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Map

Map

I Introduction : energie minimization

I Max flow and min cut (graph theory)

I Images as graphs : an efficient minimization tool

I Extensions

I Discussion
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Algorithms and energies

Introduction : energies

Algorithms and energies

Usual method in computer science :
state the problem =⇒ write an algorithm =⇒ suitable ?

Good case : proof available

↪→ prove that the algorithm solves the problem
↪→ ex: to sort a list of words in alphabetical order

Bad case : no proof

↪→ problem is not precise

↪→ or it is not clear how the algorithm compares to other ones.

=⇒ there is something wrong !
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Algorithms and energies

Introduction : energies

Algorithms and energies

Usual method in computer science :
state the problem =⇒ write an algorithm =⇒ suitable ?

Good case : proof available

↪→ prove that the algorithm solves the problem
↪→ ex: to sort a list of words in alphabetical order

Bad case : no proof

↪→ problem is not precise =⇒ need for more modelisation

↪→ or it is not clear how the algorithm compares to other ones.

=⇒ need for an objective criterion for quantitative comparison
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Algorithms and energies

Energies

Quantitative criterion C related to the current problem:

↪→ comparison of possible answers : C(A1) > C(A2) ?

↪→ state the problem mathematically : search for the optimal answer A0 s.t.:

A0 ∈ arg sup
A∈X

C(A)

Usually expressed as an energy E(A) to be minimized:

↪→ search for the optimum A0 ∈ arg inf
A∈X

E(A)

↪→ X : search space (including constraints)
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Energie minimization

How to minimize energies

I Best case : explicit formula for the solution

↪→ ex: search for the center of a cloud of n points Pi

↪→ set a mathematical definition : center = mean coordinates

↪→
−→
M =

1

n

X
i

−→
Pi

↪→ why average ?

I Special cases : ad hoc minimization method suited

↪→ Energy and constraints write a particular way
↪→ Graph-cuts, loopy belief propagation, kernel methods,

dynamic time warping, linear programming, minimum cycles, etc.

I General case : ?

↪→ discrete variables : exhaustive search... or stochastic methods (Gibbs...)
↪→ continuous variables : gradient descents (possibly stochastic)

=⇒ local optima, result depends on initialization if non-convex problem
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X

16i6n

‖
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2
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MPi S

−−→
MPi parameters: M, S

↪→ maximize likelihood : L(M,S) =
Y

i

p(Pi )

↪→ E = −lnL =
−n

2

`
ln |S|+MSM−

2

n
MS

X
i

Pi

´
+cst =⇒

−→
M =

1

n

X
i

−→
Pi

I Special cases : ad hoc minimization method suited

↪→ Energy and constraints write a particular way
↪→ Graph-cuts, loopy belief propagation, kernel methods,

dynamic time warping, linear programming, minimum cycles, etc.

I General case : ?

↪→ discrete variables : exhaustive search... or stochastic methods (Gibbs...)
↪→ continuous variables : gradient descents (possibly stochastic)

=⇒ local optima, result depends on initialization if non-convex problem

Guillaume Charpiat Pulsar project, INRIA

Graph cuts



Introduction Max flow problem From graphs to images Examples and extensions Discussion

Energie minimization

How to minimize energies

I Best case : explicit formula for the solution

↪→ ex: search for the center of a cloud of n points Pi

↪→ set a mathematical definition : center = best fitting Gaussian

↪→ p(Pi ) =
1

(2π)N/2|S|1/2
e−

1
2

−−→
MPi S

−−→
MPi parameters: M, S

↪→ maximize likelihood : L(M,S) =
Y

i

p(Pi )

↪→ E = −lnL =
−n

2

`
ln |S|+MSM−

2

n
MS

X
i

Pi

´
+cst =⇒

−→
M =

1

n

X
i

−→
Pi

I Special cases : ad hoc minimization method suited

↪→ Energy and constraints write a particular way
↪→ Graph-cuts, loopy belief propagation, kernel methods,

dynamic time warping, linear programming, minimum cycles, etc.

I General case : ?

↪→ discrete variables : exhaustive search... or stochastic methods (Gibbs...)
↪→ continuous variables : gradient descents (possibly stochastic)

=⇒ local optima, result depends on initialization if non-convex problem

Guillaume Charpiat Pulsar project, INRIA

Graph cuts



Introduction Max flow problem From graphs to images Examples and extensions Discussion

Energie minimization

How to minimize energies

I Best case : explicit formula for the solution

↪→ ex: search for the center of a cloud of n points Pi

↪→ set a mathematical definition : center = best fitting Gaussian

↪→ p(Pi ) =
1

(2π)N/2|S|1/2
e−

1
2

−−→
MPi S

−−→
MPi parameters: M, S

↪→ maximize likelihood : L(M,S) =
Y

i

p(Pi )

↪→ E = −lnL =
−n

2

`
ln |S|+MSM−

2

n
MS

X
i

Pi

´
+cst =⇒

−→
M =

1

n

X
i

−→
Pi

I Special cases : ad hoc minimization method suited

↪→ Energy and constraints write a particular way
↪→ Graph-cuts, loopy belief propagation, kernel methods,

dynamic time warping, linear programming, minimum cycles, etc.

I General case : ?

↪→ discrete variables : exhaustive search... or stochastic methods (Gibbs...)
↪→ continuous variables : gradient descents (possibly stochastic)

=⇒ local optima, result depends on initialization if non-convex problem

Guillaume Charpiat Pulsar project, INRIA

Graph cuts



Introduction Max flow problem From graphs to images Examples and extensions Discussion

Max flow

Max flow problem

Water pipes
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Energies

From graphs to images

Energy minimized on graphs

Graph :
I nodes Ni (including source and sink)

I weights wij between nodes Ni and Nj

sinksource

A cut :
I a partition of the nodes

I a binary function L which associates to each node Ni a label L(i): source or sink

I cost of a cut :
X

ij

δL(i) 6=L(j)wij ; min cut found e.g. by Push relabel

=⇒ graph cuts give the optimal solution to any binary problem written this way !
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Images as graphs

Images as graphs

Build a graph :
I one node for each pixel Ni

I edges between adjacent pixels

I two more nodes : the source A and the sink B

I edges from A and B to all pixels

source

sink

Image pixels
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Image pixels
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Images as graphs

Images as graphs

Build a graph :
I one node for each pixel Ni

I edges between adjacent pixels

I two more nodes : the source A and the sink B

I edges from A and B to all pixels

source

sink

Image pixels → Ni

Nj

w
Ai

w
Aj

w
Bi

w
Bj

w

source

sink

ij Image pixels
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Choosing costs to design energies

Choosing costs to design energies

Cut cost : sum over edges cut
I vertical edges : for each pixel, either Ai or Bi is cut :

if L(i) = A : wBi , if L(i) = B : wAi

=⇒
P

i w¬L(i), i

I horizontal edges : sum over edges between nodes of
different labels

=⇒
P

ij δL(i) 6=L(j)wij

I Total :
X

i

w¬L(i), i +
X

ij

δL(i) 6=L(j)wij

Ni

Nj

w
Ai

w
Aj

w
Bi

w
Bj

w

source

sink

ij Image pixels
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Choosing costs to design energies

Cut cost : sum over edges cut
I vertical edges : for each pixel, either Ai or Bi is cut :

if L(i) = A : wBi , if L(i) = B : wAi

=⇒
P

i w¬L(i), i

I horizontal edges : sum over edges between nodes of
different labels

=⇒
P

ij δL(i) 6=L(j)wij

I Total :
X

i

w¬L(i), i +
X

ij

δL(i) 6=L(j)wij

Ni

Nj

w
Ai

w
Aj

w
Bi

w
Bj

w

cut cost :

w
Bi

w
Bj

+

source

sink

ij Image pixels
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Choosing costs to design energies

Cut cost : sum over edges cut
I vertical edges : for each pixel, either Ai or Bi is cut :

if L(i) = A : wBi , if L(i) = B : wAi

=⇒
P

i w¬L(i), i

I horizontal edges : sum over edges between nodes of
different labels

=⇒
P

ij δL(i) 6=L(j)wij

I Total :
X

i

w¬L(i), i +
X

ij

δL(i) 6=L(j)wij

w w
Bi

+ + w
Aj

Ni

Nj

Ai
w

w
Bi

w
Bj

w

w
Aj

cut cost :
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source

sink
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Choosing costs to design energies

I Total :
X

i

w¬L(i), i +
X

ij

δL(i) 6=L(j)wij

w w
Bi

+ + w
Aj
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Nj
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w
Bi

w
Bj
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w
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sink

ij Image pixels

Guillaume Charpiat Pulsar project, INRIA

Graph cuts



Introduction Max flow problem From graphs to images Examples and extensions Discussion

Choosing costs to design energies

I Total :
X

i

w¬L(i), i +
X

ij

δL(i) 6=L(j)wij

Choose the weights that suit your problem
I vertical edges : individual label preferences for each pixel

↪→ rename Vi ( L(i) ) = w¬L(i), i

↪→ only constraint : Vi (L(i)) should be > 0

I horizontal edges : pairwise interaction between
neighboring pixels, 0 if same labels
↪→ rename Dij ( L(i), L(j) ) = δL(i) 6=L(j)wij

↪→ constraints : Dij (A,A) = Dij (B,B) = 0 and

Dij (A,B) = Dij (B,A) > 0

I Total : E(L) =
X

i

Vi (L(i)) +
X

ij

Dij (L(i), L(j))

+ constants : +
P

i Ki +
P

ij Kij

w w
Bi

+ + w
Aj

Ni

Nj

Ai
w

w
Bi

w
Bj

w

w
Aj

cut cost :

ij

source

sink

ij Image pixels

I real constraints :

↪→ no constraint on potentials Vi

↪→ no constraint on
neighborhood choices

↪→ for each interaction ij :
Dij (A,A) = Dij (B,B) 6 Dij (A,B) = Dij (B,A)
i.e.locally, labels are preferred to be homogeneous
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Choose the weights that suit your problem
I vertical edges : individual label preferences for each pixel

↪→ rename Vi ( L(i) ) = w¬L(i), i
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Choose the weights that suit your problem
I vertical edges : individual label preferences for each pixel
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↪→ only constraint : Vi (L(i)) should be > 0

I horizontal edges : pairwise interaction between
neighboring pixels, 0 if same labels
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Choosing costs to design energies

I Total :
X

i

w¬L(i), i +
X

ij

δL(i) 6=L(j)wij

Choose the weights that suit your problem
I vertical edges : individual label preferences for each pixel

↪→ rename Vi ( L(i) ) = w¬L(i), i

↪→ only constraint : Vi (L(i)) should be > 0

I horizontal edges : pairwise interaction between
neighboring pixels, 0 if same labels
↪→ rename Dij ( L(i), L(j) ) = δL(i) 6=L(j)wij

↪→ constraints : Dij (A,A) = Dij (B,B) = 0 and

Dij (A,B) = Dij (B,A) > 0

I Total : E(L) =
X
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Vi (L(i)) +
X

ij

Dij (L(i), L(j))

+ constants : +
P

i Ki +
P

ij Kij

source
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Image pixels

I real constraints :

↪→ no constraint on potentials Vi

↪→ no constraint on
neighborhood choices
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Dij (A,A) = Dij (B,B) 6 Dij (A,B) = Dij (B,A)
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Choosing costs to design energies

I Total :
X

i

w¬L(i), i +
X

ij

δL(i) 6=L(j)wij

Choose the weights that suit your problem
I vertical edges : individual label preferences for each pixel

↪→ rename Vi ( L(i) ) = w¬L(i), i

↪→ only constraint : Vi (L(i)) should be > 0

I horizontal edges : pairwise interaction between
neighboring pixels, 0 if same labels
↪→ rename Dij ( L(i), L(j) ) = δL(i) 6=L(j)wij

↪→ constraints : Dij (A,A) = Dij (B,B) = 0 and

Dij (A,B) = Dij (B,A) > 0

I Total : E(L) =
X

i

Vi (L(i)) +
X

ij

Dij (L(i), L(j))

+ constants : +
P

i Ki +
P

ij Kij

source

sink

Image pixels

I real constraints :

↪→ no constraint on potentials Vi

↪→ no constraint on
neighborhood choices

↪→ for each interaction ij :
Dij (A,A) = Dij (B,B) 6 Dij (A,B) = Dij (B,A)
i.e. locally, labels are preferred to be homogeneous

=⇒ graph cuts give the global optimum to any binary problem written this way !
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Neighborhoods

Neighborhoods

Any neighborhood can be chosen
but
the choice will influence the shape of the cut

↪→ 4-neighborhood =⇒ vertical and horizontal segments

↪→ 8-neighborhood =⇒ ≈ ok in practice

1

1/
√

2
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Binary example

Example : binary segmentation

I For each pixel i of image A associate a node
I define 8-neighborhood
I two possible labels : black (B) and white (W)
I set potentials: Vi (B) = A(i), Vi (W ) = 256− A(i)

I set spatial coherency: Dij (Li , Lj ) = K δLi 6=Lj

 
1

ε+
˛̨
A(i)− A(j)

˛̨!
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Binary example

Example : binary segmentation

I For each pixel i of image A associate a node
I define 8-neighborhood
I two possible labels : black (B) and white (W)
I set potentials: Vi (B) = A(i), Vi (W ) = 256− A(i)

I set spatial coherency: Dij (Li , Lj ) = K δLi 6=Lj

 
1

ε+
˛̨
A(i)− A(j)

˛̨!
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Binary example

Example : binary segmentation

original image + noise

threshold graph cut
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Multi-label extension

Extension to multi-label problems

Previously : binary problems : L(i) ∈ {0, 1}
Now : multi-label problems : L(i) ∈ X (discrete set, indep. of i)

In some cases : possible to build a graph to get the global optimum
Most often : use (α, β)-swap or α-expansions

α-expansions :

↪→ Dij (·, ·) : required to be distance on labels

↪→ iteratively : choose one particular label α, and consider the binary problem :
for each pixel i , is it better to keep current label L(i), or to move to label α ?

↪→ each step solved by graph-cuts

↪→ repeat until no evolution

↪→ convergence and good local optimum guaranteed
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Energies

Energies that can be minimized

I Minimizing E(L) =
X

i

Vi ( L(i) ) +
X

ij

Dij ( L(i), L(j) )

is NP-hard in the general case

I The sub-modularity condition Dij (A,A) = Dij (B,B) < Dij (A,B) = Dij (B,A)
makes it minimizable by graph-cuts

I If labels are ordered : Dij ( L(i), L(j) ) = gij ( L(i)− L(j) ) with gij convex
=⇒ global optimum

I (α, β) swap : if Dij is a semi-metric on labels

I α expansion : if Dij is a metric : good local minimum guaranteed theoretically
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Markovian formulation

Probabilistic / Markovian rewriting

p(L) ∝ exp(−E(L))

∝ exp
`
−
X

i

Vi ( L(i) )
´

exp
`
−
X

ij

Dij ( L(i), L(j) )
´

∝
Y

i

e−Vi ( L(i) )
Y
i∼j

e−Dij ( L(i), L(j) )

∝
Y

i

pi ( L(i) )
Y
i∼j

qij ( L(i), L(j) )

p
`

L(i)
˛̨

L(k) ∀k 6= i
´
∝ pi ( L(i) )

Y
j∼i

qij ( L(i), L(j) ) ∝ p
`

L(i)
˛̨

L(j)∀j ∈ Ni

´
p
`

L(i)
˛̨

L(j)
´
∝ pi ( L(i) ) qij ( L(i), L(j) )
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An other example

An example in the probabilistic setting : colorization

I Learning how to color greyscale images

I training set : one or several color images

I main idea : copy colors from patches with similar greyscale texture

+ = ?
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An other example

I pixel 7→ greyscale patch 7→ texture features (SURF)

I SVR : features 7→ proba(each color)

I SVR : features 7→ norm of the gradient of the color

I graph cut : proba(each color) × cost of color change 7→ color

Color

Probability

of each color

at each pixel

Final color

for all pixels

Cost of color change

(function of edges)

Minimize energy:
Y

i

ψ(color ci , patch pi )×
Y
i∼j

Ψ(ci , cj |pi , pj )
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An other example

Examples of results

+ =
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An other example

Examples of results

+ =
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An other example

Examples of results

+ =
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An other example

Examples of results

+ =

Guillaume Charpiat Pulsar project, INRIA

Graph cuts



Introduction Max flow problem From graphs to images Examples and extensions Discussion

Variations on graph-cuts

Variations

I directed vs. undirected graph

I higher-order interaction, with m variables : Vi,j,k...( L(i), L(j), L(k)...)

I dynamic cut : knowing a solution to a close problem =⇒ iterative

I active graph cut : knowing a solution on a part of the graph =⇒ multi-scale

I multiple sources or sinks within the image

Complexity

I Theoretical complexity, worse case : about (#pixels)3 × (#labels)2 (depends on
the algorithm)

I In practice : worse case never reached, much faster

I GPU implementation possible =⇒ incredibly fast
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Applications

Some applications

Any problem that can be written as a multi-labelling problem with simple local
interaction terms (Markov fields)

I image denoising

I image segmentation, knowing color histograms of objects

I segmentation knowing seeds (points inside and outside the object)
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Applications

Some applications

Any problem that can be written as a multi-labelling problem with simple local
interaction terms (Markov fields)

I image denoising

I image segmentation, knowing color histograms of objects

I segmentation knowing seeds (points inside and outside the object)

I active contours : iterative segmentation within a narrow band

I multi-scale approach for segmentation

I iterative segmentation with parameter estimations (e.g. color histograms)
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Applications

Some applications

Any problem that can be written as a multi-labelling problem with simple local
interaction terms (Markov fields)

I image denoising

I image segmentation, knowing color histograms of objects

I segmentation knowing seeds (points inside and outside the object)

I active contours : iterative segmentation within a narrow band

I multi-scale approach for segmentation

I iterative segmentation with parameter estimations (e.g. color histograms)

I EM algorithms : iterative clustering / parameter-estimation
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Applications

Some applications

Any problem that can be written as a multi-labelling problem with simple local
interaction terms (Markov fields)

I ...

I iterative segmentation with parameter estimations (e.g. color histograms)

I EM algorithms : iterative clustering / parameter-estimation

I stereovison
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Applications

Some applications

Any problem that can be written as a multi-labelling problem with simple local
interaction terms (Markov fields)

I ...

I stereovison

I 3D-reconstruction
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Applications

Some applications

Any problem that can be written as a multi-labelling problem with simple local
interaction terms (Markov fields)

I ...

I stereovison

I 3D-reconstruction

I video segmentation : based on motion

I texture synthesis
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Applications

Some applications

Any problem that can be written as a multi-labelling problem with simple local
interaction terms (Markov fields)

I ...

I texture synthesis

I shape matching (different kind of graph)

I segmentation with rigid shape prior (insanely huge graph)
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Discussion

Discussion

Pros:

↪→ gives the global optimum of certain types of energies

↪→ gives a very good local optimum of all Markov-like energies with discrete values

↪→ practical way to bring spatial coherency

↪→ it’s fast

Cons :

↪→ only those kinds of simple energies

↪→ tends to make people do simplisitic modelings

Competitor :

↪→ loopy belief propagation
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