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Introduction [1]

• There are many methods proposed to track mobile objects (e.g. 
Using Kalman Filter, particle filters, probabilistic data 
association).
• Obtained satisfactory results, but complex and long situations of 

occlusion are not addressed. 

• Some works1,2 have focused on modelling the scene in order to 
improve the tracking algorithm.
• Require full trajectories
• Cannot handle occlusions

• Take into account only the shape and size of the objects, as they are 
detected on the 2D image plane.

1 Fernyhough et al., Buxton, B & Cipolla, R (editors) ECCV, 1996.

2 D.Makris et al., IEEE Transactions on Systems, Man and Cybernetics, 2005.
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Introduction [2]

• Our motivation
• Repairing lost trajectories thanks to a model of the scene.

• Offline learning of the scene model

• Propose a general method
• Be able to model various types of scene

• Require little a priori knowledge about the scene

• Our Approach
• Define the confidence value for each trajectory and Filter out noisy 

trajectories

• Learning the lost and found zones for a given scene
• Detect and Repair online the lost trajectories
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Introduction [3]

• Input
• Trajectories obtained from a tracking algorithm

• Zones where object can enter or leave the scene (Entry zone and Exit 
zone)

• 3D Person Model

• Output
• Trajectories after have been repaired
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Offline training_
Trajectory confidence value [1] 

1. Entry zone
2. Exit zone
3. Trajectory temporal duration
4. Trajectory spatial length 
5. Type frequency: number of 

times the mobile object is classified 
as a ‘person’.

6. Frailty: number of times that the trajectory is 
temporally lost.

7. Number of neighbours: neighbouring mobile 
objects at some special temporal instants.

8. Change-Size frequency: number of times the 
mobile object changes its size according to a 
predefined dimension variation threshold. 

9. Change-Direction frequency: number of 
times the mobile object changes spatial direction.

Trajectory confidence value is computed by nine fea tures:
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where,

CV = confidence value of the trajectory

wi = the weight (importance) of feature i

fi = the value of feature i after normalisation
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Offline training_
Trajectory confidence value [2]

• Determine the Feature Weights using Supervised Learning
• ‘Ground Truth’: defines the confidence value of a trajectory; manually 

annotated, value in interval [0,1]

• Complete trajectory
• Incomplete trajectory
• Unreliable trajectory
• Noisy trajectory
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Offline training_
Trajectory confidence value [3]
• Complete trajectory (Complete trajec.) : starts in an entry 

zone and ends in an exit zone ground Truth ≥ 0.8
• Incomplete trajectory (Incomplete trajec.) : does not start in 

an entry zone or does not end in an exit zone, 0.5 <= ground 
truth < 0.8

complete trajec.

Com
plete trajec.

Incom
plete trajec.
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Offline training_
Trajectory confidence value [4]
• Unreliable trajectory 

(Unreliable Trajec.) : 
does not start in an entry 
zone and does not end in 
an exit zone, 0.2 <= 
ground truth < 0.5

• Noisy trajectory 
(Noisy trajec.) : does not 
correspond to the 
trajectory of a person, 
ground truth < 0.2

U
nreliable trajec

N
oisy  trajec.

N
oisy. T

rajec.
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Offline training_
Trajectory confidence value [5]

• We optimize the correspondence between ‘Ground Truth’ value and the 
learned confidence value using genetic algorithm .

• Filter out noisy trajectories using the confidence value before learning lost 
and found zones.
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Offline training_
Computing the lost and found zones [1]

• Predefined zones in the scene
• Entry  zone (Start Zone): zone where the object can enter the scene.

• Exit zone: zone where the object can leave the scene.

• Learned zones in the scene using KMeans clustering
• Lost zone: zone where the tracking loses usually the objects and differing from 

exit zone

• Found zone: zone where the tracking detects usually new objects and differing 
from entry zone.
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Offline training_
Computing the lost and found zones [2]

• Definition of a zone triplet for a set of trajectories
• entry zone (EZ)
• lost zone (LZ)
• found zone (FZ)
� minimum time  from lost to found zone (t min)
� maximum time from lost to found zone (t max)

• Help the system to online repair the lost trajectories.

• Represent the paths in the scene formed by complete trajectories.

t max

lost zone found zone time

t min
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Offline training_
Computing the lost and found zones [3]

• Building zone triplets
• Only complete trajectories that 

pass through: ‘entry zone’, ‘lost 
zone’ and ‘found zone’, are used 
to construct the zone triplets.

• Zone triplets ranked (higher 
priority) by the number of 
trajectories passing through it.

Found Zone 

1

Lost Zone

1

Entry Zone 

1

Exit Zone 1

1
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Offline training_
Computing the lost and found zones [4]

Creation of a zone triplet

Found Zone 

1

Lost Zone

1

Entry Zone 

1

Exit Zone 1

Lost Zone

2

Entry Zone 

2

Lost Zone

3

2
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Online testing_
Repair Lost Trajectories [1]

Detect an object
appearing in

a found zone (FZ)

Search the triplet 
(highest priority) 

with ‘found zone’=FZ, 
(<EZ, LZ, FZ, tmin, tmax>) 

Search a lost trajectory
that began

in EZ and lost in LZ,
tmin ≤ tlost ≤ tmax

Fuse this
trajectory with

the object
just detected
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Online testing_
Repair Lost Trajectories [2]

Found Zone 3

Lost Zone 2

Entry Zone 2

P

Repairing algorithm
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Online testing_
Repair Lost Trajectories [3]

Entry Zone 1

Lost Zone 1

Found Zone 3

Lost Zone 2

Entry Zone 2

P

1

2

Repairing algorithm
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Experimentation [1]

• Video sequences of CARETAKER project 

(http://www.ist-caretaker.org/)

• Cameras are set up in Rome (Italia) subway stations
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Experimentation [2]

8 learned lost zones The yellow polygons show the outline 
of the learned lost zones. The red 
polygons show the outline of the entry 
zones, exit zones.
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Experimentation [3]

t = 711s with the algorithm

t = 709 s

t = 711s with the algorithm

t = 709 s

t = 711s with the algorithm

t = 709 s

t = 711s with the algorithm

t = 709 s

t = 711s with the algorithm

t = 711s without 

the algorithm
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Experimentation [4]

t = 903s with the algorithm

t = 903s without 

the algorithm

t = 903s with the algorithm

t = 901 s



22

22

Experimentation [5]

10080541008394Total

55.6448154.24550Noise

34.5277836.83086Incomplete trajectories

9.97959.0758Complete trajectories

Percentage (%)NumberPercentage (%)Number

With the algorithmWithout the algorithm

Summary of results in two cases: with or without the proposed algorithm
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Conclusion and Future Work [1]

• Present a method in order to repair people trajectories in videos.

• Advantages
• Require little a priori knowledge by exploiting the structure of the scene.
• Compute trajectory confidence value to filter out noise and to evaluate 

the algorithm.

• Define the notion ‘zone triplet’ => representation of general paths, 
compatible with complex scenes without clear paths, roads.

• Good preliminary results
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Conclusion and Future Work [2]

• Drawbacks
• Depend on training videos and tracking quality

• Need enough complete trajectories 
• Large number of short and incomplete trajectories
• Can repair wrongly lost trajectories
• Cannot handle crowded scene (people crossing each 

other)
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Conclusion and Future Work [3]

• Future work
• Using object appearance model for the repair process
• The first zone of the zone triplet does not have to be a 

start zone, but could be anywhere
• This start zone defined as a first zone was used to 

limit the space for searching trajectories to be fused 
and hence limits the repair process choices. 
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