REPAIRING PEOPLE TRAJECTORIES BASED ON POINT CLUSTERING

Duc-Phu CHAU⁽¹⁾⁽²⁾, François BREMOND⁽¹⁾, Etienne CORVEE⁽¹⁾, Monique THONNAT⁽¹⁾

 ⁽¹⁾ Pulsar, INRIA Sophia Antipolis, France
⁽²⁾ Department of Technology, Phu Xuan Private University, Vietnam

Lisboa, 02 - 2009

Outline

Introduction

- Approach proposed: Learning lost and found zones
 - Offline Training Phase
 - Learning trajectory confidence using annotated trajectories
 - Computing automatically the lost and found zones using training trajectories
 - Defining zone triplets linking entry, lost and found zones
 - Online Testing Phase
 - Repairing lost trajectories based on zone triplets
- Experimentation
- Conclusion and Future work

Introduction [1]

- There are many methods proposed to track mobile objects (e.g. Using Kalman Filter, particle filters, probabilistic data association).
 - Obtained satisfactory results, but complex and long situations of occlusion are not addressed.
- Some works^{1,2} have focused on modelling the scene in order to improve the tracking algorithm.
 - Require full trajectories
 - Cannot handle occlusions
 - Take into account only the shape and size of the objects, as they are detected on the 2D image plane.

¹ Fernyhough et al., Buxton, B & Cipolla, R (editors) ECCV, 1996.

² D.Makris et al., *IEEE Transactions on Systems*, Man and Cybernetics, 2005.

Introduction [2]

- Our motivation
 - Repairing lost trajectories thanks to a model of the scene.
 - Offline learning of the scene model
 - Propose a general method
 - Be able to model various types of scene
 - Require little a priori knowledge about the scene
- Our Approach
 - Define the confidence value for each trajectory and Filter out noisy trajectories
 - Learning the lost and found zones for a given scene
 - Detect and Repair online the lost trajectories

Introduction [3]

- Input
 - Trajectories obtained from a tracking algorithm
 - Zones where object can enter or leave the scene (Entry zone and Exit zone)
 - 3D Person Model
- Output
 - Trajectories after have been repaired

Offline training_ Trajectory confidence value [1]

Trajectory confidence value is computed by nine features:

- 1. Entry zone
- 2. Exit zone
- 3. Trajectory temporal duration
- 4. Trajectory spatial length
- 5. Type frequency: number of times the mobile object is classified as a 'person'.

- 6. Frailty: number of times that the trajectory is temporally lost.
- 7. Number of neighbours: neighbouring mobile objects at some special temporal instants.
- 8. Change-Size frequency: number of times the mobile object changes its size according to a predefined dimension variation threshold.
- 9. Change-Direction frequency: number of times the mobile object changes spatial direction.

$$CV = \sum_{i=1}^{5} (w_i * f_i) + \sum_{i=6}^{9} (w_i * (1 - f_i))$$

where,

CV = confidence value of the trajectory

 w_i = the weight (importance) of feature *i*

 f_i = the value of feature i after normalisation

Offline training_ Trajectory confidence value [2]

- Determine the Feature Weights using Supervised Learning
 - 'Ground Truth': defines the confidence value of a trajectory; manually annotated, value in interval [0,1]
 - Complete trajectory
 - Incomplete trajectory
 - Unreliable trajectory
 - Noisy trajectory

Offline training_ Trajectory confidence value [3]

- Complete trajectory (Complete trajec.): starts in an entry zone and ends in an exit zone ground Truth ≥ 0.8
- Incomplete trajectory (Incomplete trajec.): does not start in an entry zone or does not end in an exit zone, 0.5 <= ground truth < 0.8

Offline training_ Trajectory confidence value [4]

Unreliable trajectory

(UnreliableTrajec.):does not start in an entryzone and does not end inan exit zone, 0.2 <=</td>ground truth < 0.5</td>

• Noisy trajectory

(Noisy trajec.): does not correspond to the trajectory of a person, ground truth < 0.2

Offline training_ Trajectory confidence value [5]

- We optimize the correspondence between 'Ground Truth' value and the learned confidence value using genetic algorithm.
- Filter out noisy trajectories using the confidence value before learning lost and found zones.

Offline training_ Computing the lost and found zones [1]

- Predefined zones in the scene
 - Entry zone (Start Zone): zone where the object can enter the scene.
 - Exit zone: zone where the object can leave the scene.
- Learned zones in the scene using KMeans clustering
 - Lost zone: zone where the tracking loses usually the objects and differing from exit zone
 - Found zone: zone where the tracking detects usually new objects and differing from entry zone.

Offline training_ Computing the lost and found zones [2]

- Definition of a zone triplet for a set of trajectories
 - entry zone (EZ)
 - lost zone (LZ)
 - found zone (FZ)
 - minimum time from lost to found zone (t min)
 - maximum time from lost to found zone (t max)
- Help the system to online repair the lost trajectories.
- Represent the paths in the scene formed by complete trajectories.

Offline training_ Computing the lost and found zones [3]

- Building zone triplets
 - Only complete trajectories that pass through: 'entry zone', 'lost zone' and 'found zone', are used to construct the zone triplets.
 - Zone triplets ranked (higher priority) by the number of trajectories passing through it.

Offline training_ Computing the lost and found zones [4]

Creation of a zone triplet

Online testing_ Repair Lost Trajectories [1]

Online testing_ Repair Lost Trajectories [2]

Repairing algorithm

Online testing_ Repair Lost Trajectories [3]

Repairing algorithm

Experimentation [1]

- Video sequences of CARETAKER project
 - (http://www.ist-caretaker.org/)
- Cameras are set up in Rome (Italia) subway stations

Experimentation [2]

8 learned lost zones

The yellow polygons show the outline of the learned lost zones. The red polygons show the outline of the entry zones, exit zones.

Experimentation [3]

t = 711s with the algorithm

Experimentation [4]

t = 903s with the algorithm

Experimentation [5]

Summary of results in two cases: with or without the proposed algorithm

	Without the algorithm		With the algorithm	
	Number	Percentage (%)	Number	Percentage (%)
Complete trajectories	758	9.0	795	9.9
Incomplete trajectories	3086	36.8	2778	34.5
Noise	4550	54.2	4481	55.6
Total	8394	100	8054	100

Conclusion and Future Work [1]

- Present a method in order to repair people trajectories in videos.
- Advantages
 - Require little a priori knowledge by exploiting the structure of the scene.
 - Compute trajectory confidence value to filter out noise and to evaluate the algorithm.
 - Define the notion 'zone triplet' => representation of general paths, compatible with complex scenes without clear paths, roads.
 - Good preliminary results

Conclusion and Future Work [2]

- Drawbacks
 - Depend on training videos and tracking quality
 - Need enough complete trajectories
 - Large number of short and incomplete trajectories
 - Can repair wrongly lost trajectories
 - Cannot handle crowded scene (people crossing each other)

Conclusion and Future Work [3]

- Future work
 - Using object appearance model for the repair process
 - The first zone of the zone triplet does not have to be a start zone, but could be anywhere
 - This start zone defined as a first zone was used to limit the space for searching trajectories to be fused and hence limits the repair process choices.

References

- 1. A. Almeida, J. Almeida, and R. Araujo, Real-time tracking of multiple moving objects using particle filters and probabilistic data association, *Automatika*, vol. 46, no. 1-2, pp. 39–48, 2005.
- 2. A. Avanzi, Francois Bremond, Christophe Tornieri and Monique Thonnat, Design and Assessment of an Intelligent Activity Monitoring Platform, *in EURASIP Journal on Applied Signal Processing*, special issue in "Advances in Intelligent Vision Systems: Methods and Applications", 2005:14, pp.2359-2374.
- 3. E. Brookner, John Wiley & Sons, Tracking and Kalman Filtering Made Easy, 1998.
- 4. Fernyhough, J H, Cohn, A G & Hogg, D C Generation of semantic regions from image sequences *in: Buxton, B & Cipolla, R (editors) ECCV'96*, pp.475-478. Springer-Verlag. 1996.
- 5. D. Makris, T. Ellis, Learning semantic scene models from observing activity in visual surveillance, *IEEE Transactions on Systems*, Man and Cybernetics, Part B 35 (3) (2005) 397–408.
- 6. S. Maskell, N. Gordon, M. Rollason and D. Salmond, Efficient Multitarget Tracking using Particle Filters, *Journal in Image and Vision Computing*, 21(10): 931-939, September 2003.
- 7. Raquel R. Pinho, João Manuel R. S. Tavares, Miguel V. Correia, An Efficient and Robust Tracking System using Kalman Filter, *VIPSI-2006 VENICE*, 2006.
- 8. Raquel R. Pinho1, João Manuel R. S. Tavares and Miguel V. Correia, A Movement Tracking Management Model with Kalman Filtering, Global Optimization Techniques and Mahalanobis Distance, *Lecture Series on Computer and Computational Sciences Volume 1*, 2005, pp. 1-3.

THANK YOU FOR YOUR ATTENTION (Duc-Phu.Chau@sophia.inria.fr)

