Introduction	Max flow problem	From graphs to images	Examples and extensions

Graph cuts and computer vision an introduction

Guillaume Charpiat

Pulsar Project, INRIA

INRIA Sophia-Antipolis 15/05/09

Guillaume Charpiat

Graph cuts

Pulsar project, INRIA

Discussion

Introduction	Max flow problem	From graphs to images	Examples and extensions	Discussion
0000				
Мар				

Map

- Introduction : energie minimization
- Max flow and min cut (graph theory)
- Images as graphs : an efficient minimization tool
- Extensions
- Discussion

Introduction	Max flow problem	From graphs to images	Examples and extensions	Discussion
0000				
Algorithms and energy	gies			

Algorithms and energies

```
Usual method in computer science :
state the problem \implies write an algorithm \implies suitable ?
```

Good case : proof available

↔ prove that the algorithm solves the problem ↔ ex: to sort a list of words in alphabetical order

Bad case : no proof

- \hookrightarrow problem is not precise
- \hookrightarrow or it is not clear how the algorithm compares to other ones.

Introduction	Max flow problem	From graphs to images	Examples and extensions	Discussion
0000				
Algorithms and energy	gies			

Algorithms and energies

```
Usual method in computer science :
state the problem \implies write an algorithm \implies suitable ?
```

Good case : proof available

↔ prove that the algorithm solves the problem ↔ ex: to sort a list of words in alphabetical order

Bad case : no proof

- \hookrightarrow problem is not precise
- \hookrightarrow or it is not clear how the algorithm compares to other ones.

Introduction	Max flow problem	From graphs to images	Examples and extensions	Discussion
0000				
Algorithms and energy	gies			

Algorithms and energies

```
Usual method in computer science :
state the problem \implies write an algorithm \implies suitable ?
```

Good case : proof available

 \hookrightarrow prove that the algorithm solves the problem $\hookrightarrow \underline{ex:}$ to sort a list of words in alphabetical order

Bad case : no proof

- \hookrightarrow problem is not precise
- \hookrightarrow or it is not clear how the algorithm compares to other ones.

Introduction	Max flow problem	From graphs to images	Examples and extensions	Discussion
0000				
Algorithms and energies				

Algorithms and energies

```
Usual method in computer science :
state the problem \implies write an algorithm \implies suitable ?
```

Good case : proof available

 \hookrightarrow prove that the algorithm solves the problem \hookrightarrow ex: to sort a list of words in alphabetical order

Bad case : no proof

- \hookrightarrow problem is not precise
- \hookrightarrow or it is not clear how the algorithm compares to other ones.

Introduction	Max flow problem	From graphs to images	Examples and extensions	Discussion
0000				
Algorithms and energy	gies			

Algorithms and energies

```
Usual method in computer science :
state the problem \implies write an algorithm \implies suitable ?
```

Good case : proof available ↔ prove that the algorithm solves the problem ↔ <u>ex:</u> to sort a list of words in alphabetical order

Bad case : no proof

- \hookrightarrow problem is not precise \implies need for more modelisation
- $\,\hookrightarrow\,$ or it is not clear how the algorithm compares to other ones.
 - \implies need for an objective criterion for quantitative comparison

Introduction	Max flow problem	From graphs to images	Examples and extensions	Discussion
0000				
Algorithms and energies				

Energies

Quantitative criterion C related to the current problem:

- \hookrightarrow comparison of possible answers : $C(A_1) > C(A_2)$?
- \hookrightarrow state the problem mathematically : search for the optimal answer A_0 s.t.:

 $A_0 \in \operatorname*{arg\,sup}_{A \in \mathcal{X}} C(A)$

Usually expressed as an energy E(A) to be minimized:

- \hookrightarrow search for the optimum $A_0 \in \underset{A \in \mathcal{X}}{\operatorname{arg\,inf}} E(A)$
- $\hookrightarrow \mathcal{X}$: search space (including constraints)

Introduction	Max flow problem	From graphs to images	Examples and extensions	Discussion
0000				
Algorithms and energy	gies			

Energies

Quantitative criterion C related to the current problem:

- \hookrightarrow comparison of possible answers : $C(A_1) > C(A_2)$?
- \hookrightarrow state the problem mathematically : search for the optimal answer A_0 s.t.:

 $A_0 \in \operatorname*{arg\,sup}_{A \in \mathcal{X}} C(A)$

Usually expressed as an energy E(A) to be minimized:

- \hookrightarrow search for the optimum $A_0 \in \underset{A \in \mathcal{X}}{\operatorname{arg inf}} E(A)$
- $\hookrightarrow \mathcal{X}$: search space (including constraints)

Introduction	Max flow problem	From graphs to images	Examples and extensions	Discussion
0000				
Energie minimization				

Best case : explicit formula for the solution

- \hookrightarrow ex: search for the center of a cloud of *n* points P_i
- \hookrightarrow set a mathematical definition : center = mean coordinates

$$\hookrightarrow \qquad \qquad \overrightarrow{M} = \frac{1}{n} \sum_{i} \overrightarrow{P_{i}}$$

→ why average ?

Special cases : ad hoc minimization method suited

 \hookrightarrow Energy and constraints write a particular way

Graph-cuts, loopy belief propagation, kernel methods, dynamic time warping, linear programming, minimum cycles, etc.

► General case : ?

- \hookrightarrow discrete variables : exhaustive search... or stochastic methods (Gibbs...)
- \hookrightarrow continuous variables : gradient descents (possibly stochastic)
 - \implies local optima, result depends on initialization if non-convex problem

Guillaume Charpiat

Graph cuts

Introduction	Max flow problem	From graphs to images	Examples and extensions	Discussion
0000				
Energie minimization				

Best case : explicit formula for the solution

- \hookrightarrow <u>ex:</u> search for the center of a cloud of *n* points P_i
- $\,\hookrightarrow\,$ set a mathematical definition : center = closest point to all

 \hookrightarrow Warning : solution changes with energy design (choice of norm, power, weights, outliers...)

Special cases : ad hoc minimization method suited

 \hookrightarrow Energy and constraints write a particular way

Graph-cuts, loopy belief propagation, kernel methods, dynamic time warping, linear programming, minimum cycles, etc.

► General case : ?

- \hookrightarrow discrete variables : exhaustive search... or stochastic methods (Gibbs...)
- \hookrightarrow continuous variables : gradient descents (possibly stochastic)
 - \implies local optima, result depends on initialization if non-convex problem

Guillaume Charpiat

Introduction	Max flow problem	From graphs to images	Examples and extensions	Discussion
0000				
Energie minimizatior	1			

Best case : explicit formula for the solution

- \hookrightarrow <u>ex:</u> search for the center of a cloud of *n* points P_i
- $\, \hookrightarrow \,$ set a mathematical definition : center = best fitting Gaussian
- $\hookrightarrow p(P_i) = \frac{1}{(2\pi)^{N/2} |\mathbf{S}|^{1/2}} e^{-\frac{1}{2} \overrightarrow{MP_i} \mathbf{S} \overrightarrow{MP_i}}$ parameters: M, \mathbf{S}

 \hookrightarrow maximize likelihood : $L(M, \mathbf{S}) = \prod p(P_i)$

$$\hookrightarrow E = -\ln L = \frac{-n}{2} \left(\ln |\mathbf{S}| + M\mathbf{S}M - \frac{2}{n}M\mathbf{S}\sum_{i} P_{i} \right) + c^{st} \implies \overrightarrow{M} = \frac{1}{n}\sum_{i} \overrightarrow{P_{i}}$$

Special cases : ad hoc minimization method suited

← Energy and constraints write a particular way

Graph-cuts, loopy belief propagation, kernel methods, dynamic time warping, linear programming, minimum cycles, etc.

General case : ?

- ← discrete variables : exhaustive search... or stochastic methods (Gibbs...)
- \hookrightarrow continuous variables : gradient descents (possibly stochastic)
 - \implies local optima, result depends on initialization if non-convex problem

Guillaume Charpiat

Introduction	Max flow problem	From graphs to images	Examples and extensions	Discussion
0000				
Energie minimizatior	1			

Best case : explicit formula for the solution

- \hookrightarrow <u>ex:</u> search for the center of a cloud of *n* points P_i
- $\,\hookrightarrow\,$ set a mathematical definition : center = best fitting Gaussian
- $ightarrow p(P_i) = \frac{1}{(2\pi)^{N/2} |\mathbf{S}|^{1/2}} e^{-\frac{1}{2} \overrightarrow{MP_i} \mathbf{S} \overrightarrow{MP_i}}$ parameters: M, \mathbf{S}

 \hookrightarrow maximize likelihood : $L(M, \mathbf{S}) = \prod p(P_i)$

$$\hookrightarrow E = -\ln L = \frac{-n}{2} \left(\ln |\mathbf{S}| + M\mathbf{S}M - \frac{2}{n}M\mathbf{S}\sum_{i} P_{i} \right) + c^{st} \implies \overrightarrow{M} = \frac{1}{n}\sum_{i} \overrightarrow{P_{i}}$$

Special cases : ad hoc minimization method suited

 $\, \hookrightarrow \,$ Energy and constraints write a particular way

Graph-cuts, loopy belief propagation, kernel methods, dynamic time warping, linear programming, minimum cycles, etc.

General case : ?

- \hookrightarrow discrete variables : exhaustive search... or stochastic methods (Gibbs...)
- \hookrightarrow continuous variables : gradient descents (possibly stochastic)
 - \implies local optima, result depends on initialization if non-convex problem

Guillaume Charpiat

Introduction	Max flow problem	From graphs to images	Examples and extensions	Discussion
0000				
Energie minimizatior	1			

Best case : explicit formula for the solution

- \hookrightarrow <u>ex:</u> search for the center of a cloud of *n* points P_i
- $\, \hookrightarrow \,$ set a mathematical definition : center = best fitting Gaussian
- $\hookrightarrow p(P_i) = \frac{1}{(2\pi)^{N/2} |\mathbf{S}|^{1/2}} e^{-\frac{1}{2} \overrightarrow{MP_i} \mathbf{S} \overrightarrow{MP_i}}$ parameters: M, \mathbf{S}

 \hookrightarrow maximize likelihood : $L(M, \mathbf{S}) = \prod p(P_i)$

$$\hookrightarrow E = -\ln L = \frac{-n}{2} \left(\ln |\mathbf{S}| + M\mathbf{S}M - \frac{2}{n}M\mathbf{S}\sum_{i} P_{i} \right) + c^{st} \implies \overrightarrow{M} = \frac{1}{n}\sum_{i} \overrightarrow{P_{i}}$$

Special cases : ad hoc minimization method suited

 \hookrightarrow Energy and constraints write a particular way

Graph-cuts, loopy belief propagation, kernel methods, dynamic time warping, linear programming, minimum cycles, etc.

General case : ?

- \hookrightarrow discrete variables : exhaustive search... or stochastic methods (Gibbs...)
- \hookrightarrow continuous variables : gradient descents (possibly stochastic)
 - \implies local optima, result depends on initialization if non-convex problem

Guillaume Charpiat

Graph cuts

Introduction	Max flow problem ●	From graphs to images	Examples and extensions	Discussion
Max flow				

Water pipes

Guillaume Charpiat Graph cuts

Introduction	Max flow problem ●	From graphs to images	Examples and extensions	Discussion
Max flow				

Water pipes

Guillaume Charpiat Graph cuts

Introduction	Max flow problem ●	From graphs to images	Examples and extensions	Discussion
Max flow				

Water pipes

Guillaume Charpiat Graph cuts

Introduction	Max flow problem ●	From graphs to images	Examples and extensions	Discussion
Max flow				

Water pipes

Guillaume Charpiat Graph cuts

Introduction	Max flow problem ●	From graphs to images	Examples and extensions	Discussion
Max flow				

Water pipes

Guillaume Charpiat Graph cuts

Introduction	Max flow problem ●	From graphs to images	Examples and extensions	Discussion
Max flow				

Water pipes

Guillaume Charpiat Graph cuts

Introduction	Max flow problem ●	From graphs to images	Examples and extensions	Discussion
Max flow				

Water pipes

Guillaume Charpiat Graph cuts

Introduction	Max flow problem ●	From graphs to images	Examples and extensions	Discussion
Max flow				

Water pipes

Guillaume Charpiat Graph cuts

Introduction	Max flow problem ●	From graphs to images	Examples and extensions	Discussion
Max flow				

Water pipes

Guillaume Charpiat Graph cuts

Introduction	Max flow problem ●	From graphs to images	Examples and extensions	Discussion
Max flow				

Water pipes

Guillaume Charpiat Graph cuts

Introduction	Max flow problem ●	From graphs to images	Examples and extensions	Discussion
Max flow				

Water pipes

Guillaume Charpiat Graph cuts

Introduction	Max flow problem ●	From graphs to images	Examples and extensions	Discussion
Max flow				

Water pipes

Guillaume Charpiat Graph cuts

Introduction	Max flow problem ●	From graphs to images	Examples and extensions	Discussion
Max flow				

Water pipes

Guillaume Charpiat Graph cuts

Introduction	Max flow problem ●	From graphs to images	Examples and extensions	Discussion
Max flow				

Water pipes

Guillaume Charpiat Graph cuts

Introduction	Max flow problem ●	From graphs to images	Examples and extensions	Discussion
Max flow				

Water pipes

Guillaume Charpiat Graph cuts

Introduction	Max flow problem ●	From graphs to images	Examples and extensions	Discussion
Max flow				

Water pipes

Guillaume Charpiat Graph cuts

Introduction	Max flow problem ●	From graphs to images	Examples and extensions	Discussion
Max flow				

Water pipes

Guillaume Charpiat Graph cuts

Introduction	Max flow problem ●	From graphs to images	Examples and extensions	Discussion
Max flow				

Water pipes

Guillaume Charpiat Graph cuts

Introduction	Max flow problem ●	From graphs to images	Examples and extensions	Discussion
Max flow				

Water pipes

push - relabel

Guillaume Charpiat

Pulsar project, INRIA

Graph cuts

Introduction	Max flow problem ●	From graphs to images	Examples and extensions	Discussion
Max flow				

Water pipes

Guillaume Charpiat Graph cuts

Introduction	Max flow problem ●	From graphs to images	Examples and extensions	Discussion
Max flow				

Water pipes

Guillaume Charpiat Graph cuts

Introduction	Max flow problem ●	From graphs to images	Examples and extensions	Discussion
Max flow				

Water pipes

Theorem : maximum flow \iff no augmenting path in the residual graph

Guillaume Charpiat

Graph cuts
Introduction	Max flow problem ●	From graphs to images	Examples and extensions	Discussion
Max flow				

Max flow problem

Water pipes

Guillaume Charpiat

Pulsar project, INRIA

Introduction	Max flow problem ●	From graphs to images	Examples and extensions	Discussion
Max flow				

Max flow problem

Water pipes

Guillaume Charpiat Graph cuts

Introduction	Max flow problem ●	From graphs to images	Examples and extensions	Discussion
Max flow				

Max flow problem

Water pipes

Theorem : maximum flow \iff minimal cut

Guillaume Charpiat

Graph cuts

From graphs to images

Energy minimized on graphs

Graph :

- nodes N_i (including source and sink)
- weights w_{ij} between nodes N_i and N_j

A cut :

a partition of the nodes

> a binary function L which associates to each node N_i a label L(i): source or sink

▶ cost of a cut :
$$\sum_{ij} \delta_{L(i) \neq L(j)} w_{ij}$$
; min cut found e.g. by Push relabel

 \Rightarrow graph cuts give the optimal solution to any binary problem written this way !

Guillaume Charpiat

Graph cuts

From graphs to images

Energy minimized on graphs

Graph :

- nodes N_i (including source and sink)
- weights w_{ij} between nodes N_i and N_j

A cut :

a partition of the nodes

> a binary function L which associates to each node N_i a label L(i): source or sink

▶ cost of a cut :
$$\sum_{ij} \delta_{L(i)
eq L(j)} w_{ij}$$
; min cut found e.g. by Push relabel

 \Rightarrow graph cuts give the optimal solution to any binary problem written this way !

Guillaume Charpiat

Graph cuts

From graphs to images

Energy minimized on graphs

Graph :

- nodes N_i (including source and sink)
- weights w_{ij} between nodes N_i and N_i

A cut :

a partition of the nodes

> a binary function L which associates to each node N_i a label L(i): source or sink

▶ cost of a cut :
$$\sum_{ij} \delta_{L(i)
eq L(j)} w_{ij}$$
; min cut found e.g. by Push relabel

 \Rightarrow graph cuts give the optimal solution to any binary problem written this way !

Guillaume Charpiat

Graph cuts

Introduction	Max flow problem	From graphs to images	Examples and extensions	Discussion
		0000		
Images as graphs				

Images as graphs

Build a graph :

- one node for each pixel N_i
- edges between adjacent pixels
- two more nodes : the source A and the sink B

Image pixels

edges from A and B to all pixels

sink

Introduction	Max flow problem	From graphs to images	Examples and extensions	Discussion
		0000		
Images as graphs				

Images as graphs

Build a graph :

- one node for each pixel N_i
- edges between adjacent pixels
- two more nodes : the source A and the sink B
- edges from A and B to all pixels

Guillaume Charpiat

Graph cuts

Introduction	Max flow problem o	From graphs to images ○●○○	Examples and exte	nsions	Discussion
Images as graphs					
Images	as graphs				
Build a g	graph : ode for each pixel <i>N</i> i				
edges	between adjacent pix	els			
🕨 two m	nore nodes : the sourc	e A and the sink B			
edges	from A and B to all	pixels			
	SOUTCE	age pixels $\longrightarrow \bigvee_{i}^{N_{i}}$	source w _{Aj} w _{Bj} w _{Bj} sink	Image pixel	S

Pulsar project, INRIA

Guillaume Charpiat

 Introduction
 Max flow problem
 From graphs to images
 Examples and extensions
 Discussion

 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 00000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 00000000
 000000000
 00000000000
 0000000000
 000000000000</

Choosing costs to design energies

Cut cost : sum over edges cut

▶ vertical edges : for each pixel, either Ai or Bi is cut : if L(i) = A : w_{Bi} , if L(i) = B : w_{Ai} $\implies \sum_i w_{\neg L(i), i}$

 horizontal edges : sum over edges between nodes of different labels

 $\Rightarrow \sum_{ij} \delta_{L(i) \neq L(j)} w_{ij}$

► Total : $\sum_{i} w_{\neg L(i), i} + \sum_{ij} \delta_{L(i) \neq L(j)} w_{ij}$

Image pixels

Guillaume Charpiat Graph cuts

Choosing costs to design energies

Cut cost : sum over edges cut

▶ vertical edges : for each pixel, either Ai or Bi is cut : if L(i) = A : w_{Bi} , if L(i) = B : w_{Ai} $\implies \sum_i w_{\neg L(i), i}$

 horizontal edges : sum over edges between nodes of different labels

 $\implies \sum_{ij} \delta_{L(i) \neq L(j)} w_{ij}$

► Total : $\sum_{i} w_{\neg L(i), i} + \sum_{ij} \delta_{L(i) \neq L(j)} w_{ij}$

Choosing costs to design energies

Cut cost : sum over edges cut

▶ vertical edges : for each pixel, either Ai or Bi is cut : if $L(i) = A : w_{Bi}$, if $L(i) = B : w_{Ai}$ $\implies \sum_{i} w_{\neg L(i), i}$

 horizontal edges : sum over edges between nodes of different labels

 $\implies \sum_{ij} \delta_{L(i) \neq L(j)} w_{ij}$

► Total : $\sum_{i} w_{\neg L(i), i} + \sum_{ij} \delta_{L(i) \neq L(j)} w_{ij}$

Pulsar project, INRIA

Guillaume Charpiat

Introduction Max flow problem From graphs to images Examples and extensions Discussion 0000 Choosing costs to design energies ► Total : $\sum w_{\neg L(i), i} + \sum \delta_{L(i) \neq L(j)} w_{ij}$ Choose the weights that suit your problem vertical edges : individual label preferences for each pixel \hookrightarrow rename V_i $= W_{\neg L(i), i}$ \hookrightarrow only constraint : $V_i(L(i))$ should be ≥ 0 horizontal edges : pairwise interaction between neighboring pixels, 0 if same labels

$$\begin{array}{ll} \bullet \quad \text{Total} : \ E(L) = \sum_{i} V_i(L(i)) + \sum_{ij} D_{ij}(L(i), L(j)) \\ + \ \text{constants} : \quad + \sum_{i} K_i \quad + \sum_{ij} K_{ij} \end{array}$$

real constraints :

- \hookrightarrow no constraint on potentials $V_i \hookrightarrow$ for each interaction ij:

i.e.locally, labels are preferred to be homogeneous

Pulsar project, INRIA

Guillaume Charpiat Graph cuts

Introduction Max flow problem From graphs to images Examples and extensions Discussion 0000 Choosing costs to design energies ► Total : $\sum w_{\neg L(i), i} + \sum \delta_{L(i) \neq L(j)} w_{ij}$ Choose the weights that suit your problem vertical edges : individual label preferences for each pixel \hookrightarrow rename V $= W_{\neg L(i), i}$ \hookrightarrow only constraint : $V_i(L(i))$ should be ≥ 0 horizontal edges : pairwise interaction between neighboring pixels, 0 if same labels **Image pixels** \hookrightarrow rename $D_{ij}(L(i), L(j)) = \delta_{L(i) \neq L(j)} w_{ij}$ \hookrightarrow constraints : $D_{ii}(A, A) = D_{ii}(B, B) = 0$ and $D_{ii}(A,B) = D_{ii}(B,A) \ge 0$ WBj sink

 \hookrightarrow no constraint on potentials $V_i \hookrightarrow$ for each interaction ij:

i.e.locally, labels are preferred to be homogeneous

► Total :
$$E(L) = \sum_{i} V_i(L(i)) + \sum_{ij} D_{ij}(L(i), L(j))$$

+ constants : $+ \sum_{i} K_i + \sum_{ij} K_{ij}$

Introduction Max flow problem From graphs to images Examples and extensions Discussion 0000 Choosing costs to design energies ► Total : $\sum w_{\neg L(i), i} + \sum \delta_{L(i) \neq L(j)} w_{ij}$ Choose the weights that suit your problem vertical edges : individual label preferences for each pixel cut cost : \hookrightarrow rename $V_i(L(i)) = w_{\neg L(i), i}$ \hookrightarrow only constraint : $V_i(L(i))$ should be ≥ 0 horizontal edges : pairwise interaction between neighboring pixels, 0 if same labels Image pixels \hookrightarrow rename $D_{ij}(L(i), L(j)) = \delta_{L(i) \neq L(j)} w_{ij}$ \hookrightarrow constraints : $D_{ii}(A, A) = D_{ii}(B, B) = 0$ and $D_{ii}(A,B) = D_{ii}(B,A) \ge 0$ WBj ► Total : $E(L) = \sum V_i(L(i)) + \sum D_{ij}(L(i), L(j))$ sink + constants : $+\sum_{i}K_{i}$ + $\sum_{ij}K_{ij}$

real constraints :

- \hookrightarrow no constraint on potentials $V_i \hookrightarrow$ for each interaction ij:
 - → no constraint on neighborhood choices

for each interaction ij: $D_{ij}(A, A) = D_{ij}(B, B) \leq D_{ij}(A, B) = D_{ij}(B, A)$ i.e.locally, labels are preferred to be homogeneous

↔ no constraint on neighborhood choices for each interaction ij: $D_{ij}(A, A) = D_{ij}(B, B) \leq D_{ij}(A, B) = D_{ij}(B, A)$ i.e. locally, labels are preferred to be homogeneous

Guillaume Charpiat Graph cuts

Graph cuts

Introduction	Max flow problem	From graphs to images ○○○●	Examples and extensions	Discussion
Neighborhoods				

Neighborhoods

Any neighborhood can be chosen

but

the choice will influence the shape of the cut

- \hookrightarrow 4-neighborhood \implies vertical and horizontal segments
- \hookrightarrow 8-neighborhood \implies \approx ok in practice

Pulsar project, INRIA

Guillaume Charpiat

Introduction	Max flow problem	From graphs to images	Examples and extensions	Discussion
Binary example				

Example : binary segmentation

- For each pixel i of image A associate a node
- define 8-neighborhood
- two possible labels : black (B) and white (W)
- ▶ set potentials: $V_i(B) = A(i)$, $V_i(W) = 256 A(i)$

• set spatial coherency: $D_{ij}(L_i, L_j) = K \, \delta_{L_i \neq L_j} \left(\frac{1}{\varepsilon + 1} \right)$

Guillaume Charpiat

Pulsar project, INRIA

Introduction	Max flow problem	From graphs to images	Examples and extensions	Discussion
Binary example				

Example : binary segmentation

- For each pixel i of image A associate a node
- define 8-neighborhood
- two possible labels : black (B) and white (W)
- ▶ set potentials: $V_i(B) = A(i)$, $V_i(W) = 256 A(i)$

► set spatial coherency: $D_{ij}(L_i, L_j) = K \, \delta_{L_i \neq L_j} \left(\frac{1}{\varepsilon + |A(i) - i|} \right)$

Guillaume Charpiat

Pulsar project, INRIA

Introduction

Max flow problem

From graphs to images

Examples and extensions

Discussion

Binary example

Example : binary segmentation

original image

+ noise

threshold

Guillaume Charpiat Graph cuts

Introduction	Max flow problem	From graphs to images	Examples and extensions	Discussion	
Multi-label extension					

Extension to multi-label problems

Previously : binary problems : $L(i) \in \{0, 1\}$ Now : multi-label problems : $L(i) \in \mathcal{X}$ (discrete set, indep. of *i*)

In some cases : possible to build a graph to get the global optimum Most often : use (α, β) -swap or α -expansions

α -expansions :

- \hookrightarrow $D_{ij}(\cdot, \cdot)$: required to be distance on labels
- \hookrightarrow iteratively : choose one particular label α , and consider the binary problem : for each pixel *i*, is it better to keep current label L(i), or to move to label α ?
- \hookrightarrow each step solved by graph-cuts
- \hookrightarrow repeat until no evolution
- $\, \hookrightarrow \,$ convergence and good local optimum guaranteed

Introduction	Max flow problem O	From graphs to images	Examples and extensions	Discussion
Energies				

Energies that can be minimized

- Minimizing E(L) = $\sum_{i} V_i(L(i)) + \sum_{ij} D_{ij}(L(i), L(j))$ is NP-hard in the general case
- The sub-modularity condition $D_{ij}(A, A) = D_{ij}(B, B) < D_{ij}(A, B) = D_{ij}(B, A)$ makes it minimizable by graph-cuts
- ▶ If labels are ordered : $D_{ij}(L(i), L(j)) = g_{ij}(L(i) L(j))$ with g_{ij} convex ⇒ global optimum
- (α, β) swap : if D_{ij} is a semi-metric on labels
- \triangleright α expansion : if D_{ij} is a metric : good local minimum guaranteed theoretically

Introduction	Max flow problem o	From graphs to images	Examples and extensions	Discussion	
Markovian formulation					

Probabilistic / Markovian rewriting

$$p(L) \propto \exp(-E(L))$$

$$\propto \exp(-E(L))$$

$$\propto \exp(-\sum_{i} V_{i}(L(i))) \exp(-\sum_{ij} D_{ij}(L(i), L(j)))$$

$$\propto \prod_{i} e^{-V_{i}(L(i))} \prod_{i \sim j} e^{-D_{ij}(L(i), L(j))}$$

$$\propto \prod_{i} p_{i}(L(i)) \prod_{i \sim j} q_{ij}(L(i), L(j))$$

$$p(L(i) \mid L(k) \forall k \neq i) \propto p_{i}(L(i)) \prod_{j \sim i} q_{ij}(L(i), L(j)) \propto p(L(i) \mid L(j) \forall j \in \mathcal{N})$$

$$p(L(i) \mid L(j)) \propto p_{i}(L(i)) q_{ij}(L(i), L(j))$$

Pulsar project, INRIA

 $\mathcal{I}_i)$

Guillaume Charpiat

Introduction	Max flow problem	From graphs to images	Examples and extensions	Discussion
An other example				

An example in the probabilistic setting : colorization

- Learning how to color greyscale images
- training set : one or several color images
- main idea : copy colors from patches with similar greyscale texture

Introduction	Max flow problem O	From graphs to images	Examples and extensions	Discussion
An other example				
piS¹S¹	xel → greyscale patch VR : features → prob VR : features → norm	h → texture features (SU a(each color) n of the gradient of the c	JRF) olor	
gr	aph cut : proba(each	color) × cost of color cl	nange → color	

Guillaume Charpiat

Graph cuts

Introduction	Max flow problem O	From graphs to images	Examples and extensions	Discussion
An other example				

Guillaume Charpiat

Introduction	Max flow problem O	From graphs to images	Examples and extensions	Discussion
An other example				

Pulsar project, INRIA

Guillaume Charpiat

Introduction	Max flow problem O	From graphs to images	Examples and extensions ○○○○○○●○○	Dis 00
An other example				

Pulsar project, INRIA

Guillaume Charpiat

Introduction	Max flow problem O	From graphs to images	Examples and extensions ○○○○○○○●○○	Discussion
An other example				

Guillaume Charpiat

Introduction	Max flow problem O	From graphs to images	Examples and extensions	Discussion
Variations on graph-	cuts			

Variations

- directed vs. undirected graph
- higher-order interaction, with *m* variables : $V_{i,j,k...}(L(i), L(j), L(k)...)$
- \blacktriangleright dynamic cut : knowing a solution to a close problem \implies iterative
- \blacktriangleright active graph cut : knowing a solution on a part of the graph \implies multi-scale
- multiple sources or sinks within the image

Complexity

- > Theoretical complexity, worse case : about $(\#pixels)^3 \times (\#labels)^2$ (depends on the algorithm)
- In practice : worse case never reached, much faster
- GPU implementation possible \implies incredibly fast

Introduction	Max flow problem O	From graphs to images	Examples and extensions 000000000●	Discussion
Applications				

Any problem that can be written as a multi-labelling problem with simple local interaction terms (Markov fields)

- image denoising
- image segmentation, knowing color histograms of objects
- segmentation knowing seeds (points inside and outside the object)

Guillaume Charpiat Graph cuts

Introduction	Max flow problem O	From graphs to images	Examples and extensions	Discussion
Applications				

Any problem that can be written as a multi-labelling problem with simple local interaction terms (Markov fields)

- image denoising
- image segmentation, knowing color histograms of objects
- segmentation knowing seeds (points inside and outside the object)
- active contours : iterative segmentation within a narrow band
- multi-scale approach for segmentation
- iterative segmentation with parameter estimations (e.g. color histograms)

Guillaume Charpiat Graph cuts

Introduction	Max flow problem O	From graphs to images	Examples and extensions	Discussion
Applications				

Any problem that can be written as a multi-labelling problem with simple local interaction terms (Markov fields)

- image denoising
- image segmentation, knowing color histograms of objects
- segmentation knowing seeds (points inside and outside the object)
- active contours : iterative segmentation within a narrow band
- multi-scale approach for segmentation
- iterative segmentation with parameter estimations (e.g. color histograms)
- EM algorithms : iterative clustering / parameter-estimation

Guillaume Charpiat Graph cuts

Introduction	Max flow problem	From graphs to images	Examples and extensions	Discussion
Applications				

Any problem that can be written as a multi-labelling problem with simple local interaction terms (Markov fields)

- …
- iterative segmentation with parameter estimations (e.g. color histograms)
- EM algorithms : iterative clustering / parameter-estimation
- stereovison

Introduction	Max flow problem	From graphs to images	Examples and extensions	Discussion
Applications				

Some applications

Any problem that can be written as a multi-labelling problem with simple local interaction terms (Markov fields)

- stereovison
- 3D-reconstruction

Guillaume Charpiat Graph cuts

Introduction	Max flow problem ○	From graphs to images	Examples and extensions	Discussion
Applications				

Some applications

Any problem that can be written as a multi-labelling problem with simple local interaction terms (Markov fields)

- ▶ ...
- stereovison
- 3D-reconstruction
- video segmentation : based on motion
- texture synthesis

Guillaume Charpiat Graph cuts

Introduction	Max flow problem ○	From graphs to images	Examples and extensions	Discussion
Applications				

Some applications

Any problem that can be written as a multi-labelling problem with simple local interaction terms (Markov fields)

- •
- texture synthesis
- shape matching (different kind of graph)
- segmentation with rigid shape prior (insanely huge graph)

Guillaume Charpiat

Pulsar project, INRIA

Graph cuts

Introduction	Max flow problem	From graphs to images	Examples and extensions	Discussion ●○
Discussion				

Discussion

Pros:

- $\,\hookrightarrow\,$ gives the global optimum of certain types of energies
- $\,\hookrightarrow\,$ gives a very good local optimum of all Markov-like energies with discrete values
- \hookrightarrow practical way to bring spatial coherency
- $\hookrightarrow \ \text{it's fast}$

Cons :

- $\, \hookrightarrow \,$ only those kinds of simple energies
- $\,\hookrightarrow\,$ tends to make people do simplisitic modelings

Competitor :

 \hookrightarrow loopy belief propagation

Introduction	Max flow problem O	From graphs to images	Examples and extensions	Discussion ○●
Referennces				

References

Tutorials

 Introduction aux GraphCuts en Vision par Ordinateur, by Mickaël Péchaud (Odyssée Team)

Papers

- G. B. Dantzig and D. R. Fulkerson, On the max-flow min-cut theorem of networks, Annals of Mathematics Studies, 1956
- D.M. Grieg, B.T. Porteous and A.H. Seheult, Exact maximum a posteriori estimation for binary images, Journal of the Royal Statistical Society, 1989
- V. Kolmogorov and R. Zabih, What energy functions can be minimized via graph cuts, ICCV 2002
- Y. Boykov and V. Kolmogorov, An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision, TPAMI 2004.