
Verification

Introduction to WComp Validation



WComp Verification

• WComp  may  be used to design critical

applications

• Ensure a safe usage of WComp wrt 

component behaviorcomponent behavior

• Apply techniques used to develop critical 

software



Outline

1. Critical system validation

2. Model-checking Techniques

1. Model specification as synchronous models

Introduction to synchronous modeling• Introduction to synchronous modeling

• Introduction to Lustre synchronous language

2. Express and prove properties

3. Application to WComp



Critical Software

A critical software is a software whose failing 
has serious consequences:

• Nuclear technology
• Transportation

•Automotive
•Train
•Aircraft construction

…



Exemple: The Patriot Missile 

Failure

• On February 25, 1991, during the Golf War, an 

american patriot missile battery in Dharam, 

Saudi Arabia, failed to track and intercept an Saudi Arabia, failed to track and intercept an 

incoming Iracq scud missile. The scud struck 

american army baracks, killing 28 soldiers and 

injuring around 100 others people. 



Exemple: The Patriot Missile 

Failure

• A report on the general accounting office, 

entitled Patriot Missile Defense: software 

problem led to system failure at Dharam problem led to system failure at Dharam 

reported on the cause of the failure. It turns 

out that the cause was an inaccurate 

calculation of the time since boot due to 

computer arithmetic errors.



Software Classification

Example of the aeronautics norm 
DO178B:

A Catastrophic (human life loss)

B Dangerous (serious injuries, B
loss of goods)

C Major (failure or loss of the 

system)

D Minor (without consequence 

on the system)

E Without effect

Depending of  the level of risk 
of the system, different kinds 
of verification are required



Software Classification

Minor acceptable situation

Major

Dangerous Unacceptable situation

catastrophic 10-3 / hour 10-6 /

hour

10-9
/hour 10-12

/hour

probabilities probable rare very rare very 

improbable



Critical Software 

In addition , other consequences are relevant 
to determine the critical aspect of a software:

Financial aspect
Loosing of equipment, bug correctionLoosing of equipment, bug correction
Equipment callback (automotive)

Bad advertising
Intel famous bug



How Develop critical software ?

Classical Development  U Cycle

investigation
Qualification

in laboratory

in operation

tests of integrated system

specification

design

development tests

integration

validation

tests white box

tests  black box
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How Develop Critical Software ? 

• Cost of critical software development:

• Specification : 10%

• Design: 10%

• Development: 25%• Development: 25%

• Integration tests: 5%

• Validation: 50%

• Fact:

– Earlier an error is detected,  less expensive its 

correction is.
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How Develop Critical Software ? 

• Goals of critical software specification:

– Define application needs

• ⇒ specific domain engineers

– Allowing application development– Allowing application development

• Coherency

• Completeness

– Allowing application functional validation

• Express properties to be validated

⇒ Formal models usage
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How Develop Critical Software

test reuse

test coverage

test generation
MODEL

proofs

functional

validation

simulation

proofs

code

automatic code

generation

abstract

interpretation

no more 

integration tests
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Application to Wcomp

COMPONENT

MODEL

proofs

functional

validation

simulation

WComp

Bean

automatic code

generation
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Verification

Critical Software Validation



Critical Software Validation

• What is a correct software?
– No execution errors, time constraints 

respected, compliance of results.

• Solutions:• Solutions:
– At model level :

• Simulation
• Formal proofs

– At implementation level:
• Test
• Abstract interpretation
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Validation Methods

• Testing

– Run the program on set of inputs and check the 

results

• Static Analysis• Static Analysis

– Examine the source code to increase confidence 

that it works as intended 

• Formal Verification

– Argue formally that the application always works as 

intended
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Formal verification

• What about functional validation ?

– Does the program compute the expected outputs?

– Respect of time constraints (temporal properties) 

Intuitive partition of temporal properties:– Intuitive partition of temporal properties:

• Safety properties: something bad never happens

• Liveness properties: something good eventually 

happens
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Safety and Liveness 

Properties

• Example: the beacon counter in a train:

– Count the difference between beacons and seconds

– Decide when the train is ontime, late, early

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR



Safety and Liveness 

Properties

• Some properties:

1. It is impossible to be late and early;

2. It is impossible to directly pass from late to early;

3. It is impossible to remain late only one instant;3. It is impossible to remain late only one instant;

4. If the train stops, it will eventually get late

• Properties 1, 2, 3 : safety

• Property 4 : liveness
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Safety and Liveness 

Properties

• Some properties:

1. It is impossible to be late and early;

2. It is impossible to directly pass from late to early;

3. It is impossible to remain late only one instant;3. It is impossible to remain late only one instant;

4. If the train stops, it will eventually get late

• Properties 1, 2, 3 : safety

• Property 4 : liveness (refer to unbound future)
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Safety and Liveness 

Properties Checking

• Use of model checking techniques
• Model checking goal: prove safety and 

liveness properties of a system in analyzing 
a model of the system.a model of the system.

• Model checking techniques require:
– model of the system 
– express properties
– algorithm to check properties on the model (⇒

decidability)
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Model Checking Techniques

• Model = automata which is the set of  program 
behaviors

• Properties expression = temporal logic:
– LTL : liveness properties – LTL : liveness properties 
– CTL: safety properties

• Algorithm =
– LTL : algorithm  exponential wrt the formula size 

and linear wrt automata size.
– CTL: algorithm linear wrt formula size  and wrt

automata size
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Model Checking

Model Specification



Model Checking Technique

• Model = automata which is the set of  program 
behaviors

• Properties expression = temporal logic:

– LTL : liveness properties 
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– LTL : liveness properties 

– CTL: safety properties

• Algorithm =

– LTL : algorithm  exponential wrt the formula size and 
linear wrt automata size.

– CTL: algorithm linear wrt formula size  and wrt 
automata size
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Component Models

• WComp Components represent software 

specification

• To achieve component behavior verification 

we need to build  its model well suited to we need to build  its model well suited to 

software validation

• Component  behavior specification with a 

Synchronous language

• Specification = model
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Determinism & Reactivity

• Synchronous languages are deterministic and reactive

• Determinism:

The same input sequence always yields 

The same output sequenceThe same output sequence

• Reactivity:

The program must react(1) to any stimulus

Implies absence of deadlock

(1) Does not necessary generate outputs, the reaction may change  internal state 

only.
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Synchronous Hypothesis

• Actually, a synchronous model works on a 

logical time.

• The time is 

– Discrete

Use N as time base

– Discrete

– Total ordering of instants.

• A reaction executes in one instant.

• Actions that compose the reaction may be 

partially ordered.
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Synchronous Hypothesis

• Communications between actors are also 

supposed to be instantaneous.

• All parts of a synchronous model receive 

exactly the same information (instantaneous exactly the same information (instantaneous 

broadcast).

• Outcome: Outputs are simultaneous with 

Inputs (they are said to be synchronous) 

• Thanks to these strong hypotheses, program 

execution is fully deterministic.
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Reactive ?

• Different ways to “react” to the environment:

– Event driven system:

• Receive events

• Answer by sending events Some systems• Answer by sending events

– Data flow system:

• Receive data continuously

• Answer by treating data continuously also

Some systems
have components of 
both kinds
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Event Driven Reactive 

System

landing gear door opened gear down

Langing gear management

open gear door push down gear block gear
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Data Flow Reactive System 

(Example)

sensors

navigation

P
e
ri
o
d
ic
 p
ro
ce
ss
u
s

• get measures

• where am I ?

Control/Command  vehicle

guidance

piloting

operators

P
e
ri
o
d
ic
 p
ro
ce
ss
u
s

• where go I ?

• command computation

• command to operators

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR



LUSTRE

LUSTRE  is a  data flow synchronous language:

• It is a very simple language (4 primitive operators 

to express reactions)

• Relies on models familiar to engineers

• Equation systems

• Data flow network

• Lends itself to formal verification (it is a kind of 

logical language)
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Operator Networks

• Very simple (mathematical) semantics

• LUSTRE  programs can be interpreted as • LUSTRE  programs can be interpreted as 

networks of operators.

• Data « flow » to operators where they are 

consumed. Then, the operators generate new 

data. (Data Flow description).
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Operator Networks

• LUSTRE  programs can be interpreted as 

networks of operators.

• Data « flow » to operators where they are 

consumed. Then, the operators generate new consumed. Then, the operators generate new 

data. (Data Flow description).

op1

op2

op3

Operator

Token 
(data)
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Flows, Clocks

• A flow is a pair made of

– A possibly infinite sequence of values of a 

given type

– A clock representing a sequence of instants

X:T      (x 1, x2, … , xn, … )
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Language (1)

Variable : (= flow) :

– typed

– If not an input variable, defined by 1 and only 1 – If not an input variable, defined by 1 and only 1 

equation

X = E means ∀∀∀∀k, x k = ekEquation :

Assertion : Boolean expression that should be 
always  true at each instant of its 
clock.
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Substitution principle: 
if X = E then E can be substituted for X
anywhere in the program and conversely

Language (2)

Definition principle:
A variable is fully defined by its declaration
and the equation in which it appears as a 
left-hand side term
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Expressions

Constants

0, 1, …, true , false , …,  1.52 , ...

int

real

+
Imported 
types and 
operators

: , kc k c cα ⇔ ∀ ∈ =�

int

bool
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« Combinational » Lustre

Data operators

Arithmetical: +, - , *, /, div , mod
Logical: and , or , not , xor , =>
Conditional:  if … then … else ...

YopXYopXkYopX kkk =∀⇔ )(,

Conditional:  if … then … else ...
Casts: int , real

« Point-wise » operators
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« Combinational » Example

node Average (X,Y:int) 

Average

X:int

Y:int

M:int

operator Input flows

node Average (X,Y:int) 

returns (M:int);

let

M = (X + Y) / 2;

tel

, ( ) / 2k k k kk M X Y∀ ∈ = +�
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Result

Definition



« Combinational » Example 

• if operator

node Max (a,b : real) returns (m: real)
let 

m = if (a >= b) then a else b;m = if (a >= b) then a else b;
tel

functional «if then else »; it is not a 
statement
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« Combinational » Example 

• if operator

node Max (a,b : real) returns (m: real)
let 

m = if (a >= b) then a else b;m = if (a >= b) then a else b;
tel

let 
if (a >= b) then m = a ;
else  m = b;

tel
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Memorizing

Take the past into account!

( )1 2 1 1( , , , , ) : ( ) nil, , , ,n nX x x x pre X x x −= =L L L L

pre (previous):

( )1 2 1 1n n−

-> (initialize):  sometimes call “followed by”

1 2 1 2

1 2

( , , , , ) , ( , , , , ) :

( ) ( , , , , )
n n

n

X x x x Y y y y

X Y x y y

= =
− > =

L K L K

L K

Undefined value denoting uninitialized memory: nil
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« Sequential » Examples

n   =   0 → pre(n) +1

0

+1 →

pre

n

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR



Sequential » Examples

node MinMax (X:int) returns (min,max:int);

let

min = X -> if (X < pre min) then X else pre min;

max = X -> if (X > pre max) then X else pre max;max = X -> if (X > pre max) then X else pre max;

tel
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« Review » Example 

node CT (init:int) returns (c:int);
let c = init -> pre c + 2; tel

node DoubleCall (even:bool) returns (n:int);node DoubleCall (even:bool) returns (n:int);
let

n = if even then CT(0) else
CT(1);

tel

Doublecall(ff ff tt tt ff ff tt tt ff) = ?
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Recursive definitions

Temporal recursion

Usual. Use pre and ->

e.g.: nat = 1 -> pre nat + 1

Instantaneous recursion

e.g.: X = 1.0 / (2.0 – X)

Forbidden in Lustre, even if a solution exists!

Be carefull with cross-recursion.
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Edges

node Edge (b:bool) returns (f:bool);
-- detection of a rising edge
let

f = false -> (b and not pre (b));
tel;

Undefined at 
the first instant

initial

tel;

Falling_Edge = Edge( not c);
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Bistable

• Node Switch (on,off:bool) returns (s:bool); 

such that:

– S raises (false to true) if on, and falls (true to false) 

if offif off

– must work even off and on are the same

node Switch (on,off:bool) returns (s:bool)
let

s = if (false    pre s) then not off else on;
tel
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Count

• A node Count (reset, x: bool) returns (c:int) 

such that:

– c is reset to 0 if reset, otherwise it is incremented 

if xif x

node Count (reset, x: bool) returns (c:int)
let
c = if reset then 0

else if x then (0 -> pre c) + 1
else (0 -> pre c)

tel
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Osc and Osc2

node osc (reset: bool) returns (b:int)
let
b = true -> not pre(b);

tel
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node osc2 (reset: bool) returns (b:int)
let
b = true -> (c and not pre(b)) or

(not c and pre(b));
c  = osc(reset);

tel



A Stopwatch

• 1 integer output : time

• 3 input buttons: on_off, reset, freeze

– on_off starts and stops the watch

– reset resets the stopwatch (if not running)

– freeze freezes the displayed time (if running)

• Local variables

– running, freezed : bool (Switch instances)

– cpt : int (Count instance)

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR



A stopwatch

node Stopwatch (on_off, reset, freeze: bool)

returns (time:int)

var running, freezed: bool; cpt:int

letlet
running = Switch(on_off, on_off);
freezed = Switch(freeze and running,

freeze or on_off);
cpt = Count (reset and not running, running);
time = if freezed then (0 -> pre time) else cpt;

tel
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Modulo Counter

node MCounter (incr:bool; modulo : int) 
returns (cpt:int);

var count : int;
letlet
count = 0 -> if incr pre (cpt) + 1)

else pre (cpt);
cpt =  count mod modulo;

tel
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Modulo Counter with Clock

node MCounterClock (incr:bool; modulo : int) 
returns (cpt:int;

modulo_clock: bool);
var count : int;var count : int;
let
count = 0 -> if incr pre (cpt) + 1)

else pre (cpt);
cpt =  count mod modulo;
modulo_clock = count <> cpt;

tel
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Timer

node Timer (dummy:bool)
returns (hour, minute, second:int);

var hour_clock, minute_clock, day_clock : bool;
let
(second, minute_clock) = MCounterClock(true, 60);(second, minute_clock) = MCounterClock(true, 60);
(minute, hour_clock) =

MCounterClock(minute_clock,60);
(hour, dummy_clock) =

MCounterClock(hour_clock, 24);
tel
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Numerical Examples

• Integrator node:

– f  : real function and Y its integrated value using 

the trapezoid method:

– F, STEP : 2 real such that:– F, STEP : 2 real such that:

Fn = f(xn)  and xn+1 =  xn + STEP n+1

Yn+1 = Yn + (Fn + Fn+1) * STEP n+1/2
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Numerical Examples

node integrator (F, STEP, init : real)

returns (Y : real);

letlet

Y =  init ->pre(Y) + ((F + pre(F))*STEP)/2.0

tel
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Numerical Examples

node sincos (omega : real)

returns (sin, cos : real);

letlet

sin = omega * integrator(cos, 0.1, 0.0);

cos = 1 – omega * integrator(sin, 0.1, 0.0);

tel
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Numerical Examples

node sincos (omega : real)

returns (sin, cos : real);

letlet

sin = omega * integrator(cos, 0.1, 0.0);

cos = 1 – omega * integrator(   , 0.1, 0.0);

tel

(0.0 ->pre(sin))
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Lustre Program Compilation

• Static verifications are performed:

– local and output variables have one equation 

definition;

– non recursive node call;– non recursive node call;

– absence of uninitialized expression;

– no cyclic definition (each cyclic definition ⇒ pre 

operator usage);

x =  if c then y else z;
y = if c then z else x;

structural 
deadloack
(not real)
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Lustre Program Compilation

node WD (set, reset, deadline:bool)
returns (alarm:bool);

var is_set:bool; 
let
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let
alarm = is_set and deadline;
is_set = false -> if set then true

else if reset then false else pre(is_set);
assert not(set and reset);

tel.



Lustre Program Compilation

• automaton like code

– choose state variables among:

• boolean expressions resulting from pre  operator;

• variables (like _init) associated with some clock whose • variables (like _init) associated with some clock whose 

value is true at first instant



Lustre Program Compilation

For WD, we consider  2 state variables:
_init (true, false, false, ….) and pre_is_set

3 states:
S0: _init = true and pre_is_set = nil
S1: _init = false and pre_is_set = false
S2: _init = false  and pre_is_set = true



Lustre Program 

Compilation

S0: alarm := false;      

initial

S1:

_init := false 
pre_is_set := false
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Lustre Program 

Compilation

S0: alarm := false;      

initial alarm = is_set and deadline;
is_set = false -> if set then true

else if reset then false  
else pre(is_set);

S1: if set then
alarm:= deadline;
go to S2;

else
alarm := false;
go to S1;

S2: 

_init = false;
pre_is_set := true;

¬set

set
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Lustre Program 

Compilation

S0: alarm := false;      

initial alarm = is_set and deadline;
is_set = false -> if set then true

else if reset then false  
else pre(is_set);

S1: if set then
alarm:= deadline;
go to S2;

else
alarm := false;
go to S1;

S2: if set then 
alarm := deadline; 
go to S2;

else
if reset then

alarm := false;
go to S1;

else
alarm := deadline;

go to S2;

¬set ¬reset

reset

set
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Lustre Program = Model

node WD (set, reset, deadline:bool)
returns (alarm:bool);

var is_set:bool; 
let
alarm = is_set and deadline;
is_set = false -> if set then trueis_set = false -> if set then true

else if reset then 
false else pre(is_set);
assert not(set and reset);

tel.

S0

S1 S2¬ set

set

¬  resetreset
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Model Checking Technique



Model Checking Technique

• Model = automata which is the set of  program 
behaviors

• Properties expression = temporal logic:

– LTL : liveness properties 
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– LTL : liveness properties 

– CTL: safety properties

• Algorithm =

– LTL : algorithm  exponential wrt the formula size and 
linear wrt automata size.

– CTL: algorithm linear wrt formula size  and wrt 
automata size
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Properties Checking

• Liveness Property Φ :

– Φ ⇒ automata  B(Φ)

– L(B(Φ)) = ∅ décidable

Φ |= : ( ⊗ B(~Φ)) = ∅– Φ |= M  : L(M ⊗ B(~Φ)) = ∅
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Safety Properties

• CTL formula characterization:

– Atomic formulas

– Usual logic operators: not, and, or (⇒)

Specific temporal operators:– Specific temporal operators:

• EX ∅, EF ∅, EG ∅
• AX ∅, AF ∅, AG ∅
• EU(∅1 ,∅2), AU(∅1 ,∅2)
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Safety Properties Verification 

• We call Sat(∅) the set of states where ∅ is true.

• M |=  ∅ iff sinit ∈ Sat(∅).

• Algorithm:

•• Sat(Sat(ΦΦ)  = { s | )  = { s | ΦΦ |= s}|= s}•• Sat(Sat(ΦΦ)  = { s | )  = { s | ΦΦ |= s}|= s}

•• Sat(not Sat(not ΦΦ) = S) = S\\Sat(Sat(ΦΦ))

•• Sat(Sat(ΦΦ11 or ΦΦ2) = Sat(ΦΦ1) U Sat(1) U Sat(ΦΦ2)2)

•• Sat (EX Sat (EX ΦΦ) =  {s | ) =  {s | ∃∃ t t ∈∈ Sat(Sat(ΦΦ) , s → t}   (Pre Sat() , s → t}   (Pre Sat(ΦΦ))))

•• Sat (EG Sat (EG ΦΦ) = ) = gfpgfp ((ΓΓ(x) =  Sat((x) =  Sat(ΦΦ) ) ∩∩ Pre(x))Pre(x))

•• Sat (E(Sat (E(ΦΦ1 U 1 U ΦΦ2)) = 2)) = lfplfp ((ΓΓ(x) = Sat((x) = Sat(ΦΦ2) U (Sat(2) U (Sat(ΦΦ1) 1) ∩∩ Pre(x))Pre(x))
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Example

s0
s1

s2

s3 s4

atomic formulas: a, b, cab

a,b,c

c
b,c

c

EG (a or b) gfp (Γ(x) =  Sat(a or b) ∩ Pre(x))

Γ({s0, s1, s2, s3, s4}) = Sat (a or b) ∩ Pre({s0, s1, s2, s3, s4})

Γ({s0, s1, s2, s3, s4}) = {s0, s1, s2, s4} ∩ {s0, s1, s2, s3, s4}

Γ({s0, s1, s2, s3, s4}) = {s0, s1, s2, s4}
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Example

s0
s1

s2

s3 s4

atomic formulas: a, b, cab

a,b,c
c b,c

EG (a or b) Γ({s0, s1, s2, s3, s4}) = {s0, s1, s2, s4}

Γ({s0, s1, s2, s4}) = Sat (a or b) ∩ Pre({s0, s1, s2,, s4})

Γ({s0, s1, s2,  s4}) = {s0, s1, s2, s4}

S0 |= EG( a or b)
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Model Checking with 

Observers

• Express safety properties as observers.

• An observer is a program which observes the 

program and outputs ok when the property 

holds and failure when its failsholds and failure when its fails

program

observer

inputs
outputs

ok

failure

13/12/2010 Verification - Annie Ressouche - INRIA PULSAR



Model Checking with 

observers (2)

Observers in Scade

P: aircraft autopilot and security system

Paircraft_altitude landing_order

alarm
Paircraft_altitude landing_order

<<<<aircraft_altitude

200

landing_order not

alarm

and

implies ΦΦΦΦ
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Edge Satefy Property

node Edge (b: bool) returns (f : bool);

let

f = b and not pre (b);

tel

node Edge_verif (b: bool) returns (prop: bool);node Edge_verif (b: bool) returns (prop: bool);

var res : bool;

let

res = Edge(b);

prop = true -> res and not pre(res);

tel



Train Safety  Properties

• Example: the beacon counter in a train:

– Count the difference between beacons and seconds

– Decide when the train is ontime, late, early

node train (sec, bea : bool) returns (ontime, early, late: bool)

let

diff = (0 ->pre diff) + (if bea then 1 else 0) + (if sec then -1 else 0);

early = (true -> pre ontime) and (diff > 3) or

(false -> pre early) and (diff > 1);

late = (true -> pre ontime) and (diff < -3)  or

(false -> pre late) and (diff < -1);

ontime = not (early or late);

tel
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Train Safety Properties

• It is impossible to be late and early;
– ok = not (late and early)

• It is impossible to directly pass from late to 
early;early;

– ok = true -> (not early and pre late);

• It is impossible to remain late only one instant;
– Plate = false -> pre late;

PPlate = false -> pre Plate;
ok = not (not late and Plate and not PPlate);
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Properties Validation

• Taking into account the environment

– without any assumption on the environment, 

proving properties is difficult

– but the environment is indeterminist– but the environment is indeterminist

• Human presence no predictable

• Fault occurrence

• …

– Solution: use assertion to make hypothesis on the 

environment and make it determinist
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Properties Validation (2)

• Express safety properties as observers.
• Express constraints about the environment as 

assertions.

assertions assume

program

observer

inputs
outputs

ok

failure

assertions assume
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Properties Validation (3)

• if assume remains true, then ok also 
remains true  (or failure false).

assertions assume

program

observer

inputs
outputs

ok

failure

assertions assume
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Train Assumptions

• property = assumption + observer: “ if the train 

keeps the right speed, it remains on time”  

• observer =  ok = ontime

• assumption:• assumption:

– naïve: assume = (bea = sec);
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Train Assumptions

• property = assumption + observer: “ if the train 

keeps the right speed, it remains on time”  

• observer =  ok = ontime

• assumption:• assumption:

– more precise : bea and sec alternate:

• SF = Switch (sec and  not bea, bea and not sec);  

• BF = Switch (bea and not sec, sec and not bea);        

assume = (SF => not sec) and (BF => not bea);
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WComp Component Validation



Component Validation

WComp critical component usage  validation



Component Validation



Lustre  to WCOMP

file.lus file.lus file.lus file.lus

file.ec

Intermediate format

file.ec

C code 
generationfile.c

lustre

simulatorverification

luciole

lesar
xlesar

property = 
observer

WCOMP
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Example:  monitoring eldery 

people at home 



Example: Synchronous Monitors



Example: Posture Monitor

node posture (standing, sitting, lying)

returns  (warning3, weak-alarm3)

Luciole Lesar

returns  (warning3, weak-alarm3)

let

warning3 = standing and noy lying

or not standing and

sitting and not lying;

weak-alarm3 = not standing and 

not sitting and lying;

tel



Example: Posture Monitor

Luciole Lesar

posture

node



Example: camera and fridge

node camera (in_kitchen, close_fridge: bool)

returns (warning1: bool);

let

warning1= in_kitchen and close_fridgewarning1= in_kitchen and close_fridge

tel

node fridge (fridge_opened, one_minute: bool)

returns (warning2, weak_alarm2: bool);

let

warning2= fridge_opened and not one_minute;

weak_alarm2= fridge_opened and one_minute;

tel



Example: WComp Assembly

Need for synchronous 

monitor composition:

1. Parallel composition is 

obvious in Lustre (||)

2. Combination function (ζ) to  

specify how outputs are 

combined.



node comp (close_fridge, fridge_opened, one_minute, standing, sitting, 

lying,    in_kitchen : bool)

returns (warning, weak_alarm, strong_alarm : bool)

var warning1, warning2, warning3, weak_alarm2, weak_alarm3 : bool;

let

warning1 = camera (in_kitchen, close_fridge);

(warning2, weak_alarm2) = 

Example: Monitor Composition

camera  ||(warning2, weak_alarm2) = 

fridge (fridge_opened, one_minute); 

(warning3, weak_alarm3) = 

position (standing, sitting, lying);

warning = warning1 and warning2 and warning3 and not weak_alarm2

and not weak_alarm3;

weak_alarm = weak_alarm2 xor weak_alarm3;

strong_alarm = weak_alarm2 and weak_alarm3; 

tel

camera  ||

fridge ||

posture

ζ



Example: Composition 

Verification

node verif (close_fridge, fridge_opened, one_minute, 

standing, sitting, lying, in_kitchen : bool)

returns (prop: bool)

var warning, weak_alarm, strong_alarm : bool;

let Assertion on environmentlet

(warning, weak_alarm, strong_alarm) = 

comp(close_fridge, fridge_opened, one_minute, standing, 
sitting, lying, in_kitchen);

assert (not ((standing and lying) or (standing and sitting) or 
(lying and sitting))

prop = if (fridge_opened and one_minute and lying) 

then strong_alarm else true;

tel

Assertion on environment

Property verified with Lesar (prop always true)



Example: WComp assembly

comp

C 

code



Lustre  API 

node R(E:bool)
returns (S:bool);

e
n
v
iro
n
m
e
n
t

g

void R_I_E() {
…………..
}

void R_step () {

void my_main () {
// get presence 
// of E from 
// environment
…..
R_I_E();
……

generated

returns (S:bool);
let

tel
S = ……..;

e
n
v
iro
n
m
e
n
t

….

}

R_O_S();
user

void R_O_S () {

// action to do when

// S is true}

……
R_step();
….

}

User
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