
Verification

Introduction to WComp Validation

WComp Verification

• WComp may be used to design critical

applications

• Ensure a safe usage of WComp wrt

component behaviorcomponent behavior

• Apply techniques used to develop critical

software

Outline

1. Critical system validation

2. Model-checking Techniques

1. Model specification as synchronous models

Introduction to synchronous modeling• Introduction to synchronous modeling

• Introduction to Lustre synchronous language

2. Express and prove properties

3. Application to WComp

Critical Software

A critical software is a software whose failing
has serious consequences:

• Nuclear technology
• Transportation

•Automotive
•Train
•Aircraft construction

…

Exemple: The Patriot Missile

Failure

• On February 25, 1991, during the Golf War, an

american patriot missile battery in Dharam,

Saudi Arabia, failed to track and intercept an Saudi Arabia, failed to track and intercept an

incoming Iracq scud missile. The scud struck

american army baracks, killing 28 soldiers and

injuring around 100 others people.

Exemple: The Patriot Missile

Failure

• A report on the general accounting office,

entitled Patriot Missile Defense: software

problem led to system failure at Dharam problem led to system failure at Dharam

reported on the cause of the failure. It turns

out that the cause was an inaccurate

calculation of the time since boot due to

computer arithmetic errors.

Software Classification

Example of the aeronautics norm
DO178B:

A Catastrophic (human life loss)

B Dangerous (serious injuries, B
loss of goods)

C Major (failure or loss of the

system)

D Minor (without consequence

on the system)

E Without effect

Depending of the level of risk
of the system, different kinds
of verification are required

Software Classification

Minor acceptable situation

Major

Dangerous Unacceptable situation

catastrophic 10-3 / hour 10-6 /

hour

10-9
/hour 10-12

/hour

probabilities probable rare very rare very

improbable

Critical Software

In addition , other consequences are relevant
to determine the critical aspect of a software:

Financial aspect
Loosing of equipment, bug correctionLoosing of equipment, bug correction
Equipment callback (automotive)

Bad advertising
Intel famous bug

How Develop critical software ?

Classical Development U Cycle

investigation
Qualification

in laboratory

in operation

tests of integrated system

specification

design

development tests

integration

validation

tests white box

tests black box

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

How Develop Critical Software ?

• Cost of critical software development:

• Specification : 10%

• Design: 10%

• Development: 25%• Development: 25%

• Integration tests: 5%

• Validation: 50%

• Fact:

– Earlier an error is detected, less expensive its

correction is.

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

How Develop Critical Software ?

• Goals of critical software specification:

– Define application needs

• ⇒ specific domain engineers

– Allowing application development– Allowing application development

• Coherency

• Completeness

– Allowing application functional validation

• Express properties to be validated

⇒ Formal models usage
13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

How Develop Critical Software

test reuse

test coverage

test generation
MODEL

proofs

functional

validation

simulation

proofs

code

automatic code

generation

abstract

interpretation

no more

integration tests

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Application to Wcomp

COMPONENT

MODEL

proofs

functional

validation

simulation

WComp

Bean

automatic code

generation

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Verification

Critical Software Validation

Critical Software Validation

• What is a correct software?
– No execution errors, time constraints

respected, compliance of results.

• Solutions:• Solutions:
– At model level :

• Simulation
• Formal proofs

– At implementation level:
• Test
• Abstract interpretation

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Validation Methods

• Testing

– Run the program on set of inputs and check the

results

• Static Analysis• Static Analysis

– Examine the source code to increase confidence

that it works as intended

• Formal Verification

– Argue formally that the application always works as

intended
13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Formal verification

• What about functional validation ?

– Does the program compute the expected outputs?

– Respect of time constraints (temporal properties)

Intuitive partition of temporal properties:– Intuitive partition of temporal properties:

• Safety properties: something bad never happens

• Liveness properties: something good eventually

happens

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Safety and Liveness

Properties

• Example: the beacon counter in a train:

– Count the difference between beacons and seconds

– Decide when the train is ontime, late, early

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Safety and Liveness

Properties

• Some properties:

1. It is impossible to be late and early;

2. It is impossible to directly pass from late to early;

3. It is impossible to remain late only one instant;3. It is impossible to remain late only one instant;

4. If the train stops, it will eventually get late

• Properties 1, 2, 3 : safety

• Property 4 : liveness

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Safety and Liveness

Properties

• Some properties:

1. It is impossible to be late and early;

2. It is impossible to directly pass from late to early;

3. It is impossible to remain late only one instant;3. It is impossible to remain late only one instant;

4. If the train stops, it will eventually get late

• Properties 1, 2, 3 : safety

• Property 4 : liveness (refer to unbound future)

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Safety and Liveness

Properties Checking

• Use of model checking techniques
• Model checking goal: prove safety and

liveness properties of a system in analyzing
a model of the system.a model of the system.

• Model checking techniques require:
– model of the system
– express properties
– algorithm to check properties on the model (⇒

decidability)

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Model Checking Techniques

• Model = automata which is the set of program
behaviors

• Properties expression = temporal logic:
– LTL : liveness properties – LTL : liveness properties
– CTL: safety properties

• Algorithm =
– LTL : algorithm exponential wrt the formula size

and linear wrt automata size.
– CTL: algorithm linear wrt formula size and wrt

automata size

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Model Checking

Model Specification

Model Checking Technique

• Model = automata which is the set of program
behaviors

• Properties expression = temporal logic:

– LTL : liveness properties

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

– LTL : liveness properties

– CTL: safety properties

• Algorithm =

– LTL : algorithm exponential wrt the formula size and
linear wrt automata size.

– CTL: algorithm linear wrt formula size and wrt
automata size

2513/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Component Models

• WComp Components represent software

specification

• To achieve component behavior verification

we need to build its model well suited to we need to build its model well suited to

software validation

• Component behavior specification with a

Synchronous language

• Specification = model

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Determinism & Reactivity

• Synchronous languages are deterministic and reactive

• Determinism:

The same input sequence always yields

The same output sequenceThe same output sequence

• Reactivity:

The program must react(1) to any stimulus

Implies absence of deadlock

(1) Does not necessary generate outputs, the reaction may change internal state

only.

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Synchronous Hypothesis

• Actually, a synchronous model works on a

logical time.

• The time is

– Discrete

Use N as time base

– Discrete

– Total ordering of instants.

• A reaction executes in one instant.

• Actions that compose the reaction may be

partially ordered.

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Synchronous Hypothesis

• Communications between actors are also

supposed to be instantaneous.

• All parts of a synchronous model receive

exactly the same information (instantaneous exactly the same information (instantaneous

broadcast).

• Outcome: Outputs are simultaneous with

Inputs (they are said to be synchronous)

• Thanks to these strong hypotheses, program

execution is fully deterministic.
13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Reactive ?

• Different ways to “react” to the environment:

– Event driven system:

• Receive events

• Answer by sending events Some systems• Answer by sending events

– Data flow system:

• Receive data continuously

• Answer by treating data continuously also

Some systems
have components of
both kinds

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Event Driven Reactive

System

landing gear door opened gear down

Langing gear management

open gear door push down gear block gear

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Data Flow Reactive System

(Example)

sensors

navigation

P
e
ri
o
d
ic
 p
ro
ce
ss
u
s

• get measures

• where am I ?

Control/Command vehicle

guidance

piloting

operators

P
e
ri
o
d
ic
 p
ro
ce
ss
u
s

• where go I ?

• command computation

• command to operators

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

LUSTRE

LUSTRE is a data flow synchronous language:

• It is a very simple language (4 primitive operators

to express reactions)

• Relies on models familiar to engineers

• Equation systems

• Data flow network

• Lends itself to formal verification (it is a kind of

logical language)

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Operator Networks

• Very simple (mathematical) semantics

• LUSTRE programs can be interpreted as • LUSTRE programs can be interpreted as

networks of operators.

• Data « flow » to operators where they are

consumed. Then, the operators generate new

data. (Data Flow description).

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Operator Networks

• LUSTRE programs can be interpreted as

networks of operators.

• Data « flow » to operators where they are

consumed. Then, the operators generate new consumed. Then, the operators generate new

data. (Data Flow description).

op1

op2

op3

Operator

Token
(data)

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Flows, Clocks

• A flow is a pair made of

– A possibly infinite sequence of values of a

given type

– A clock representing a sequence of instants

X:T (x 1, x2, … , xn, …)

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Language (1)

Variable : (= flow) :

– typed

– If not an input variable, defined by 1 and only 1 – If not an input variable, defined by 1 and only 1

equation

X = E means ∀∀∀∀k, x k = ekEquation :

Assertion : Boolean expression that should be
always true at each instant of its
clock.

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Substitution principle:
if X = E then E can be substituted for X
anywhere in the program and conversely

Language (2)

Definition principle:
A variable is fully defined by its declaration
and the equation in which it appears as a
left-hand side term

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Expressions

Constants

0, 1, …, true , false , …, 1.52 , ...

int

real

+
Imported
types and
operators

: , kc k c cα ⇔ ∀ ∈ =�

int

bool

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

« Combinational » Lustre

Data operators

Arithmetical: +, - , *, /, div , mod
Logical: and , or , not , xor , =>
Conditional: if … then … else ...

YopXYopXkYopX kkk =∀⇔)(,

Conditional: if … then … else ...
Casts: int , real

« Point-wise » operators

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

« Combinational » Example

node Average (X,Y:int)

Average

X:int

Y:int

M:int

operator Input flows

node Average (X,Y:int)

returns (M:int);

let

M = (X + Y) / 2;

tel

, () / 2k k k kk M X Y∀ ∈ = +�

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Result

Definition

« Combinational » Example

• if operator

node Max (a,b : real) returns (m: real)
let

m = if (a >= b) then a else b;m = if (a >= b) then a else b;
tel

functional «if then else »; it is not a
statement

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

« Combinational » Example

• if operator

node Max (a,b : real) returns (m: real)
let

m = if (a >= b) then a else b;m = if (a >= b) then a else b;
tel

let
if (a >= b) then m = a ;
else m = b;

tel

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Memorizing

Take the past into account!

()1 2 1 1(, , , ,) : () nil, , , ,n nX x x x pre X x x −= =L L L L

pre (previous):

()1 2 1 1n n−

-> (initialize): sometimes call “followed by”

1 2 1 2

1 2

(, , , ,) , (, , , ,) :

() (, , , ,)
n n

n

X x x x Y y y y

X Y x y y

= =
− > =

L K L K

L K

Undefined value denoting uninitialized memory: nil

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

« Sequential » Examples

n = 0 → pre(n) +1

0

+1 →

pre

n

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Sequential » Examples

node MinMax (X:int) returns (min,max:int);

let

min = X -> if (X < pre min) then X else pre min;

max = X -> if (X > pre max) then X else pre max;max = X -> if (X > pre max) then X else pre max;

tel

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

« Review » Example

node CT (init:int) returns (c:int);
let c = init -> pre c + 2; tel

node DoubleCall (even:bool) returns (n:int);node DoubleCall (even:bool) returns (n:int);
let

n = if even then CT(0) else
CT(1);

tel

Doublecall(ff ff tt tt ff ff tt tt ff) = ?
13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Recursive definitions

Temporal recursion

Usual. Use pre and ->

e.g.: nat = 1 -> pre nat + 1

Instantaneous recursion

e.g.: X = 1.0 / (2.0 – X)

Forbidden in Lustre, even if a solution exists!

Be carefull with cross-recursion.

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Edges

node Edge (b:bool) returns (f:bool);
-- detection of a rising edge
let

f = false -> (b and not pre (b));
tel;

Undefined at
the first instant

initial

tel;

Falling_Edge = Edge(not c);

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Bistable

• Node Switch (on,off:bool) returns (s:bool);

such that:

– S raises (false to true) if on, and falls (true to false)

if offif off

– must work even off and on are the same

node Switch (on,off:bool) returns (s:bool)
let

s = if (false pre s) then not off else on;
tel

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Count

• A node Count (reset, x: bool) returns (c:int)

such that:

– c is reset to 0 if reset, otherwise it is incremented

if xif x

node Count (reset, x: bool) returns (c:int)
let
c = if reset then 0

else if x then (0 -> pre c) + 1
else (0 -> pre c)

tel
13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Osc and Osc2

node osc (reset: bool) returns (b:int)
let
b = true -> not pre(b);

tel

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

node osc2 (reset: bool) returns (b:int)
let
b = true -> (c and not pre(b)) or

(not c and pre(b));
c = osc(reset);

tel

A Stopwatch

• 1 integer output : time

• 3 input buttons: on_off, reset, freeze

– on_off starts and stops the watch

– reset resets the stopwatch (if not running)

– freeze freezes the displayed time (if running)

• Local variables

– running, freezed : bool (Switch instances)

– cpt : int (Count instance)

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

A stopwatch

node Stopwatch (on_off, reset, freeze: bool)

returns (time:int)

var running, freezed: bool; cpt:int

letlet
running = Switch(on_off, on_off);
freezed = Switch(freeze and running,

freeze or on_off);
cpt = Count (reset and not running, running);
time = if freezed then (0 -> pre time) else cpt;

tel
13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Modulo Counter

node MCounter (incr:bool; modulo : int)
returns (cpt:int);

var count : int;
letlet
count = 0 -> if incr pre (cpt) + 1)

else pre (cpt);
cpt = count mod modulo;

tel

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Modulo Counter with Clock

node MCounterClock (incr:bool; modulo : int)
returns (cpt:int;

modulo_clock: bool);
var count : int;var count : int;
let
count = 0 -> if incr pre (cpt) + 1)

else pre (cpt);
cpt = count mod modulo;
modulo_clock = count <> cpt;

tel
13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Timer

node Timer (dummy:bool)
returns (hour, minute, second:int);

var hour_clock, minute_clock, day_clock : bool;
let
(second, minute_clock) = MCounterClock(true, 60);(second, minute_clock) = MCounterClock(true, 60);
(minute, hour_clock) =

MCounterClock(minute_clock,60);
(hour, dummy_clock) =

MCounterClock(hour_clock, 24);
tel

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Numerical Examples

• Integrator node:

– f : real function and Y its integrated value using

the trapezoid method:

– F, STEP : 2 real such that:– F, STEP : 2 real such that:

Fn = f(xn) and xn+1 = xn + STEP n+1

Yn+1 = Yn + (Fn + Fn+1) * STEP n+1/2

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Numerical Examples

node integrator (F, STEP, init : real)

returns (Y : real);

letlet

Y = init ->pre(Y) + ((F + pre(F))*STEP)/2.0

tel

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Numerical Examples

node sincos (omega : real)

returns (sin, cos : real);

letlet

sin = omega * integrator(cos, 0.1, 0.0);

cos = 1 – omega * integrator(sin, 0.1, 0.0);

tel

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Numerical Examples

node sincos (omega : real)

returns (sin, cos : real);

letlet

sin = omega * integrator(cos, 0.1, 0.0);

cos = 1 – omega * integrator(, 0.1, 0.0);

tel

(0.0 ->pre(sin))
13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Lustre Program Compilation

• Static verifications are performed:

– local and output variables have one equation

definition;

– non recursive node call;– non recursive node call;

– absence of uninitialized expression;

– no cyclic definition (each cyclic definition ⇒ pre

operator usage);

x = if c then y else z;
y = if c then z else x;

structural
deadloack
(not real)

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Lustre Program Compilation

node WD (set, reset, deadline:bool)
returns (alarm:bool);

var is_set:bool;
let

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

let
alarm = is_set and deadline;
is_set = false -> if set then true

else if reset then false else pre(is_set);
assert not(set and reset);

tel.

Lustre Program Compilation

• automaton like code

– choose state variables among:

• boolean expressions resulting from pre operator;

• variables (like _init) associated with some clock whose • variables (like _init) associated with some clock whose

value is true at first instant

Lustre Program Compilation

For WD, we consider 2 state variables:
_init (true, false, false, ….) and pre_is_set

3 states:
S0: _init = true and pre_is_set = nil
S1: _init = false and pre_is_set = false
S2: _init = false and pre_is_set = true

Lustre Program

Compilation

S0: alarm := false;

initial

S1:

_init := false
pre_is_set := false

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Lustre Program

Compilation

S0: alarm := false;

initial alarm = is_set and deadline;
is_set = false -> if set then true

else if reset then false
else pre(is_set);

S1: if set then
alarm:= deadline;
go to S2;

else
alarm := false;
go to S1;

S2:

_init = false;
pre_is_set := true;

¬set

set

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Lustre Program

Compilation

S0: alarm := false;

initial alarm = is_set and deadline;
is_set = false -> if set then true

else if reset then false
else pre(is_set);

S1: if set then
alarm:= deadline;
go to S2;

else
alarm := false;
go to S1;

S2: if set then
alarm := deadline;
go to S2;

else
if reset then

alarm := false;
go to S1;

else
alarm := deadline;

go to S2;

¬set ¬reset

reset

set

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Lustre Program = Model

node WD (set, reset, deadline:bool)
returns (alarm:bool);

var is_set:bool;
let
alarm = is_set and deadline;
is_set = false -> if set then trueis_set = false -> if set then true

else if reset then
false else pre(is_set);
assert not(set and reset);

tel.

S0

S1 S2¬ set

set

¬ resetreset

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Model Checking Technique

Model Checking Technique

• Model = automata which is the set of program
behaviors

• Properties expression = temporal logic:

– LTL : liveness properties

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

– LTL : liveness properties

– CTL: safety properties

• Algorithm =

– LTL : algorithm exponential wrt the formula size and
linear wrt automata size.

– CTL: algorithm linear wrt formula size and wrt
automata size

7113/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Properties Checking

• Liveness Property Φ :

– Φ ⇒ automata B(Φ)

– L(B(Φ)) = ∅ décidable

Φ |= : (⊗ B(~Φ)) = ∅– Φ |= M : L(M ⊗ B(~Φ)) = ∅

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Safety Properties

• CTL formula characterization:

– Atomic formulas

– Usual logic operators: not, and, or (⇒)

Specific temporal operators:– Specific temporal operators:

• EX ∅, EF ∅, EG ∅
• AX ∅, AF ∅, AG ∅
• EU(∅1 ,∅2), AU(∅1 ,∅2)

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Safety Properties Verification

• We call Sat(∅) the set of states where ∅ is true.

• M |= ∅ iff sinit ∈ Sat(∅).

• Algorithm:

•• Sat(Sat(ΦΦ) = { s |) = { s | ΦΦ |= s}|= s}•• Sat(Sat(ΦΦ) = { s |) = { s | ΦΦ |= s}|= s}

•• Sat(not Sat(not ΦΦ) = S) = S\\Sat(Sat(ΦΦ))

•• Sat(Sat(ΦΦ11 or ΦΦ2) = Sat(ΦΦ1) U Sat(1) U Sat(ΦΦ2)2)

•• Sat (EX Sat (EX ΦΦ) = {s |) = {s | ∃∃ t t ∈∈ Sat(Sat(ΦΦ) , s → t} (Pre Sat() , s → t} (Pre Sat(ΦΦ))))

•• Sat (EG Sat (EG ΦΦ) =) = gfpgfp ((ΓΓ(x) = Sat((x) = Sat(ΦΦ)) ∩∩ Pre(x))Pre(x))

•• Sat (E(Sat (E(ΦΦ1 U 1 U ΦΦ2)) = 2)) = lfplfp ((ΓΓ(x) = Sat((x) = Sat(ΦΦ2) U (Sat(2) U (Sat(ΦΦ1) 1) ∩∩ Pre(x))Pre(x))

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Example

s0
s1

s2

s3 s4

atomic formulas: a, b, cab

a,b,c

c
b,c

c

EG (a or b) gfp (Γ(x) = Sat(a or b) ∩ Pre(x))

Γ({s0, s1, s2, s3, s4}) = Sat (a or b) ∩ Pre({s0, s1, s2, s3, s4})

Γ({s0, s1, s2, s3, s4}) = {s0, s1, s2, s4} ∩ {s0, s1, s2, s3, s4}

Γ({s0, s1, s2, s3, s4}) = {s0, s1, s2, s4}

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Example

s0
s1

s2

s3 s4

atomic formulas: a, b, cab

a,b,c
c b,c

EG (a or b) Γ({s0, s1, s2, s3, s4}) = {s0, s1, s2, s4}

Γ({s0, s1, s2, s4}) = Sat (a or b) ∩ Pre({s0, s1, s2,, s4})

Γ({s0, s1, s2, s4}) = {s0, s1, s2, s4}

S0 |= EG(a or b)

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Model Checking with

Observers

• Express safety properties as observers.

• An observer is a program which observes the

program and outputs ok when the property

holds and failure when its failsholds and failure when its fails

program

observer

inputs
outputs

ok

failure

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Model Checking with

observers (2)

Observers in Scade

P: aircraft autopilot and security system

Paircraft_altitude landing_order

alarm
Paircraft_altitude landing_order

<<<<aircraft_altitude

200

landing_order not

alarm

and

implies ΦΦΦΦ

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Edge Satefy Property

node Edge (b: bool) returns (f : bool);

let

f = b and not pre (b);

tel

node Edge_verif (b: bool) returns (prop: bool);node Edge_verif (b: bool) returns (prop: bool);

var res : bool;

let

res = Edge(b);

prop = true -> res and not pre(res);

tel

Train Safety Properties

• Example: the beacon counter in a train:

– Count the difference between beacons and seconds

– Decide when the train is ontime, late, early

node train (sec, bea : bool) returns (ontime, early, late: bool)

let

diff = (0 ->pre diff) + (if bea then 1 else 0) + (if sec then -1 else 0);

early = (true -> pre ontime) and (diff > 3) or

(false -> pre early) and (diff > 1);

late = (true -> pre ontime) and (diff < -3) or

(false -> pre late) and (diff < -1);

ontime = not (early or late);

tel
13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Train Safety Properties

• It is impossible to be late and early;
– ok = not (late and early)

• It is impossible to directly pass from late to
early;early;

– ok = true -> (not early and pre late);

• It is impossible to remain late only one instant;
– Plate = false -> pre late;

PPlate = false -> pre Plate;
ok = not (not late and Plate and not PPlate);

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Properties Validation

• Taking into account the environment

– without any assumption on the environment,

proving properties is difficult

– but the environment is indeterminist– but the environment is indeterminist

• Human presence no predictable

• Fault occurrence

• …

– Solution: use assertion to make hypothesis on the

environment and make it determinist

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Properties Validation (2)

• Express safety properties as observers.
• Express constraints about the environment as

assertions.

assertions assume

program

observer

inputs
outputs

ok

failure

assertions assume

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Properties Validation (3)

• if assume remains true, then ok also
remains true (or failure false).

assertions assume

program

observer

inputs
outputs

ok

failure

assertions assume

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Train Assumptions

• property = assumption + observer: “ if the train

keeps the right speed, it remains on time”

• observer = ok = ontime

• assumption:• assumption:

– naïve: assume = (bea = sec);

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Train Assumptions

• property = assumption + observer: “ if the train

keeps the right speed, it remains on time”

• observer = ok = ontime

• assumption:• assumption:

– more precise : bea and sec alternate:

• SF = Switch (sec and not bea, bea and not sec);

• BF = Switch (bea and not sec, sec and not bea);

assume = (SF => not sec) and (BF => not bea);

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

WComp Component Validation

Component Validation

WComp critical component usage validation

Component Validation

Lustre to WCOMP

file.lus file.lus file.lus file.lus

file.ec

Intermediate format

file.ec

C code
generationfile.c

lustre

simulatorverification

luciole

lesar
xlesar

property =
observer

WCOMP

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Example: monitoring eldery

people at home

Example: Synchronous Monitors

Example: Posture Monitor

node posture (standing, sitting, lying)

returns (warning3, weak-alarm3)

Luciole Lesar

returns (warning3, weak-alarm3)

let

warning3 = standing and noy lying

or not standing and

sitting and not lying;

weak-alarm3 = not standing and

not sitting and lying;

tel

Example: Posture Monitor

Luciole Lesar

posture

node

Example: camera and fridge

node camera (in_kitchen, close_fridge: bool)

returns (warning1: bool);

let

warning1= in_kitchen and close_fridgewarning1= in_kitchen and close_fridge

tel

node fridge (fridge_opened, one_minute: bool)

returns (warning2, weak_alarm2: bool);

let

warning2= fridge_opened and not one_minute;

weak_alarm2= fridge_opened and one_minute;

tel

Example: WComp Assembly

Need for synchronous

monitor composition:

1. Parallel composition is

obvious in Lustre (||)

2. Combination function (ζ) to

specify how outputs are

combined.

node comp (close_fridge, fridge_opened, one_minute, standing, sitting,

lying, in_kitchen : bool)

returns (warning, weak_alarm, strong_alarm : bool)

var warning1, warning2, warning3, weak_alarm2, weak_alarm3 : bool;

let

warning1 = camera (in_kitchen, close_fridge);

(warning2, weak_alarm2) =

Example: Monitor Composition

camera ||(warning2, weak_alarm2) =

fridge (fridge_opened, one_minute);

(warning3, weak_alarm3) =

position (standing, sitting, lying);

warning = warning1 and warning2 and warning3 and not weak_alarm2

and not weak_alarm3;

weak_alarm = weak_alarm2 xor weak_alarm3;

strong_alarm = weak_alarm2 and weak_alarm3;

tel

camera ||

fridge ||

posture

ζ

Example: Composition

Verification

node verif (close_fridge, fridge_opened, one_minute,

standing, sitting, lying, in_kitchen : bool)

returns (prop: bool)

var warning, weak_alarm, strong_alarm : bool;

let Assertion on environmentlet

(warning, weak_alarm, strong_alarm) =

comp(close_fridge, fridge_opened, one_minute, standing,
sitting, lying, in_kitchen);

assert (not ((standing and lying) or (standing and sitting) or
(lying and sitting))

prop = if (fridge_opened and one_minute and lying)

then strong_alarm else true;

tel

Assertion on environment

Property verified with Lesar (prop always true)

Example: WComp assembly

comp

C

code

Lustre API

node R(E:bool)
returns (S:bool);

e
n
v
iro
n
m
e
n
t

g

void R_I_E() {
…………..
}

void R_step () {

void my_main () {
// get presence
// of E from
// environment
…..
R_I_E();
……

generated

returns (S:bool);
let

tel
S = ……..;

e
n
v
iro
n
m
e
n
t

….

}

R_O_S();
user

void R_O_S () {

// action to do when

// S is true}

……
R_step();
….

}

User

provided13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

