Verification
Introduction to WComp Validation

WComp Verification

e WComp may be used to design critical
applications

* Ensure a safe usage of WComp wrt
component behavior

* Apply techniques used to develop critical
software

Outline

Ultra-tiny computer are embedded into @

1. Critical system validation
2. Model-checking Techniques

1. Model specification as models
 Introduction to synchronous modeling
 Introduction to synchronous language

2. Express and prove properties

3. Application to WComp

Critical Software

A critical software Is a software whose failing
has serious consequences:

» Nuclear technology

e Transportation
sAutomotive
eTrain
sAircraft construction

Exemple: The Patriot Missile
Failure

* On February 25, 1991, during the Golf War, an
american patriot missile battery in Dharam,
Saudi Arabia, failed to track and intercept an
incoming Iracq scud missile. The scud struck
american army baracks, killing 28 soldiers and
injuring around 100 others people.

Exemple: The Patriot Missile
Failure

* Areporton the general accounting office,
entitled Patriot Missile Defense: software
problem led to system failure at Dharam
reported on the cause of the failure. It turns
out that the cause was an inaccurate
calculation of the time since boot due to
computer arithmetic errors.

Software Classification

Example of the aeronautics rnor =«
DO178B:

A Catastrophic (human life loss)

B Dangerous (serious injuries,
loss of goods)

C Major (failure or loss of the
system)

D Minor (without consequence

Depending of the level of risk
of the system, different kinds
of verification are required E Without effect

on the system)

Software Classification

Minor

Major

acceptable situation

Dangerous

Unacceptable situation

catastrophic

probabilities

probable |rare |veryrare |very
improbable

Critical Software

In addition , other consequences are relevant
to determine the critical aspect of a software:
Financial aspect

Loosing of equipment, bug correction
Equipment callback (automotive)

Bad advertising
Intel famous bug

How Develop critical software ?

Classical Development U Cycle

_ tests of integrated system

|

_ tests black box

- tests white box

_ -

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

How Develop Critical Software ?

e Cost of critical software development:
e Specification : 10%
* Design: 10%
 Development: 25%

* Integration tests: 5%
e Validation: 50%

e Fact:

— Earlier an error is detected, less expensive its
correction is.

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

How Develop Critical Software ?

o Ultra-tiny computer are embedded inle @

e Goals of critical software specification:

— Define application needs

e = specific domain engineers

— Allowing application development
e Coherency
e Completeness

— Allowing application functional validation

e Express properties to be validated

— Formal models usage

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

How Develop Critical Software

test reuse
test coverage
test generation

proofs

automatic code
generation

code

functiona
validation

AV

simulation

no more
integration tests

abstract
interpretation

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Application to Wcomp

simulation

functiona
validation

proofs

automatic code
generation

WComp
Bean

U

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Verification
Critical Software Validation

Critical Software Validation

e What is a correct software?

— No execution errors, time constraints
respected, compliance of results.

e Solutions:

— At model level :
e Simulation
* Formal proofs

— At implementation level:
e Test
o Abstract interpretation

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Validation Methods

Ultra-tiny computer are embedded into @

e Testing

— Run the program on set of inputs and check the
results

e Static Analysis

— Examine the source code to increase confidence
that it works as intended

e Formal Verification

— Argue formally that the application always works as
intended

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Formal verification

e What about functional validation ?
— Does the program compute the expected outputs?
— Respect of time constraints (temporal properties)
— Intuitive partition of temporal properties:

e Safety properties: something bad never happens

* Liveness properties: something good eventually
happens

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Safety and Liveness
Properties

 Example: the beacon counter in a train:
— Count the difference between beacons and seconds
— Decide when the train is ontime, late, early

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Safety and Liveness
Properties

Ultra-tiny computer are embedded into @

e Some properties:
1. Itisimpossible to be late and early;
2. Itisimpossible to directly pass from late to early;
3. Itisimpossible to remain late only one instant;
4. If the train stops, it will get late
e Properties 1, 2, 3 :safety

* Property4: liveness

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Safety and Liveness
Properties

Ultra-tiny computer are embedded into @

e Some properties:
1. Itisimpossible to be late and early;
2. Itisimpossible to directly pass from late to early;
3. Itisimpossible to remain late only one instant;
4. If the train stops, it will get late
e Properties 1, 2, 3 :safety

* Property4: liveness

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Safety and Liveness
Properties Checking

Ultra-tiny computer are embedded into @

o Use of model checking technigues

 Model checking goal: prove safety and
liveness properties of a system In analyzing
a model of the system.

 Model checking technigues require:
— model of the system
— express properties

— algorithm to check properties on the model (=
decidabillity)

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Model Checking Techniques

Ultra-tiny computer are embedded into @

 Model = automata which is the set of program
behaviors

* Properties expression = temporal logic:
— LTL : liveness properties
— CTL: safety properties

o Algorithm =

— LTL : algorithm exponential wrt the formula size
and linear wrt automata size.

— CTL.: algorithm linear wrt formula size and wrt
automata size

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Model Checking
Model Specification

Model Checking Technique

e Model = automata which is the set of program
behaviors

13/12/2010 VehkcditetionArmneiRBsssauche - INRRMPBLIABAR 25

Component Models

e WComp Components represent software
specification

 To achieve component behavior verification
we need to build its model well suited to
software validation

e Component behavior specification with a
Synchronous language

e Specification = model

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Determinism & Reactivity

* Synchronous languages are deterministic and reactive

e Determinism:
The same input sequence always yields
The same output sequence

e Reactivity:
The program must react? to any stimulus
Implies absence of deadlock

(1) Does not necessary generate outputs, the reaction may change internal state
only.

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Synchronous Hypothesis

Ultra-tiny computer are embedded into @

e Actually, a synchronous model works on a
logical time.

e The time s } Use N as time base
— Discrete

— Total ordering of instants.
e A reaction executes in one instant.

e Actions that compose the reaction may be
partially ordered.

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Synchronous Hypothesis

e Communications between actors are also
supposed to be instantaneous.

e All parts of a synchronous model receive
exactly the same information (instantaneous
broadcast).

e Outcome: Outputs are simultaneous with
Inputs (they are said to be synchronous)

 Thanks to these strong hypotheses, program
execution is fully deterministic.

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Reactive ?

Ultra-tiny computer are embedded into @

e Different ways to “react” to the environment:

— Event driven system:

e Receive events

e Answer by sending events Some systems
have components of
— Data flow system: both kinds

e Receive data continuously
e Answer by treating data continuously also

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Event Driven Reactive
System

landing gear door opened gear down

v v v

open gear door push down gear block gear

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Data Flow Reactive System

13/12/2010

(Example)
|

* get measures
5
e Y
9 navigation | | ®* wheream I ?
o
Q_ .
T guidance | | e wherego1?
S
2 piloting e command computation
9|\ _4

e command to operators

Verification - Annie Ressouche - INRIA PULSAR

Ublquitous Metwork

LUSTRE

Ultra-tiny computer are embedded into @

LUSTRE is a data flow synchronous language:

e |tis averysimple language (4 primitive operators
to express reactions)

e Relies on models familiar to engineers

* Equation systems
e Data flow network

e Lends itself to formal verification (it is a kind of
logical language)

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Operator Networks

e Very simple (mathematical) semantics

e LUSTRE programs can be interpreted as
networks of operators.

 Data « flow » to operators where they are
consumed. Then, the operators generate new
data. (Data Flow description).

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Operator Networks

e LUSTRE programs can be interpreted as
networks of operators.

 Data « flow » to operators where they are
consumed. Then, the operators generate new
data. (Data Flow description).

, | Operator

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Flows, Clocks

e Aflow is a pair made of

— A possibly infinite sequence of values of a
given type

— A clock representing a sequence of instants

XT (X Xo, eee h Xy, oet)

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Language (1)

Variable : (= flow) :

— typed
— If not an input variable, defined by 1 and only 1
eguation
Equation : X = E means Uk, x, =e,

Assertion : Boolean expression that should be
always true at each instant of its

clock.

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Language (2)

Substitution principle:
If X=E then E can be substituted for X

anywhere in the program and conversely

Definition principle:
A variable is fully defined by its declaration
and the equation in which it appears as a
left-hand side term

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Expressions

Constants
0,1, .. true ,false |, ..

Imported

types and
operators

c.a - kUl ,c =c

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

« Combinational » Lustre

Data operators

Arithmetical: +, -, *, /, div , mod
Logical: and, or, not , xor , =>
Conditional: If ... then ... else
Casts: int |, real

« Point-wise » operators

XopY < LK, (X0opY), = X0pYy

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

« Combinational » Example

Lt M:int
Tt Input flows
Aver age (X,Y(fnt)

Result —returns (Mint);
let

L
Definition M= (X+Y) [/ 2
\tel

kOO ,M, =(X, +Y,)/2

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

« Combinational » Example

* |f operator

node Max (a,b : real) returns (m: real)
let

m = if (@ >= b) then a else b;
tel

functional «if then else »; it is not a
statement

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

« Combinational » Example

* |f operator
node Max (a,b : real) returns (m: real)
let
m = if (@ >= b) then a else b;
tel

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Memorizing

Take the past into account!
pre (previous):

X = (X11X2"” X ’) : pre()(): (niLXl’... ’Xn—l’”')
Undefined value denoting uninitialized memory: nil

-> (Initialize). sometimes call “followed by”

X = (X1’X2""’an--) , Y = (y1’y2’°" Yn r--) :
(X=>Y)= (% Y22 Yoreer)

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Sequential » Examples

node MinMax (X:int) returns (min,max:int);
let
min = X => if (X < pre min) then X else pre min;
max = X => if (X > pre max) then X else pre max;
tel

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

« Review » Example

node CT (init:int) returns (c:int);
let ¢ = init -> pre ¢ + 2; tel

node DoubleCall (even:bool) returns (n:int);
let
n = if even then CT(0) else
CT(1);
tel

Doublecall(ff ff tt tt ff ff tt tt ff) = ?

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Recursive definitions

Temporal recursion
Usual. Use pre and ->
e.g..nat=1->prenat+1

Instantaneous recursion
e.g.:X=1.0/(2.0-X)
Forbidden in Lustre, even if a solution exists!

Be carefull with cross-recursion.

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Edges

node Edge (b:bool) returns
-- detection of a rising edge

let
f:f%se/ ->J (b andnot ple (b))
tel;

Initial Undefined at
the first Instant

Falling_Edge = Edge(not c);

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Bistable

e Node Switch (on,off:bool) returns (s:bool);
such that:

— S raises (false to true) if on, and falls (true to false)
if off

— must work even off and on are the same

node Switch (on,off:bool) returns (s:bool)
let

= if (false —pre) then not off else on;
tel

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Count

A node Count (reset, x: bool) returns (c:int)
such that:

is reset to O if reset, otherwise it is incremented
if x

node Count (reset, x: bool) returns (c:int)
let
= if reset then O
else if x then (0 -> prec) + 1
else (0 -> pre ¢)
tel

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Osc and Osc2

node osc (reset: bool) returns (b:int)
let

= true -> not pre(H);
tel

node osc2 (reset: bool) returns (b:int)
let
= true -> (c and not pre(")) or
(not c and pre(h));
C = osc(reset);
tel

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

A Stopwatch

Ultra-tiny computer are embedded into @

* 1 integer output:
* 3 input buttons: on off, reset, freeze

— on_off starts and stops the watch

— reset resets the stopwatch (if not running)

— freeze freezes the displayed time (if running)
e Local variables

— running, freezed : bool (Switch instances)
— cpt : int (Count instance)

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

A stopwatch

node Stopwatch (on_off, reset, freeze: "hc'ol")“
returns (time:int)

var running, freezed: bool; cpt:int

let
running = Switch(on_off, on_off);
freezed = Switch(freeze and running,
freeze or on_off);
cpt = Count (reset and not running, running);
time = if freezed then (0 -> pre time) else cpt;
tel

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Modulo Counter

Ultra-tiny computer are embedded into @

node MCounter (incr:bool; modulo : int)

returns (cpt:int);

var count : int;

let

count = 0 -> if incr pre (cpt) + 1)
else pre (cpt);
= count mod modulo;
tel

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Modulo Counter with Clock

Ultra-tiny computer are embedded into @

node MCounterClock (incr:bool; modulo : int)
returns (cptiint;

: bool);
var count : int;
let
count = 0 -> if incr pre (cpt) + 1)
else pre (cpt);
= count mod modulo;
= count <> cpt;

tel

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Timer

node Timer (dummy:bool)
returns (hour, , :int);
var hour_clock, minute_clock, day_clock : bool;

let
(, minute_clock) = MCounterClock(true, 60);

(, hour_clock) =
MCounterClock(minute_clock,60);

(hour, dummy_clock) =
MCounterClock(hour_clock, 24);

tel

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Numerical Examples

* [ntegrator node:

— f :real function and Y its integrated value using
the trapezoid method:

— F, STEP : 2 real such that:

F.=1f(x,) and x,,= x, + STEP,

Yo=Y, +(F,+F,)*STEP, /2

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Numerical Examples

node integrator (F, STEP, init : real)
returns (' : real);
let
= init ->pre(V) + ((F + pre(F))*S
tel

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

EP)/2.0

Numerical Examples

node sincos (omega : real)

returns (: real);

let

a * integra , 0.1, 0.0);
* integrator(=i, 0.1, 0.0);
tel

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Numerical Examples

node sincos (omega : real)

returns (: real),
let
= omega * integrator(cos, 0.1, 0.0);
= 1 — omega * integrator(, 0.1, 0.0);
tel

(0.0 ->pre(sin))

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Lustre Program Compilation

Ultra-tiny computer are embedded into @

o Static verifications are performed:
— local and output variables have one equation
definition;
— non recursive node call;
— absence of uninitialized expression;

— no cyclic definition (each cyclic definition = pre
operator usage);

—) structural
x = if ctheny else z; deadloack
y = if cthen z else X; T (not real)

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Lustre Program Compilation

Ultra-tiny computer are embedded into @

node WD (set, reset, deadline:bool)
returns (alarm:bool);
var is_set:bool;

let
alarm = is_set and deadline;
is_set = false -> if set then true

else if reset then false else pre(is_set);
assert not(set and reset);

tel.

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Lustre Program Compilation

e aqutomaton like code

— choose state variables among:
* boolean expressions resulting from pre operator;

e variables (like _init) associated with some clock whose
value is true at first instant

Lustre Program Compilation

For WD, we consider 2 state variables:
_init (true, false, false,) and pre_is_set

3 states:

SO: _init = true and pre_is_set = nil
S1: _init = false and pre_is_set = false
S2: _init = false and pre_is_set = true

Lustre Program

Compilation
S0: alarm := false;
[initial
S1:

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Lustre Program
Compilation

S0: alarm := false;

[|n|t|a| alarm = is_set and deadline;
Is_set = false -> if set then true
else if reset then false
else pre(is_set);

S1: if set then S2:
alarm:= deadline;
go to S2; set

\ 4

else
alarm := false;
go to S1;

\ 4

—Sset

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Lustre Program ——
Compilation

Ultra-tiny computer are embedded into @

S0: alarm := false;

[|n|t|a| alarm = is_set and deadline;
is_set = false -> if set then true
else if reset then false
else pre(is_set);

S1: if set then S2: if set then
alarm:= deadline; alarm := deadline;
t0 S2- ' set ; go to S2;
9010 >4 ' else
” else if reset then
alarm := false; alarm := false;
go to S1; « go to S1;
reset else
alarm := deadline;
go to S2;
—set | —reset

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Lustre Program = Model

node WD (set, reset, deadline:bool)
returns (alarm:bool);
var is_set:bool;
let
alarm = is_set and deadline;
is_set = false -> if set then true
else if reset then
false else pre(is_set);
assert not(set and reset);
tel.

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Model Checking Technique

Model Checking Technique

* Properties expression = temporal logic:
— LTL : liveness properties
— CTL: safety properties

e Algorithm =

— LTL : algorithm exponential wrt the formula size and
linear wrt automata size.

— CTL: algorithm linear wrt formula size and wrt
automata size

13/12/2010 VehkcditetionArmneiRBsssauche - INRRMPBLIABAR 71

Properties Checking

e Liveness Property @ :
— @ = automata B(P)
— L(B(®P)) = décidable
—®|=M LM OB(~D)) =[O

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Safety Properties

e CTL formula characterization:
— Atomic formulas
— Usual logic operators: not, and, or (=)

— Specific temporal operators:
e EXO, EF O, EG O
e AX O, AF O, AG O
. EU(O,,0,), Au(d,,0,)

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Safety Properties Verification

Ultra-tiny computer are embedded into @

e We call Sat(L) the set of states where L1 is true.

e M |= 0 iffs

. LI Sat(U).
e Algorithm:
e Sat(P) ={s | P |=5s}
e Sat(not @) = S\Sat(P)
Sat(dP1 or P2) = Sat(P1) U Sat(P2)
Sat (EX @) = {s | Ot O Sat(P), s > t} (Pre Sat(PD))
Sat (EG ®) = gfp (I'(x) = Sat(P) n Pre(x))
Sat (E(P1 U ®2)) =Ifp (' (x) = Sat(P2) U (Sat(P1) n Pre(x))

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

b,c

EG (a or b) gfp (I'(x) = Sat(a or b) N Pre(x))

['({Sg, S1, 2, S3, S4}) =Sat (aor b) n Pre({sy, s, S5, S3 S4})
["({So» S1, S2, S3,Sa}) = {Sps S1, S, Sat N {Sg, S1, S5y S5 S4}

r({so; 517 59, 33, 54}) = {So; S1, Sy, 54}

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

b,c
EG (a or b) r({so; 517 59, S3, 54}) = {So; S1, Sy, 54}

['({Sq, S1, Sy, S4}) =Sat (a or b) N Pre({sy, s, S5, S4})

['({Sg) S1, Sos S4}) ={S0s S1/ S5 S4t
Sy |=EG(aorb)

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Model Checking with
Observers

e Express safety properties as observers.

 An observer is a program which observes the
program and outputs ok when the property
holds and failure when its fails

program

outputs

inputs

ok
» failure

observer

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Model Checking with 1
observers (2) B w)

Observers in Scade

P: aircraft autopilot and security system

alarm
landing_order

aircraft_altitude

| |aircraft_altitude
200

S
jand‘L

0

landing_order not

implies

alarm

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Edge Satefy Property

node Edge (b: bool) returns (f : bool);
let

f=band not pre (b),
tel

node Edge verif (b: bool) returns (prop: bool);
var res : bool;
let
res = Edge(b);
prop = true -> res and not pre(res);
tel

Train Safety Properties

Ultra-tiny computer are embedded into @

 Example: the beacon counter in a train:

— Count the difference between beacons and seconds
— Decide when the train is ontime, late, early

node train (sec, bea : bool) returns (ontime, early, late: bool)
let
diff = (0 ->pre diff) + (if bea then 1 else 0) + (if sec then -1 else 0);
early = (true -> pre ontime) and (diff > 3) or
(false -> pre early) and (diff > 1);
late = (true -> pre ontime) and (diff < -3) or
(false -> pre late) and (diff < -1);
ontime = not (early or late);

tel
13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Train Safety Properties

 Itis impossible to be late and early;
— ok =not (late and early)

e Itisimpossible to directly pass from late to
early;
— ok =true -> (not early and pre late);
e Itis impossible to remain late only one instant;

— Plate = false -> pre late;
PPlate = false -> pre Plate;
ok = not (not late and Plate and not PPlate);

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Properties Validation

Ultra-tiny computer are embedded into @

e Taking into account the environment

— without any assumption on the environment,
proving properties is difficult
— but the environment is indeterminist

e Human presence no predictable

e Fault occurrence

— Solution: use assertion to make hypothesis on the
environment and make it determinist

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Properties Validation (2)

o EXpress safety properties as observers.

* EXpress constraints about the environment as
assertions.

assertions > assume
. program outputs
Inputs P
ok
observer > failure

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Properties Validation (3)

e If assume remains true, then ok also
remains true (or failure false).

assertions > assume
. program outputs
Inputs P
ok
observer > failure

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Train Assumptions

e property = assumption + observer: “f the train
keeps the right speed, it remains on time”

e observer = ok = ontime

e assumption:
— naive: assume = (bea = sec);

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Train Assumptions

e property = assumption + observer: “f the train
keeps the right speed, it remains on time”

e observer = ok = ontime

e assumption:
— more precise : bea and sec alternate:

e SF =Switch (sec and not bea, bea and not sec);

e BF = Switch (bea and not sec, sec and not bea);
assume = (SF => not sec) and (BF => not bea);

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

WComp Component Validation

Component Validation

WComp critical component usage validation

Component Validation

_ _ Mndel che:cking
Lucole L Simmilation 4 Lustre Verification "
specification
Generation
- — e e e e e e e] o e = = =
| G
I I
I L - synchronous
| monitor
— -~

|
kN
|
A

W, i i W

Lustre to WCOMP

mwmmm-
file. Ius file. Ius file. Ius file. Ius

l Intermediate format

file.ec
lesar
xlesar Iustre
luciole

w%

C code
generation

property =
observer

WCOMP

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR

Example: monitoring eldery

people at home

—close_fridge

. in_ kitchen

fridge opened

one minute

lying

sitting

standing

}warning

alarm

—weak alarm

strong _alarm

Example: Synchronous Monitors

. synchronous | warningl

c]nse_frldgle monitor
in_Kkitchen from _

— ™ c{amera warning

alarm
: synchronous el i
fridge opened ° ,onitor [warning? 7 s

one_minute fl:Ol]l strong_alarm

o fridge wleak_alarm2

standing

T- synchronous | . . . 2

SRS | monitor =

. from
lyli._ posture weak alarm3

Example: Posture Monitor

Luciole

node posture (standing, sitting, lying)
returns (warning3, weak-alarm3)
let
warning3 = standing and noy lying
or not standing and
sitting and not lying;
weak-alarm3 = not standing and
not sitting and lying;
tel

Example: Posture Monitor

Luciole

1

node

>
<

g posture

—*| warning

e \ 4

standing | gynchronous
_—. *
s sitting | ymonitor

N from weak_alarm3 weak alarm
— lying posture

warning3 alarm

strong alarm

Ublquitous Metwork

Example: camera and fridge

Ultra-tiny computer are embedded into @

node camera (in_kitchen, close fridge: bool)
returns (warningl: bool);
let
warningl=in_kitchen and close fridge
tel

node fridge (fridge_opened, one_minute: bool)
returns (warning2, weak_alarm2: bool);
let
warning2= fridge_opened and not one_minute;
weak_alarm2=fridge opened and one_minute;
tel

Example: WComp Assembly

Ublquitous Metwork

v In kikchen

CheckBox Warming]
checkBoxkikchen
i i ; CheckBox
v Close Fridge +..3. camera._monitorE ean checkBoxwWamngl
i i camera_monitoean

CheckBox
checkB oxFndge

v Fridgeipened H_}

CheckBox
ChECkBDRFMFH’II. ans fidge._ |
One Minuke H_}
CheckBos fridge_monitoBean
checkBoxl
v Standing
CheckBox)
checkBoxStand . Slv Warningd
b Wiomp.Bea ||
kg £ neposture_ ||
A i raanitorB ean i
checkBask 7 Sewwwe
posture_monitorBean
Lwing posture_montoBean
CheckBox checkBosdweakd

checkBod yng

Ultra-tiny computer are embedded into @

Need for synchronous
monitor composition:

is
obvious in Lustre (| |)

2. Combination function () to
specify how outputs are
combined.

Example: Monitor Composition

node comp (close_fridge, fridge_opened, one_minute, standing, sitting,
lying, in_kitchen : bool)
returns (warning, weak_alarm, strong_alarm : bool)
var warningl, warning2, warning3, weak_alarm2, weak_alarm3 : bool;
let
warningl = camera (in_kitchen, close_fridge);
(warning2, weak_alarm2) =
fridge (fridge_opened, one_minute);
(warning3, weak_alarm3) =
position (standing, sitting, lying);

camera
fridge
posture

warning = warningl and warning2 and warning3 and not weak_alarm?2
and not weak_alarm3;

weak alarm = weak_alarm2 xor weak_alarm3;

strong_alarm = weak_alarm2 and weak_alarm3;

tel

Ublquitous Metwork

Ublquitous Metwork

Example: Composition
Verification

node verif (close fridge, fridge opened, one_minute,
standing, sitting, lying, in_kitchen : bool)
returns (prop: bool)
var warning, weak_alarm, strong_alarm : bool;

let
(warning, weak_alarm, strong_alarm) =
comp(close fridge, fridge opened, one_rninute, standing,
sitting, lying, in_kitchen);
(not ((standing and lying) or (standing and sitting) or
(lying and sitting))
prop = if (fridge_opened and one_minute and lying)
then strong_alarm else true;
tel Property verified with Lesar (prop always true)

Example: WComp assembly

Ublquitous Metwork

v InKitchen

CheckBox
checkBoxichen

Close Fridge

CheckBox
checkB oxFndge

v FridogeCpened

CheckBox
checkB oxFrdgellpen.

W One Minute

checkB oxl

>—':| Standing

CheckBox
checkBoxStand

Sitking

CheckBox
checkBombGit

v Lying

CheckBox
checkB od yng

timer

—

Ultra-tiny computer are embedded into @

\Warning

CheckBox
checkB oswaming

Wlomp.Beanz.
alarm_composgiti
onBean

CheckBox

L 8]
alarm_composton

checkB oxShong

Lustre API

void my_main (
// get presence
/[of E from
// environment

: node R(E:bool)
:returns (5:bool);
let

~~
- . 2 I sz Eas
- o
-~

void R 0. 5(0Of

/] action to do when

Il S is true}

User

13/12/2010 erifigation - Annie Ressouche - INRIA PULSAR | prowded

