdution

Data Flow

10/01/2012

Synchronous Languages
Introdution

Data Flow

10/01/2012

Synchronous Languages
Introdution

Data Flow

10/01/2012

Synchronous Languages
Introdution

Functional Point of View

DIT FFT

P P’

Q Q’
*'

*'

k

N

k

N

P

Q

W

W

P Q

P Q

10/01/2012

Synchronous Languages
Introdution

Flows, Clocks

 A flow is a pair made of

A possibly infinite sequence of values of
a given type

A clock representing a sequence of
instants

X:T (x1, x2, … , xn, …)

10/01/2012

Synchronous Languages
Introdution

Language (1)

Variable :

typed

If not an input variable, defined by 1 and
only 1 equation

Predefined types: int, bool, real

tuples: (a,b,c)

X = E means k, xk = ek Equation :

Assertion :

Boolean expression that should be always
 true at each instant of its clock.

10/01/2012

Synchronous Languages
Introdution

Substitution principle:
if X = E then E can be substituted for X

anywhere in the program and conversely

Definition principle:

A variable is fully defined by its declaration

and the equation in which it appears as a

left-hand side term

Language (2)

10/01/2012

Synchronous Languages
Introdution

Constants
0, 1, …, true, false, …, 1.52, ...

Expressions

+

Imported

types and

operators

: , kc k c c

int

bool

real

10/01/2012

Synchronous Languages
Introdution

 « Combinational » Lustre

Data operators

Arithmetical: +, -, *, /, div, mod

Logical: and, or, not, xor, =>

Conditional: if … then … else ...

Casts: int, real

YopXYopXkYopX kkk
)(,

« Point-wise » operators

10/01/2012

Synchronous Languages
Introdution

« Combinational » Example

node Average (X,Y:int)

 returns (M:int);

let

 M = (X + Y) / 2;

tel

Average

X:int

Y:int

M:int

, () / 2k k k kk M X Y

Operator
Flows

Result

Definition

10/01/2012

Synchronous Languages
Introdution

Example (suite)

node Average (X,Y:int)

 returns (M:int);

var S:int; -- local variable

let

 S = X + Y; -- non significant order

 M = S / 2;

tel

By substitution, the behavior is the same

10/01/2012

Synchronous Languages
Introdution

« Combinational » Example (2)

 if operator

 node Max (a,b : real) returns (m: real)
let
 m = if (a >= b) then a else b;
tel

functional «if then else »; it is not a
statement

10/01/2012

Synchronous Languages
Introdution

« Combinational » Example (2)

 if operator

 node Max (a,b : real) returns (m: real)
let
 m = if (a >= b) then a else b;
tel

let
 if (a >= b) then m = a ;
 else m = b;
tel

10/01/2012

Synchronous Languages
Introdution

Memorizing

Take the past into account!

1 2 1 1(, , , ,) : () nil, , , ,n nX x x x pre X x x

pre (previous):

-> (initialize): sometimes call “followed by”

1 2 1 2

1 2

(, , , ,) , (, , , ,) :

() (, , , ,)

n n

n

X x x x Y y y y

X Y x y y

Undefined value denoting uninitialized memory: nil

10/01/2012

Synchronous Languages
Introdution

« Sequential » Examples

n = 0 pre(n) +1

+ 1

0

pre

n

10/01/2012

Synchronous Languages
Introdution

Sequential » Examples

node MinMax (X:int) returns (min,max:int);

let

 min = X -> if (X < pre min) then X else
pre min;

 max = X -> if (X > pre max) then X else
pre max;

tel

10/01/2012

Synchronous Languages
Introdution

« Review » Example

node Count (init:int) returns (c:int);
 let c = init -> pre c + 2; tel

 node DoubleCall (even:bool) returns (n:int);
 let
 n = if even then Count(0) else
 Count(1);
 tel

 Doublecall(ff ff tt tt ff ff tt tt ff) = ?

10/01/2012

Synchronous Languages
Introdution

Recursive definitions

Temporal recursion

 Usual. Use pre and ->

 e.g.: nat = 1 -> pre nat + 1

Instantaneous recursion

 e.g.: X = 1.0 / (2.0 – X)

 Forbidden in Lustre, even if a solution
exists!

 Be carefull with cross-recursion.

10/01/2012

Synchronous Languages
Introdution

Clocks

Basic clock

 Discrete time induced by the input sequence

 Derived clocks (slower)

when (filter operator):
 E when C is the sub-sequence of E obtained by
keeping only the values of indexes ek for which

ck=true

10/01/2012

Synchronous Languages
Introdution

Examples of clocks

Basic cycles

C1

Cycles of C1

C2

Cycles of C2

1

true

1

false

2

false

3

true

2

true

1

4

true

3

false

5

false

6

true

4

true

2

7

false

8

true

5

true

3

10/01/2012

Synchronous Languages
Introdution

Example of sampling

nat,odd:int

halfBaseClock:bool

nat = 0 -> pre nat +1;

halfBaseClock =

 true -> not pre halfBaseClock;

odd = nat when halfBaseClock;
nat is a flow on the basic clock;
odd is a flow on halfBaseClock

Exercice: write even

10/01/2012

Synchronous Languages
Introdution

Interpolation operator

« converse » of sampling

current (interpolation) :
Let E be an expression whose clock is C, current(E)
is an expression on the clock of C, and its value at
any instant of this clock is the value of E at the last
time when c was true.

current (X when C) ≠ X

current can yield nil

10/01/2012

Synchronous Languages
Introdution

Example of current

Basic cycles

C

X

Y = X when C

Z = current(Y)

1

ff

x1

nil

2

tt

x2

x2

x2

3

ff

x3

x2

4

tt

x4

x4

x4

5

ff

x5

x4

6

ff

x6

x4

7

tt

x7

x7

x7

10/01/2012

Synchronous Languages
Introdution

Other examples of current

X 1 2 3 4 5 6 7

Y t f t t t f f

C t t f t t f t

Z=X when C

H=Y when C

T=Z when H

current T

current (current T)

10/01/2012

Synchronous Languages
Introdution

Other examples of current

X 1 2 3 4 5 6 7

Y t f t t t f f

C t t f t t f t

Z=X when C 1 2 4 5 7

H=Y when C

T=Z when H

current T

current (current T)

10/01/2012

Synchronous Languages
Introdution

Other examples of current

X 1 2 3 4 5 6 7

Y t f t t t f f

C t t f t t f t

Z=X when C 1 2 4 5 7

H=Y when C t f t t f

T=Z when H

current T

current (current T)

10/01/2012

Synchronous Languages
Introdution

Other examples of current

X 1 2 3 4 5 6 7

Y t f t t t f f

C t t f t t f t

Z=X when C 1 2 4 5 7

H=Y when C t f t t f

T=Z when H 1 4 5

current T

current (current T)

10/01/2012

Synchronous Languages
Introdution

Other examples of current

X 1 2 3 4 5 6 7

Y t f t t t f f

C t t f t t f t

Z=X when C 1 2 4 5 7

H=Y when C t f t t f

T=Z when H 1 4 5

current T 1 1 4 5 5

current (current T)

10/01/2012

Synchronous Languages
Introdution

Other examples of current

X 1 2 3 4 5 6 7

Y t f t t t f f

C t t f t t f t

Z=X when C 1 2 4 5 7

H=Y when C t f t t f

T=Z when H 1 4 5

current T 1 1 4 5 5

current (current T) 1 1 1 4 5 5 5

10/01/2012

Synchronous Languages
Introdution

The initialization issue

Y=current(X when C) where C1 = false is
erroneous.

Possible solutions:

Strict discipline: ensure that C1 is always true.

Force the clock to true at the first instant:

CC = true -> C; Y=current(X when CC);

Provide a default value D :

Y = if C then current(X when C) else

 D -> pre Y;

10/01/2012

Synchronous Languages
Introdution

First programs

10/01/2012

Synchronous Languages
Introdution

Bistable

 Node Switch (on,off:bool) returns (s:bool);
such that:

S raises (false to true) if on, and falls (true to
false) if off

 must work even off and on are the same

node Switch (on,off:bool) returns (s:bool)
let
 s = if (false pre s) then not off else on;
tel

10/01/2012

Synchronous Languages
Introdution

Count

 A node Count (reset, x: bool) returns (c:int)
such that:

c is reset to 0 if reset, otherwise it is
incremented if x

node Count (reset, x: bool) returns (c:int)
let
 c = if reset then 0
 else if x then (0 -> pre c) + 1
 else (0 -> pre c)
tel

10/01/2012

Synchronous Languages
Introdution

Counters

node COUNTER (init, incr:int; reset:bool)

 returns (n:int);

let

 n = init -> if reset then init else

 pre(n) + incr;

tel;

C

COUNTER(0,2,false)

COUNTER((0,2,false)when C)

COUNTER(0,2,false)when C

tt

0

0

0

ff

2

tt

4

2

4

tt

6

4

6

ff

8

ff

10

tt

12

6

12

10/01/2012

Synchronous Languages
Introdution

Undefined at

the first instant

initial

Edges

node Edge (b:bool) returns (f:bool);

-- detection of a rising edge

let

 f = false -> (b and not pre(b));

tel;

Falling_Edge = Edge(not c);

10/01/2012

Synchronous Languages
Introdution

A Stopwatch

 1 integer output : time

 3 input buttons: on_off, reset, freeze

on_off starts and stops the watch

reset resets the stopwatch (if not running)

 freeze freezes the displayed time (if running)

 Local variables

 running, freezed : bool (Switch instances)

cpt : int (Count instance)

10/01/2012

Synchronous Languages
Introdution

A stopwatch

node Stopwatch (on_off, reset, freeze: bool)

returns (time:int)

var running, freezed: bool; cpt:int

let
 running = Switch(on_off, on_off);
 freezed = Switch(freeze and running,
 freeze or on_off);
 cpt = Count (reset and not running, running);
 time = if freezed then (0 -> pre time) else cpt;
tel

10/01/2012

Synchronous Languages
Introdution

A Stopwatch with Clocks
node Stopwatch (on_off, reset, freeze: bool)
 returns (time:int)
var running, freezed : bool;
 cpt_clock, time_clock : bool;
 (cpt : int) when cpt_clock;
let
 running = Switch(on_off, on_off);
 freezed = Switch (freeze and running,
 freeze or on_off);
 cpt_clock = true -> reset or running;
 cpt = Count ((not running, true) when cpt_clock);
 time_clock = true -> not freezed;
 time = current(current(cpt) when time_clock);
tel

10/01/2012

Synchronous Languages
Introdution

Modulo Counter

node Counter (incr:bool, modulo : int)
 returns (cpt:int)

 let
 cpt = 0 -> if incr
 then MOD(pre (cpt) +1, modulo)
 else pre (cpt);
 tel

10/01/2012

Synchronous Languages
Introdution

Modulo Counter with Clock

node ModuloCounter (incr:bool, modulo : int)
 returns (cpt:int,
 modulo_clock: bool)
 let
 cpt = 0 -> if incr
 then MOD(pre (cpt) +1, modulo)
 else pre (cpt);
 modulo_clock = false ->
 pre(cpt) <> MOD(pre(cpt)+1);
 tel

10/01/2012

Synchronous Languages
Introdution

Timer

node Timer (dummy:bool)
 returns (hour, minute, second:bool)
var hour_clock, minute_clock, day_clock;
let
 (second, minute_clock) = ModuloCounter(true, 60);
 (minute, hour_clock) =
 ModuloCounter(minute_clock,60);
 (hour, day_clock) =
 ModuloCounter(hour_clock, 24);
tel

10/01/2012

Synchronous Languages
Introdution

Numerical Examples

 Integrator node:

f : real function and Y its integrated value
using the trapezoid method:

 F, STEP : 2 real such that:

Fn = f(xn) and xn+1 = xn + STEP n+1

Yn+1 = Yn + (Fn + Fn+1) * STEP n+1/2

10/01/2012

Synchronous Languages
Introdution

Numerical Examples

node integrator (F, STEP, init : real)

 returns (Y : real);

let

 Y = init ->pre(Y) + ((F + pre(F))*STEP)/2.0

tel

10/01/2012

Synchronous Languages
Introdution

Numerical Examples

node sincos (omega : real)

 returns (sin, cos : real);

let

 sin = omega * integrator(cos, 0.1, 0.0);

 cos = 1 – omega * integrator(sin, 0.1, 0.0);

tel

10/01/2012

Synchronous Languages
Introdution

Numerical Examples

node sincos (omega : real)

 returns (sin, cos : real);

let

 sin = omega * integrator(cos, 0.1, 0.0);

 cos = 1 – omega * integrator(, 0.1, 0.0);

tel

(0.0 ->pre(sin))

10/01/2012

Synchronous Languages
Introdution

Safety and Liveness Properties

 Example: the beacon counter in a train:

Count the difference between beacons and
seconds

Decide when the train is ontime, late, early
node train (sec, bea : bool) returns (ontime, early, late: bool)
 let
 diff = (0 ->pre diff) + (if bea then 1 else 0) + (if sec then -1 else 0);
 early = (true -> pre ontime) and (diff > 3) or
 (false -> pre early) and (diff > 1);
 late = (true -> pre ontime) and (diff < -3) or
 (false -> pre late) and (diff < -1);
 ontime = not (early or late);
 tel

10/01/2012

Synchronous Languages
Introdution

 Train Safety Properties

 It is impossible to be late and early;

 ok = not (late and early)

 It is impossible to directly pass from late to
early;

 ok = true -> (not early and pre late);

 It is impossible to remain late only one
instant;

 Plate = false -> pre late;
PPlate = false -> pre Plate;
ok = not (not late and Plate and not PPlate);

10/01/2012

Synchronous Languages
Introdution

Train Assumptions

 property = assumption + observer: “ if the
train keeps the right speed, it remains on
time”

 observer = ok = ontime

 assumption:

naïve: assume = (bea = sec);

 more precise : bea and sec alternate:

 SF = Switch (sec and not bea, bea and not sec);
BF = Switch (bea and not sec, sec and not bea);
assume = (SF => not sec) and (BF => not bea);

10/01/2012

Synchronous Languages
Introdution

Model Checking with observers

Observers in Scade

P: aircraft autopilot and security system

P aircraft_altitude landing_order

 aircraft_altitude

200

landing_order not

alarm

alarm

and

implies

