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Abstract— In this paper, we present a model for TCP/IP con-
gestion control mechanism. The rate at which data is transmitted
increases linearly in time until a packet loss is detected. At
this point, the transmission rate is divided by a constant factor.
Losses are generated by some exogenous random process which
is assumed to be stationary ergodic. This allows us to account for
any correlation and any distribution of inter-loss times. We obtain
an explicit expression for the throughput of a TCP connection and
bounds on the throughput when there is a limit on the window
size. In addition, we study the effect of the Timeout mechanism
on the throughput. A set of experiments is conducted over the
real Internet and a comparison is provided with other models
that make simple assumptions on the inter-loss time process.
The comparison shows that our model approximates well the
throughput of TCP for many distributions of inter-loss times.

I. I NTRODUCTION

We analyze in this paper the performance of TCP (Trans-
mission Control Protocol), the widely-used transport protocol
of the Internet [21], [38]. TCP is a reliable window-based flow
control protocol where the window is increased until a packet
loss is detected. Here, the source assumes that the network
is congested and reduces its window. Once the lost packets
are recovered, the source resumes its window increase. As a
performance measure, we consider the throughput of a long-
lived TCP connection having an infinite amount of data to
send. A mathematical model is presented to find a closed-form
expression for the throughput of the connection.

We assume that the reader is familiar with basic mechanisms
of TCP [38] such as Slow Start and Congestion Avoidance
algorithms, the two methods for loss detection: Duplicate
ACKs and Timeout, the Delay ACK mechanism, the limitation
on the congestion window due to receiver or sender buffer, etc.
(see [8] for a survey on TCP issues).

A remarkable attention has been given to TCP modeling
within the research community, e.g., [2], [15], [23], [24], [28],
[29], [30], [35], [37]. This is not surprising since 95% of Inter-
net traffic is carried over TCP [39]. Closed-form expressions
for the throughput of a long-lived TCP connection have been
obtained under different assumptions. These expressions have
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helped to understand the impact of network and TCP parame-
ters on the throughput of the connection and on the efficiency
of network resource utilization. Recently, these expressions
have been also used to adapt the rate of UDP flows (e.g., audio
and video) in a way to be friendly with TCP flows [16].

The mathematical analysis of TCP requires two steps. First,
we need to construct a model for the window size evolution.
Since most of Internet traffic in terms of bytes is carried by
long-lived TCP connections, the majority of existing models
focus on the Congestion Avoidance mode. A fluid model is
often used. The window of TCP is assumed to increase linearly
as a function of time until a loss occurs, and it is divided
by two when the loss is detected. An initialization to one
packet is proposed in [30] for losses detected via Timeout.
The phase of recovery from losses is assumed to be negligible
and the source is assumed to resume the linear increase of
its congestion window directly after the reduction. In [35],
a packet-level model is proposed to account for the discrete
nature of TCP. Indeed, the volume of data in the network is at
any moment in multiple of packets (packet size equal to MSS
– Maximum Segment Size) due to the Nagle algorithm [31],
which for efficiency reasons, prohibits TCP from injecting into
the network packets of small size (smaller than MSS). This
volume of data increases by one packet when the increase in
the window size exceeds the packet size. Later in our paper,
we will show how a fluid model can be corrected to account
for this discreteness of TCP.

Second, TCP analysis requires a characterization of times
between congestion events. Namely, one needs to model the
impact of the path between the source and the destination
on the TCP connection. Particular models are considered in
the literature. The fixed point approach used in [24], [28]
assumes a constant time between congestion events. The
assumptions made in [35] can also be shown to imply a
constant time between congestion events. In [30], congestion
events are modeled by a homogenous Poisson process. In [37],
the intensity of the Poisson process is assumed to increase
with the window size. Instead of working in real time, the
authors in [29], [34] chose to work in a virtual time, which
is obtained by sampling the congestion window of TCP at the
moments of ACK arrivals. They consider the case where times
between congestion events in this virtual time are identically
and exponentially distributed. The distribution as well as the
moments of the congestion window size are found in this
virtual time and a method is suggested to transform them back
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to the real time.
Our experimentations over the Internet show that times

between congestion events can have general distributions.
Depending on the monitored path, these times can vary from
an approximately deterministic case to a considerably bursty
case. Moreover, some correlation can exist between congestion
events. We note in particular that if packets are dropped
independently of each other with constant probability, then the
times between drops are not independent (since the instanta-
neous transmission rate is variable). We believe that the Internet
is so heterogeneous that different types of distributions of times
between congestion events will always exist.

In this paper, we investigate the case of a general sequence
of times between congestion events. In the sequel, we will call
a congestion event aloss event. A loss (event) corresponds
to a moment where the congestion window is divided by a
constant factor – usually equal to 2.1 We only require that this
process of loss events is stationary ergodic. With this minimal
requirement we are able to obtain an explicit expression for
the throughput of TCP. Our loss model is general enough to
capture any correlation and any distribution of inter-loss times.

Obtaining a closed-form expression of TCP throughput for
general loss processes can be quite useful for many design and
dimensioning purposes. It could be used for the fine-tuning
of physical transmission channels; for example on satellite
links, coding schemes that include redundancy and interleaving
cause losses to appear in bursts (see [20]). Formulas that take
into account this burstiness can help to predict the impact of
coding schemes on TCP connections, and hence to optimize
the amount of redundancy that should be added. A model is
presented in [9] to optimize the amount of redundancy on
a noisy link using a formula for TCP throughput. Another
important use of closed-form expressions for the average
transmission rate (or equivalently the throughput) is in the
design of TCP-friendly applications. The latter are typically
real time applications that are designed to use a fair share
of the bandwidth in comparison with TCP connections (see
[16], [17] and references therein). As we will see, when loss
events are highly bursty, the transmission rate computed under
the assumption of deterministic or exponential inter-loss times,
considerably underestimate the throughput of a TCP connec-
tion. Hence, TCP-friendly applications can perform better and
transmit at a higher rate when using a more precise model for
the losses.

As for the dynamics of TCP, we model the instantaneous
transmission rate which is defined as the number of packets
in the network (or the volume of data) divided by the RTT
(Round-Trip Time) of the connection. The TCP source is
assumed to always have data to send. The number of packets
in the network is thus equal to the number of packets that can
fit within the window. Denote byX(t) the transmission rate of
the TCP connection at timet averaged over RTT.2 We assume

1This division can be the result of multiple packet losses. Ideally, a TCP
connection must divide its window by two whatever is the number of packet
losses within a Round Trip Time (RTT) [35].

2At any time in the analysis, one can multiplyX(t) by RTT to get the
window size in terms of packets (or MSS).

thatX(t) increases linearly with time at a rateα.3 If we denote
by b the number of data packets covered by one ACK and by
RTT the average round-trip time, we findα = 1/(bRTT 2).
Let ν denote the decrease in the transmission rate when a loss
event occurs.4 The arrivals of losses are modeled by a general
stationary ergodic point process [7] with non-null and finite
intensity λ. Let {Tn}+∞n=−∞ be a particular realization of the
point process. Consider for instance the case when losses are
quickly detected without the need for a long Timeout period
(e.g. via the three duplicate ACKs algorithm or an efficient fine-
granularity Timeout mechanism). Then, the evolution of the
transmission rate can be described by the following recurrence

Xn+1 = νXn + αSn, (1)

whereXn is the value ofX(t) just prior to the arrival of the
loss atTn, and Sn := Tn+1 − Tn. The pair {Tn, Xn} can
be considered as a marked point process [7]. As we will see,
the model that we consider here allows in particular for the
distribution ofSn to depend onXn.

In the next section we use the machinery of stochastic
processes to study this model of TCP rate evolution. We first
introduce some tools to handle (1), and in particular to handle
the case where the distribution ofSn may depend onXn. Using
these tools we compute the throughput, i.e. the time average
of processX(t). We also compute the first two moments of
the TCP transmission rate at loss arrivals for the stationary
regime. The model can be used to compute all the higher
moments of the transmission rate of TCP in the stationary
regime. In particular, we will show how to find the variance of
X(t). Then different examples of loss processes are studied:
Deterministic, Poisson, i.i.d. and Markov arrival processes. The
expression of the throughput is provided for each of these
particular cases. In Section II-E, we extend our model to
account for the case when there is a limitation on the evolution
of the transmission rate (e.g. due to the receiver advertised
window); we provide bounds on the throughput for this case.
In Section II-F, we explain how to extend our model to the
case when some losses are detected via a conservative coarse-
granularity Timeout mechanism, which is used in most TCP
implementations. In Section III, we present the testbed as well
as the results of our experimentations. The results demonstrate
that different types of loss processes exist in the Internet,
and that often the distribution of inter-loss times cannot be
approximated by a constant or by the exponential distribution.
The experimentations also show the common problem of linear
rate increase models. On traces where the transmission rate
of TCP exhibits a linear increase, our model gives excellent
results. However, on traces where the TCP window grows sub-
linearly, linear models overestimates the real throughput. We
conclude Section III with a method to correct the error caused
by the fluid approximation. Finally, we present our conclusions
in Section IV.

3The linear growth is known to hold for TCP connections where the round-
trip time is almost constant, or varies independently of the window size. The
growth of X(t) stops being linear when the RTT is correlated to the window
size, see [5], [8]

4Usuallyν is equal to one half, but we consider a more general scenario to
account for other possible Additive Increase Multiplicative Decrease (AIMD)
flow control mechanisms.
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The model we propose in this paper is a fluid model
that studies an AIMD flow control mechanism. It is then an
extension of AIMD fluid models in the literature to scenarios
where times between loss events are generally distributed,
not only constant and exponential. This extension allows us
to generalize the well knowsquare root formulafor TCP
throughput, and to prove that it still holds in case of general
stationary ergodic loss processes. We also explain how to adapt
a fluid model to the TCP protocol, in particular how to account
for the discrete nature of TCP, the receiver window limitation,
and the Timeout mechanism. To consider these latter TCP
mechanisms, we use techniques similar to those introduced
in [35]. As a consequence, our model can be seen as an
extension of [35] to scenarios where times between loss events
are generally distributed not only constant. If we consider
constant times between losses, we must obtain very close,
if not the same, throughput as that obtained by [35]. Our
experimental results validate this claim for loss rates ranging
from few losses per 10,000 packets to few losses per 100
packets. As for higher loss rates, we expect our model to inherit
the same performance limitation as [35] since finally both
works deploy the same modeling for the Timeout mechanism.
Modeling TCP performance under very high loss rates is not
the main objective of this paper.

II. T HE MAIN RESULTS

To compute the throughput, we use the following expression
for the stationary regime of the process defined by (1):

X∗
n = α

∞∑

k=0

νkSn−1−k. (2)

Next, we present various types of conditions under which (2)
describes the unique stationary regime of our system.

A. The stationary regime

We consider the dynamic equation (1) under either one of
the following assumptions:
Θ1: The processSn is stationary-ergodic with0 < E [S0] <

∞. The distribution of the processSn does not depend
on Xn. We may thus construct on the same probability
space a family of processesXn(x), x ≥ 0 indexed by the
initial stateX0 = x, such that all have the same inter-loss
timesSn.

Θ2: The process(Sn, Xn) is stationary-ergodic with0 <
E [S0] < ∞. Moreover, there is a unique stationary-
ergodic regime that solves the dynamic equation (1).

Θ3: There is a stationary ergodic sequenceηn such thatSn

can be represented as
Sn = S(Xn, ηn).

Equation (1) then becomes the so-called ”stochastic recur-
sive equation” (see [11]) of the formXn+1 = f(Xn, ηn),
wheref(Xn, ηn) = νXn + αS(Xn, ηn). We assume that
f is nondecreasing inXn and thatS is nonincreasing
in its first argument. Moreover,E [S(0, η0)] < ∞, and
0 < E [S(a, η0)], for some constanta.

Remark 1:An example in which even in presence of com-
plex loss processes, AssumptionΘ1 holds, is given in [40].

A TCP-friendly application is considered in which the trans-
mission rate of packets is constant, but the variations of the
throughput are implemented by varying the packet size. This
makes the TCP throughput independent of the distribution of
the process of losses of packets.

Remark 2:The monotonicity ofS in conditionΘ3 is quite
natural. It reflects the fact that the time till the next loss
tends in general to decrease as the window size increases,
since there are more packets in the network and thus there
are more chances for losses.5 The conditionE [S(0, η0)] < ∞,
together with the monotonicity ofS in the first argument,
implies thatE [S(x, η0)] is finite for all x. The condition that
0 < E [S(a, η0)] for some constanta guarantees that there
cannot be clusters of infinitely many simultaneous losses.

Proposition 1: Under either one of the assumptionsΘ1, Θ2

or Θ3, there is a unique stationary ergodic regime given by
expression (2). Moreover, underΘ1 or Θ3, if the transmission
rate evolution starts from an arbitrary rateX0, it will converge
almost surely to the above stationary regime,

lim
n→∞

|Xn −X∗
n| = 0, P − a.s. (3)

Proof: Under assumptionΘ1, equation (1) is a particular
case of stochastic linear difference equations [12], [18]. Since
the sequence of inter-loss times is stationary ergodic, it follows
from Theorem 2A in [18] (and assuming that0 < ν < 1
and that0 < E [Sn] < ∞; see the Appendix of [2] for more
details) that equation (1) has a stationary solution given by (2).
Moreover, (3) follows from the results in [12], [18].

Under AssumptionΘ2, we see thatX∗
n as defined in (2),

is stationary ergodic, since it is a function of a stationary
ergodic sequence. Moreover, the sum is well defined (since
all summands are nonnegative), and it has finite expectation.
Therefore, it is almost surely finite. Since underΘ2 there is a
unique stationary regime for (1), it has to be given byX∗

n.
Finally we considerΘ3. We use a Loyns-type scheme [25]

to show thatX∗
n as defined in (2) is stationary and ergodic.

We then show that it is finite and thatXn converges to the
stationary regime from any initial state. Define the process
X

(k)
n to be a solution of (1) obtained with the initial condition

X
(k)
−k = 0. Then it follows from the monotonicity off in

the first argument that for each fixedn, X
(k)
n is monotone

nondecreasing ink (for each sample, and for alln > −k).
Note also that

X(k)
n = α

n+k−1∑
m=0

νmSn−m−1.

Thus the limit ask → ∞ of X
(k)
n equalsX∗

n, and it is
stationary ergodic (since it is a function of the stationary
ergodic sequenceη).

Due to the monotonicity ofS, the sequenceX(k)
n with a

fixed initial stateX
(k)
0 = x, is bounded by the sequencêX

(k)
n

obtained by
X̂

(k)
n+1 = νX̂(k)

n + αSn(0, ηn)

with the same initial statêX(k)
0 = x. As the latter sequence is

finite almost surely (assumptionΘ1 holds for that sequence),

5One exception could be the case of wide area networks where lot of traffic
is multiplexed and where the loss process seen by a TCP connection can be
approximated by a homogenous Poisson process independent of the window
size, see the long-distance connection in the experimentation part.
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it follows that X(k)
n is also almost surely finite. Moreover, by

taking the limit ask tends to infinity, we also see thatX∗
n is

bounded by a stationary process which is finite almost surely,
and therefore the processX∗

n is also finite almost surely.
Next we establish (3) under assumptionΘ3. Let Xn corre-

spond to the process with initial stateX0 = x, and letX ′
n

correspond to the process with initial stateX ′
0 = x′. Without

loss of generality, assume thatx′ > x. Then by the fact thatf
is monotone nondecreasing in the first argument,X ′

n ≥ Xn

for all n. On the other hand, from the fact thatS is non
increasing in its first argument, we haveX ′

n+1 − Xn+1 =
ν(X ′

n−Xn)+α(S(X ′
n, ηn)−S(Xn, ηn)) ≤ ν(X ′

n−Xn). We
conclude that|X ′

n+1−Xn+1| ≤ ν(X ′
n−Xn), from which (3)

follows. This implies the uniqueness of the stationary regime.
¤

Remark 3:Note that assumptionΘ1 implies assumptionΘ3

which in turns implies assumptionΘ2. Thus,Θ2 is the weakest
assumption under which we obtain the expression (2) for the
stationary regime, whereasΘ3 is the weakest assumption under
which we obtain the convergence to the stationary regime (3).

Throughout the rest of the paper, we shall only consider the
stationary ergodic regime, and our results will thus hold under
assumptionΘ2.

B. The computation of the first two moments ofX∗
n and the

throughput of TCP

Here we compute the expectation and the second moment
of the TCP transmission rate at the instants of losses as well
as the TCP throughput.

Proposition 2: Let λ = 1/E [Sn] be the intensity of the loss
process and letR(k) = E [SnSn+k] be the correlation function
of the process{Sn}+∞n=−∞. Then,

E [X∗
n] =

α

λ(1− ν)
, (4)

E
[
(X∗

n)2
]

=
α2

1− ν2
[R(0) + 2

∞∑

k=1

νkR(k)]. (5)

Remark 4:We note the remarkable insensitivity property,
thatE [X∗

n] does not depend on the correlation between inter-
loss times nor on their moments of order greater than one.

Proof: To compute (4) and (5), we use the expression (2)
for the stationary regime.

E [X∗
n] = α

∞∑

k=0

νkE [Sn−1−k] =
α

λ

∞∑

k=0

νk =
α

λ(1− ν)

Similarly, we obtain

E
[
(X∗

n)2
]

= E

[
α

∞∑
j=0

νjSn−1−jα

∞∑

k=0

νkSn−1−k

]

= α2E

[ ∞∑

k=0

k∑
j=0

νjSn−1−jν
k−jSn−1−k+j

]

= α2
∞∑

k=0

k∑
j=0

νkE [Sn−1−jSn−1−k+j ]

= α2
∞∑

k=0

νk

{
R(0) + 2

∑r
j=1 R(2j), k = 2r,

2
∑r

j=1 R(2j − 1), k = 2r − 1.

By regrouping the terms of the last series, we get (5). ¤

Remark 5:The expectation computed in (4) is taken with
respect to loss instants. This expectation is also referred to as
Palm expectation in the context of point processes [7].

Next, by using (2) and the concept of the Palm probability,
we proceed for the computation of the TCP throughput:

X = lim
T→∞

1
T

∫ T

0

X(t)dt.

Our main result is the following closed-form expression for
the throughput as a function of the correlation functionR,
of the loss intensityλ, the linear increase factorα and the
multiplicative decrease factorν.

Proposition 3: The throughput of TCP is given by

X = λα[
1
2
R(0) +

∞∑

k=1

νkR(k)]. (6)

Proof: Since the processX(t) is ergodic, the throughput is
equal to the expectation of the transmission rateE [X(t)] at
an arbitrary time point. To computeE [X(t)] one can use the
following inversion formula (see e.g., [7] Ch.1 Sec.4)

E [X(t)] = λE0

[∫ T1

0

X(τ)dτ

]
, (7)

whereE0 [·] is an expectation associated with Palm distribu-
tion. In particular,P0 {T0 = 0} = 1. Now using formula (7)
and expression (2), we can write

E [X(t)] = λE0

[∫ T1

0

(νX0 + ατ)dτ

]
= λE0

[
νX0S0 +

α

2
S2

0

]

= λE0

[
αν

∞∑

k=0

νkS−1−kS0

]
+ λα2E0 [

S2
0

]

= λα

∞∑

k=0

νk+1R(k + 1) +
λα

2
R(0)

= λα[
1

2
R(0) +

∞∑

k=1

νkR(k)]

¤
Remark 6:Often the covariance functionC(k) = R(k) −

E [Sn]2 is used instead of the correlation functionR(k). Then,
the formulas (5) and (6) become

E
[
(X∗

n)2
]

=
α2

1− ν2
[C(0) + 2

∞∑

k=1

νkC(k)] +
α2

λ2(1− ν)2
,

X = λα[
1
2
C(0) +

∞∑

k=1

νkC(k)] +
α(1 + ν)
2λ(1− ν)

.

Define A(t) as the number of packets transmitted on the
TCP connection until timet, andL(t) be the number of loss
events until timet. The probabilityp of losing a packet is then
simply

p = lim
t→∞

L(t)
A(t)

= lim
t→∞

λt∫ t

0
X(τ)dτ

=
λ

X
. (8)

This allows us to write our main result (6) in another form so
as to grasp the influence ofp andRTT on the throughput for
general distribution of inter-loss times. Define the normalized
correlation function:R̂(n) = λ2R(n). Then using (8) andα =
1/(bRTT 2), we get

X =
1

RTT
√

pb

√√√√1
2
R̂(0) +

∞∑

k=1

νkR̂(k).
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If we define, similarly, the normalized covariance asĈ(k) =
λ2C(k) (whereC(k) is defined in Remark 6) then we obtain
the following formula for the TCP throughput:

X =
1

RTT
√

pb

√√√√ 1 + ν

2(1− ν)
+

1
2
Ĉ(0) +

∞∑

k=1

νkĈ(k). (9)

We conclude that for arbitrary stationary ergodic loss process,
the throughput of TCP is inversely proportional toRTT and to
the square root of the packet loss probabilityp. This constitutes
the main finding of our model, where the classical square root
formula is generalized to the case of stationary ergodic losses.

Remark 7:Note that (6) can also be rewritten in terms of
the second moment of the transmission rate at loss instants,

X =
λ(1− ν2)

2α
E

[
(X∗

n)2
]
.

From this expression we can conclude that constant inter-loss
times lead to the smallest TCP throughput over all the set of
stationary loss processes having the same intensity.

C. Examples of loss process

Now let us consider some important particular cases of the
general loss process.

1) IID random losses (General Renewal Process):We
model the loss process as a general renewal process. Namely,
we assume thatSn, n = ...,−1, 0, 1, ... are i.i.d. random
variables. The formulas (4), (5) and (6) take the following form.

Proposition 4: Let {Sn}+∞n=−∞ be i.i.d. with d := E [Sn]
andd(2) := E

[
S2

n

]
. Then,

E [X∗
n] =

αd

1− ν
, (10)

E
[
(X∗

n)2
]

=
α2

1− ν2

[
d(2) +

2νd2

1− ν

]
, (11)

X = E [X(t)] =
α

d

[
1
2
d(2) +

νd2

1− ν

]
. (12)

In particular, if the inter-loss times are exponentially dis-
tributed, we have

X =
αd

1− ν
. (13)

For ν = 0.5, this is similar to the expression obtained in [30].
If the inter-loss times are deterministic, we get

X =
1 + ν

2(1− ν)
αd (14)

With a change of variables, the above expression is equivalent
to the classical square root formula obtained in the literature
for deterministic losses [24], [28], [35]:

X =
1

RTT

√
3

2bp
, (15)

wherep is the probability that a TCP packet is lost. Indeed,
substitutingd in (14) by its value in (8), settingν = 0.5, and
recalling thatα is equal to1/(bRTT 2), we get the square
root formula in (15). This can also be obtained from (9), as
Ĉ(k) = 0 for all k in the case of deterministic inter-loss times.

Remark 8:We note from (12) that the throughput of TCP
can be expressed as a constant that only depends on the
average time between loss events, plus a term that grows
linearly with the variance of inter-loss times. Hence, the more

variable the times between losses, the higher the throughput.
When the loss events are highly bursty (which implies a
large variance of inter-loss times), assuming that the loss
process is Poisson [30] or deterministic yields a non-negligible
underestimation of TCP throughput. Similarly, assuming that
the loss process is Poisson when it is close to deterministic
leads to an overestimation of TCP throughput.

2) Correlated losses modeled as a Markovian Arrival Pro-
cess: In this section we consider correlated losses which are
modeled by Markovian Arrival Process (MAP) [26], [32],
[33]. It was shown in [6] that for a given general point
process, there is a sequence of MAPs which converges to the
point process in distribution. In particular, this implies that in
principle the general point process can be approximated by
appropriate MAPs. Furthermore, the PH-renewal process [33]
and the Markov Modulated Poisson Process (MMPP) [14] are
particular cases of the Markovian arrival process.

Let us briefly review the definition and some properties of
the Markovian Arrival Process. LetN(t) be a counting process
associated with MAP, that is,N(t) is the number of arrivals
(or losses in our setting) in the interval(0, t]. Also let J(t)
be an auxiliary state variable. Then MAP can be described in
terms of a two-dimensional Markov process{N(t), J(t)} on
the state space{(i, j)|i ≥ 0, 1 ≤ j ≤ m} with the following
infinitesimal generator

Q =




C D 0 0 · · ·
0 C D 0 · · ·
0 0 C D · · ·
...

...
...

...
.. .


 ,

where the matrixC ∈ Rm×m governs the transition of the
processJ without arrival (loss) and it has negative diagonal
elements and nonnegative off-diagonal elements. The matrix
D ∈ Rm×m governs the transitions ofJ with the simultaneous
arrivals and it has nonnegative elements. Thus, the underlying
Markov processJ(t) has the following infinitesimal generator
Q = C + D. Further, we assume thatQ 6= C and thatC is a
stable matrix. This ensures thatJ(t) does not get absorbed in
a class of states in which arrivals stop. WhenJ(t) = i, the rate
of transitions to statej 6= i is Qij . If such a transition occurs
then an arrival occurs simultaneously with the transition with
probabilityDij/(−Cii−Dii). Note that MAP becomes MMPP
with infinitesimal generatorR and arrival rate matrixΛ, if we
takeC = R− Λ andD = Λ.

Let {Sn}∞n=1 be the sequence of inter-arrival times for MAP,
and let{Jn}∞n=1 be the sequence of states of the underlying
Markov process at the arrival epochs. Then{Jn, Sn}∞n=1 is
a Markov renewal process [19] with the following transition
probability matrix [33]:

F (x) =
(∫ x

0

exp{Cu}du

)
D = (I − exp{Cx})(−C)−1D.

Note thatT = F (∞) = −C−1D is a transition probability
matrix of a discrete time Markov chain embedded at the
instants of arrivals. Letµ be its stationary distribution. If we
take the initial distribution of the underlying Markov chainJ(t)
asµ, the arrival process becomes event-stationary. The event-
stationary version of MAP has the following joint distribution
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function for the inter-arrival times [22]:

FS0···Sn
(x0, ..., xn) = µ

n∏

i=0

{(I − exp{Cxi})T}e. (16)

Consequently, the joint Laplace-Stieltjes transform is given by

f(z0, ..., zn) = E

[
exp{−

n∑

k=0

zkSk}
]

= µ

n∏

k=0

{(zkI − C)−1D}e.
(17)

Using this Laplace-Stieltjes transform, we can easily compute
the first two moments and the correlation function of the inter-
arrival time process. Namely,

E [Sn] = − d

ds
(µ(zI − C)−1De)|z=0 = −µC−1e, (18)

E
[
S2

n

]
=

d2

ds2
(µ(zI − C)−1De)|z=0 = 2µC−2e (19)

R(k) = E [SnSn+k] =
∂2

∂z0∂zk
f(z0, ..., zk)|zi=0

= µC−2DT k−1C−2De. (20)

To derive the expression for the correlation functionR(k), we
have used the following formula for the differentiation of an
inverse matrix-valued function:(A−1(z))′ = −A−1(z)A′(z)
A−1(z) [10].

Now, we can calculate the first two moments of the process
{Xn} and the TCP throughput for a MAP loss process.

Proposition 5: Let the loss process{Sn} be represented by
MAP. Then,

E [X∗
n] = − α

1− ν
µC−1e (21)

E
[
(X∗

n)2
]

=
α2

1− ν2
2µ(C−2 + νC−2D[I − νT ]−1C−2D)e (22)

Proof: The above formulas are immediately obtained from
(4), (5) with the help of (18), (19), (20) and the following
derivation ∞∑

k=1

νkR(k) = µC−2D

∞∑

k=1

νkT k−1C−2De

= µC−2Dν

∞∑

k=0

νkT kC−2De = νµC−2D[I − νT ]−1C−2De

¤
Proposition 6: Let {Sn} be a Markovian Arrival Process.

Then, the throughput of TCP is given by

X = − α

µC−1e
µ(C−2 +

1
2
C−2D[I − νT ]−1C−2D)e. (23)

D. Higher moments of the transmission rate

Similarly to the way with which we compute the throughput
of TCP, one can find the expression of any moment of the
TCP transmission rate in the stationary regime. Of particular
interest is the second moment which tells us how much the
transmission rate of TCP oscillates. This is useful for the
design of TCP-friendly transport protocols for multimedia
applications. Multimedia applications are known to require
small oscillations in the transmission rate [16], [17], [40],
while the TCP-friendly requirement urges them to transmit
their packets in a way that their average rate is no more than
the average rate of a TCP connection.

Using the Palm inversion formula as in the proof of Proposi-
tion 3, the moment of orderk of X(t) in the stationary regime
can be written as follows,

E
[
Xk(t)

]
= λE0

[∫ T1

0

(νX0 + ατ)kdτ

]
.

Developing the term inside the integral using the Binomial
formula then integrating, we get the following expression for
the k-th moment of the transmission rate of TCP,

E
[
Xk(t)

]
= λ

k∑

i=0

Ci
kνiαk−i

k − i + 1
E0

[
Xi

0S
k−i+1
0

]
. (24)

We still have to compute the expectationsE0
[
Xi

0S
k−i+1
0

]
for

i = 0 to k. These expectations can be easily computed by using
the expression ofX0 in the stationary regime given in (2). We
show next the expressions of these expectations fork = 2.

The second moment ofX(t), and hence the variance,
requires the expressions ofE

[
S3

0

]
, E

[
X0S

2
0

]
andE

[
X2

0S0

]
.

Using (24), this second moment is equal to

E
[
X2(t)

]
= λ

(
ν2E

[
X2

0S0

]
+ ναE

[
X0S

2
0

]
+

α2

3
E

[
S3

0

])
.

(25)
E

[
S3

0

]
is a characteristic of the loss process. Using the

expression ofX0 in (2), the other two expectations can be
expressed as a function of the auto-correlation functions of the
loss process. We have,

E
[
X0S

2
0

]
= α

∞∑

k=0

νkE
[
S2

0S−1−k

]

E
[
X2

0S0

]
= α2E

[ ∞∑

k=0

νkS−1−k

∞∑
j=0

νjS−1−jS0

]

= α2
∞∑

k=0

ν2k

(
E

[
S0S

2
−1−k

]
+ 2

∞∑
j=1

νjE [S0S−1−kS−1−k−j ]

)
.

E. Bounds for the model with transmission rate limitation

In the previous sections we did not include in the modeling
the fact that TCP transmission rate may stop growing when
the congestion window exceeds the window advertised by
the receiver. This latter quantity corresponds to the maximum
number of packets that can wait at the destination before being
handed to the application [30], [38]. We consider in this section
that the transmission rate of TCP is limited by a maximal
valueM . We takeν = 0.5 since TCP divides the minimum of
the receiver window and the congestion window by two upon
congestion. Note here that the transmission rate can be limited
by other factors such as the buffer size at the source or the
available bandwidth in the network. The difference from the
case where the limitation is due to the receiver window is in
the reduction factor which can be less than two. For example,
when the limitation is caused by the available bandwidth, some
packets of the TCP connection are stored in the buffer at the
bottleneck router at the moment of congestion, so dividing the
congestion window by two will free some of these packets,
will reduce the round-trip time of the connection, but the ratio
of the window size divided and the round-trip time will stay
larger than half the available bandwidth due to those packets
of the connection backlogged in the bottleneck router.
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M

M__
2

Transmission rate

Time

Tn Tn+1

M
2

X(t)X(t)

Tn

Sn

Fig. 1. TCP transmission rate evolution with limitation

The example of TCP transmission rate evolution we consider
in this section is presented in Fig. 1. The stochastic difference
equation (1) is respectively modified to the following form

Xn+1 = M ∧ (
1
2
Xn + αSn), (26)

where∧ stands for theminimumoperation. The model becomes
nonlinear and it is probably not possible to derive the explicit
expressions ofX for the general loss process.6 We use here
the results of the previous sections to obtain bounds on the
performance measures instead.

Before deriving the bounds we shall state a stability result
for the processXn.

Theorem 1:Assume that{Sn} is a stationary process. Then
there exists a stationary process{X∗

n} defined on the same
probability space, and satisfying the recursion (26). Further-
more, for any initial stateX0, we have P-a.s.

lim
n→∞

|Xn −X∗
n| = 0.

Proof: The proof can be easily made using a Loynes-type
construction similar to that used for Proposition 1. We refer
to [3] for details. ¤

Now we note that equation (26) can be rewritten as
Xn+1 =

1
2
Xn + αSn ∧ (M − 1

2
Xn).

Since0 ≤ Xn ≤ M , we have
1
2
Xn + αSn ∧ M

2
≤ Xn+1 ≤ 1

2
Xn + αSn ∧M.

The above estimates prompt us to derive lower and upper
bounds on the throughput, using the next auxiliary stochastic
processes defined on the same probability space asXn:

X̌n+1 =
1
2
X̌n +

M

2
∧ (αSn) =

1
2
X̌n + α(

M

2α
∧ Sn), (27)

and
X̂n+1 =

1
2
X̂n + M ∧ (αSn) =

1
2
X̂n + α(

M

α
∧ Sn). (28)

Proposition 7: Let {Sn} be a stationary stochastic point
process. Assume thatX0 = X̌0 = X̂0. Then for all n ≥ 0,
X̌n ≤ Xn ≤ X̂n. Moreover,2αď ≤ E [Xn] ≤ 2αd̂, where
the expectationE [Xn] is taken with respect to the stationary

regime,ď = E
[
Šn

]
, d̂ = E

[
Ŝn

]
, and whereŠn := M

2α ∧ Sn,

Ŝn := M
α ∧ Sn.

Proof: We show by induction thaťXn ≤ Xn. It holds for
n = 0. Assume it holds forn = k. Then, consider two cases
Sk ≤ M

2α andSk > M
2α . For Sk ≤ M

2α , one has

Xk+1 =
1
2
Xk + αSk ≥ 1

2
X̌k + αSk = X̌k+1.

6We refer to [4] for an illustration on how much this derivation is difficult
even in the simple case of a homogenous Poisson loss process.

And if Sk > M
2α , then

Xk+1 =
1
2
Xk + (M − 1

2
Xk) ∧ (αSk)

≥ 1
2
Xk + (M − 1

2
Xk) ∧ (

M

2
)

=
1
2
Xk +

M

2
≥ 1

2
X̌k +

M

2
= X̌k+1

The first inequality is true, sinceXk ≤ M . Hence,X̌k+1 ≤
Xk+1 and according to the induction principle, the inequality
X̌n ≤ Xn holds for alln ≥ 0. Consequently,E

[
X̌n

] ≤ E [Xn]
for all n ≥ 0.

Since by the results of [18] and Theorem 1 both processes
{X̌n} and{Xn} converge to the stationary regime, we can let
n go to infinity. This results in the lower bound which holds
for any initial state of the two processes.

The upper bound is obtained in a similar manner by using
the auxiliary process (28).

¤
Now we calculate the lower and upper bounds on the

throughput.
Proposition 8: Let ď(2) := E

[
(Šn)2

]
, Ř(k) := E

[
Šn−kSn

]

andd̂(2) := E
[
(Ŝn)2

]
, R̂(k) := E

[
Ŝn−kSn

]
. Then, the lower

and upper bounds on the throughput are given by

X ≥ αλ

(
Ř(0)− 1

2
ď(2) +

∞∑

k=0

1
2k+1

Ř(k + 1)

)
, (29)

X ≤ αλ

(
R̂(0)− 1

2
d̂(2) +

∞∑

k=0

1
2k+1

R̂(k + 1)

)
. (30)

Proof: To obtain the lower bound on the throughput, we
again use the auxiliary process (27). Suppose that{Xn} is in
the stationary regime and define

X̌(t) =
{

1
2X̌∗

n + αt, t ∈ [Tn, Ťn],
1
2X̌∗

n + αŠn, t ∈ [Ťn, Tn+1],
(31)

whereŤn = Tn+Šn (see Fig. 1). Similarly to (2), one can write
the expression for the stationary version of{X̌n}, that isX̌∗

n =
α

∑∞
k=0(

1
2 )kŠn−1−k. Using (31) and the above expression for

X̌∗
n, we obtain the lower bound

X = λE0

[∫ T1

0

X(t)dt

]
≥ λE0

[∫ T1

0

X̌(t)dt

]

= λE0

[∫ Š0

0

(
X̌∗

0

2
+ αt)dt +

∫ S0

Š0

(
X̌∗

0

2
+ αŠ0)dt

]

= λE0

[
1

2
X̌∗

0 Š0 +
α

2
Š2

0 + (
1

2
X̌∗

0 + αŠ0)(S0 − Š0)

]

= λE0

[
1

2
X̌∗

0S0 + αŠ0S0 − α

2
Š2

0

]

= λE0

[
1

2
α

∞∑

k=0

(
1

2
)kŠ−1−kS0 + αŠ0S0 − α

2
Š2

0

]

= αλ

( ∞∑

k=0

(
1

2
)k+1Ř(k + 1) + Ř(0)− 1

2
ď(2)

)
.

Now, by using the auxiliary process (28), one can calculate the
upper bound on the throughput in a similar way. ¤

Note that the two bounds given in Proposition 8 coincide
with the throughput given by (6) asMλ/α →∞ (due to large
M or to high loss rate). However, whenMλ/α → 0, the upper
bound provided in (30) goes to2M . Therefore, we propose to
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take as an upper bound on the TCP throughput the minimum
betweenM and the upper bound given in (30). As for the
lower bound, it converges to the following expression

X ' M − λM2

8α
(32)

asMλ/α → 0. As was shown in [2], [35], the expression (32)
appears to be a very good approximation of the through-
put when the maximal rateM is frequently reached. It is
the throughput obtained by TCP when the transmission rate
reaches its maximum valueM between each two losses.

Let us specify the two bounds on the throughput for the
cases of Poisson and IID losses. We refer to [2] for the case
of losses driven by a MAP process.

Assume first that the loss process is Poisson. Then formulas
(29) and (30) give the following bounds on the throughput

2α

λ

(
1− e−Mλ/2α

)
≤ X ≤ 2α

λ

(
1− e−Mλ/α

)
.

Note that2α/λ is the TCP throughput in the case of Poisson
losses and an infinite maximum window sizeM (see Subsec-
tion II-C.1).

Consider next the more general case of an IID loss process.
The correlation functionšR(k) and R̂(k) are simply equal to
dď anddd̂ respectively. We have then the following bounds,

αλ

(
Ř(0)− 1

2
ď(2) + dď

)
≤ X ≤ αλ

(
R̂(0)− 1

2
d̂(2) + dd̂

)

F. Modeling conservative Timeouts

We were assuming till now that losses were quickly detected.
This is indeed the case when losses are detected via duplicate
ACKs (the Fast Retransmit algorithm [38]) or via a fine-
granularity correctly-set retransmission timer. However, most
TCP implementations use a coarse-granularity timer (500ms
in unix implementations) for the detection of losses in the
case when three duplicate ACKs are not received. This coarse-
granularity together with the back-off mechanism of the re-
transmission timer in case of retransmission losses introduce
some idle times during which the congestion window of TCP
is not increasing and the transmission rate is approximately
equal to zero. We call these losses followed by an idle time
before the resumption of the transmissionTimeout losses(TO).
The idle time separates the loss of a packet and the receipt
of the ACK for its retransmission. This includes any back-
off of the retransmission timer due to retransmission loss.
Losses which are detected quickly without the need for an idle
period are called TD losses (TD for three duplicate ACKs).
As shown in our experimentations, TO losses can be quite
frequent. For instance, we refer to Tables I, II and III, where we
show statistics on three long-lived TCP connections. The 10th
columns in these tables (labelledQ) indicate the percentage
of losses which are of TO type. This number is sometime
non-negligible for different reasons: the high loss rate that a
TCP connection may encounter at some hours during the day
(the column labelledp), the fact that multiple packets can be
lost upon a congestion event, and finally the inaccuracy in the
estimation of the TCP retransmission timer. The same finding
has been reported in [35]. We explain in this section how one
can include these idle times into our explicit expression for the
throughput, even though we believe that this phenomenon will

Sn Sn+1 Sn+2

Time

T Tn+1 n+2Tn Tn+3

Transmission rate

S’n+1 S’n+2S’n nZ

Fig. 2. A model for TCP with TO and TD losses

be of negligible importance in the future given the different
enhancements proposed recently to enhance the TCP error
recovery phase, e.g. SACK [27], Limited Transmit [1].

Let Zn be the duration of the idle period after loss eventn.
Zn is equal to 0 if the loss is of TD type, and is greater than
zero if the loss is of TO type. LetZ = E [Zn|Zn > 0] denote
the average duration of the idle periods after TO losses, and
let Q = P {Zn > 0} denote the probability that a loss is of
type TO. DefineTn as the instant at which the transmission
rate resumes its increase after thenth loss (TD or TO), and
let Sn = Tn+1 − Tn. If the nth loss is of TO type, the
connection gets in an idle period at timeTn − Zn until time
Tn where the transmission is resumed. During this idle period,
the transmission rate is equal to zero (we are interested in the
TCP throughput). We assume that after the idle period, the
transmission rate jumps directly to half its value before the
TO loss. This is justified by the fact that the slow start phase
after Timeout is fast compared to the linear increase phase. We
depict in Fig. 2 a sample of the transmission rate evolution in
presence of TO losses according to our model.

Define now the sequence (see Fig. 2)

S′n =
{

Sn if the loss isTD
Sn − Zn if the loss isTO

,

and assume it to be stationary ergodic.7 Let λ′ = 1/E [S′n]
and let Ĉ ′(k) denote the normalized covariance function of
the sequence{S′n}. Using (9), the throughput of TCP when
excluding Timeout intervals is given by

X ′ =
1

RTT
√

pb

√√√√ 1 + ν

2(1− ν)
+

1
2
Ĉ ′(0) +

∞∑

k=1

νkĈ ′(k).

When including Timeouts, the throughput of TCP can be
shown to be equal to (see [8] for proof):

X =
X ′

1 + λ′QZ
=

X ′

1 + pX ′QZ
.

The last equality follows from the fact thatλ′ = pX ′.
Two general functions appear in the above modeling:Q and

Z. To compute these functions, one needs to model the loss
process at the packet level, i.e. how many packets are lost upon
a congestion event, then to model the way with which TCP
handles these packet losses. This is a complex problem strongly

7Note that the distribution of the time between thenth and the(n + 1)th
loss may depend on the type ofnth loss (TD or TO). This however does not
prevent the processS′ of being stationary.
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dependent on the version of TCP.8 Some effort has been made
in [35] to model the reaction of TCP to the first packet loss
upon a congestion event.9 Q andZ have been computed as a
function of p, the packet loss probability, then validated with
real experimentations over the Internet. The expression ofZ
is somehow general and holds for all versions of TCP. The
expression ofQ suites those versions of TCP that have an
intelligent Fast Recovery phase, and that only timeout when the
first packet lost upon congestion cannot be recovered by Fast
Retransmit.10 These expressions have shown good performance
in modeling TCP Timeouts. This good performance added to
the fact that our main focus in this work is on the distribution
of inter-arrival times more than on Timeouts, motivated us to
use the expressions ofQ and Z proposed in [35]. This also
allows a fair comparison of our model with [35].

III. M ODEL VALIDATION

Our work is mainly motivated by the fact that the loss of
TCP packets over the Internet may present a more complex
structure than the simple processes considered in the literature.
To support this motivation, we run real long-lived TCP con-
nections between several Internet sites. For each connection,
we measure the instants of losses as well as some other
statistics as the average round-trip time and the total number of
packets transmitted. We study then our model under different
assumptions on the type of the loss process. After that, we
evaluate how well linear rate increase models approximate
real TCP performance. We also evaluate our expression for
Timeouts. At the end, we introduce a method to account for
the discreteness of TCP. With this method, our model under
deterministic inter-loss time assumption gives very close results
to the detailed discrete model in [35].

A. Experimentation testbed

The experimentation has two purposes. First, to examine the
loss process and to check whether it can be approximated by
simple models. Second, to validate the TCP model.

We ran at different days during January 2000, three long-
lived TCP transfers to three different machines. Each transfer
consists of a continuous flow of data during a whole day.
The source machine (clope.inria.fr ) is running the New
Reno version of TCP and is located at INRIA - Sophia
Antipolis in the south of France. The destination machines
are located respectively at the ESSI school at 1 km from
INRIA (nessie.essi.fr, 4 hops ), at the ENST school
in Paris (solo.enst.fr, 10 hops ), and at the University
of South Australia (linus.levels.unisa.edu.au, 22
hops ). TCP Packets are of 1460 Bytes size (excluding TCP
and IP headers). The machine in Australia advertises a window
of 22 packets and those at ESSI and ENST advertise a
window of 44 packets. All machines implement the Delay ACK

8We refer to [13] for a discussion on how the different versions of TCP
react to packet losses.

9TCP reacts either by timing out or by detecting the first loss by Fast
Retransmit (three duplicate ACKs)

10This can be the case of the SACK version that does not support the Limited
Transmit enhancement.

Fig. 3. The experimentation testbed

mechanism, soα = 1/(2RTT 2). For the simplicity of the
exposition, we denote the three TCP connections by SD (Short
Distance), MD (Medium Distance) and LD (Long Distance),
respectively. The experimentation testbed is depicted in Fig. 3.

Data packets and the corresponding ACKs are captured with
thetcpdump tool [36] at INRIA. Given the version of the TCP
source, we developed a tool that looks at the trace of every
connection and identifies the instants of window reductions
(Tn). In the case of a loss detected via Timeout, the tool
computes the duration of the Timeout period. In general, the
developed tool determines the timesSn andS′n, the packet loss
probabilityp (number of loss events divided by the number of
packets transmitted), the parametersQ andZ, the average RTT
from the measured trace file, and the frequency with which the
receiver window is reached (P {X(t) = M}).

Each connection is run for multiple hours. Its total trace
however is divided in short intervals of the order of minutes.
This division is necessary since the loss process is certainly
not stationary at the scale of the total trace duration. The
stationarity of the loss process over time intervals of the order
of minutes is judged a reasonable assumption according to [41].
We choose the intervals so that the number of loss events per
interval is large enough for the characterization of the loss
process to be accurate (around 500 loss events per interval).
This gives us a set of trace files for each connection. For every
trace file, we compute statistics on the TCP connection and
on the loss process using our tool. We summarize the results
in Tables I, II and III for respectively the SD, MD, and LD
connections. Each row in the tables corresponds to a trace file.
Columns present different information, which are from left to
right: starting time of the trace in daytime hours (between 0 and
23), end time of the trace, number of bytes transmitted, number
of packets transmitted, packet loss probability (p), the average
RTT , the real throughput of the TCP connection in Kbps, the
average rate of loss events (λ), the probability that a loss event
results in Timeout (Q), the normalized covariance of times
between loss events (when excluding Timeout intervals), and
finally the probability that the receiver window is reached.11

For each trace file, we compare the real throughput of
TCP to the one expected by our model as well as to the
computed bounds. We also compare the real throughput to the
one expected by [35]. We examine the validity of different
models for the distribution of inter-loss times (deterministic,
Poisson, iid, general correlated). The moments and correlation
functions of inter-loss times are calculated from the trace files.

We study separately the effect of assumptions on the loss
process and the correctness of our fluid model for TCP

11Equivalently the fraction of time during which the TCP connection is
transmitting at its maximum window.
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Begin End Byte # Packet # Lossp RTT Thrp λ = 1/E [Sn] Q CoV (S′n) P {X(t) = M}
(hour) (hour) ×103 (%) (ms) (Kbps) (1/s) (%) (%) (%)
10.80 11.07 157125 115110 0.36 112 1280.90 0.4300 1.42 115.78 4.92
11.07 11.34 155500 113919 0.47 105 1293.96 0.5575 2.05 115.85 1.96
11.34 11.60 156030 114308 0.45 104 1314.47 0.5423 3.49 113.92 1.64
11.60 11.86 156963 114991 0.38 113 1346.41 0.4728 2.72 136.24 4.97
11.62 11.87 139052 101869 0.45 114 1254.14 0.5264 2.35 138.90 5.43
11.87 12.11 138739 101640 0.68 84 1271.68 0.7997 1.43 95.22 0.69
12.11 12.37 140466 102906 0.56 92 1226.88 0.6299 3.81 120.09 4.55
12.37 12.63 143625 105219 0.29 146 1234.12 0.3286 1.63 150.43 13.70
13.20 13.47 150529 110277 0.48 117 1205.46 0.5405 2.40 137.48 3.21
13.47 13.76 144508 105866 0.77 106 1101.02 0.7828 1.33 138.52 0.39
13.77 14.12 190662 139679 0.60 110 1187.22 0.6553 1.90 139.16 3.18

TABLE I

STATISTICS ON THE SHORT-DISTANCE CONNECTION

Begin End Byte # Packet # Lossp RTT Thrp λ = 1/E [Sn] Q CoV (S′n) P {X(t) = M}
(hour) (hour) ×103 (%) (ms) (Kbps) (1/s) (%) (%) (%)
14.52 15.43 219758 160995 1.40 141 532.37 0.6846 9.73 49.40 0
18.43 19.71 212720 155838 2.21 152 385.37 0.7817 20.42 55.29 0
19.71 20.32 227599 166739 0.67 125 834.90 0.5195 3.35 46.61 0
20.32 21.00 228578 167456 0.69 138 757.10 0.4823 9.44 76.64 1.38
21.00 21.52 229746 168312 0.51 119 1002.09 0.4710 1.38 40.69 0
21.52 22.08 228937 167719 0.57 123 915.53 0.4808 1.14 36.91 0
22.08 22.60 229427 168078 0.52 120 985.37 0.4735 2.26 38.53 0
22.60 23.11 229826 168371 0.52 114 1024.21 0.4957 1.57 37.82 0

TABLE II

STATISTICS ON THE MEDIUM-DISTANCE CONNECTION

Begin End Byte # Packet # Lossp RTT Thrp λ = 1/E [Sn] Q CoV (S′n) P {X(t) = M}
(hour) (hour) ×103 (%) (ms) (Kbps) (1/s) (%) (%) (%)
17.52 19.22 43816 32099 1.84 1245 57.19 0.0962 67.97 114.54 0.84
19.22 21.07 42369 31039 4.20 781 51.21 0.1970 66.33 80.94 0
21.07 22.29 44296 32451 2.70 662 80.37 0.1989 70.35 95.62 0.07
22.29 23.01 45036 32993 1.32 596 139.16 0.1687 59.49 105.83 2.53
23.01 0.34 43356 31762 2.92 684 72.83 0.1952 66.98 95.91 0.25
0.34 1.10 45005 32970 1.41 613 132.15 0.1717 61.75 123.76 3.94
1.10 1.55 45490 33326 0.59 647 220.88 0.1195 55.83 142.36 13.40
1.55 2.08 45121 33056 0.68 652 193.17 0.1214 51.54 140.92 12.56
2.08 2.45 45477 33316 0.43 578 269.68 0.1067 53.47 159.16 28.74
2.45 2.75 46035 33725 0.15 565 358.12 0.0515 39.62 138.10 54.79
2.75 3.05 45867 33602 0.23 579 332.29 0.0715 44.30 156.57 41.65
3.05 3.50 45506 33338 0.67 605 225.55 0.1387 61.16 199.21 25.28
3.50 3.80 46068 33750 0.19 564 356.79 0.0629 44.61 150.95 56.50
3.80 4.10 46065 33747 0.18 631 335.40 0.0555 52.45 134.85 46.88
4.10 4.41 45966 33675 0.21 584 331.94 0.0649 47.22 206.70 51.19
4.41 4.97 92305 67623 0.10 570 371.10 0.0366 38.35 176.68 66.19
4.97 5.23 46196 33843 0.12 564 378.07 0.0439 46.51 195.97 60.23
5.23 5.79 92480 67751 0.12 574 361.38 0.0429 40.90 158.22 57.88
5.79 6.10 46291 33913 0.14 567 357.64 0.0482 46.00 140.03 55.44
6.10 6.42 45655 33447 0.28 570 317.21 0.0825 41.05 142.73 32.28
6.42 6.79 45801 33554 0.39 564 292.21 0.1068 54.47 198.34 31.93
6.79 7.08 45887 33617 0.19 567 350.42 0.0610 46.87 161.51 55.99
7.09 8.08 185215 135688 0.06 659 401.16 0.0240 35.95 196.20 74.04
8.08 8.88 138616 101550 0.04 565 411.59 0.0155 38.09 189.07 78.25
8.88 9.31 45527 33353 0.42 689 238.65 0.0923 50.35 180.34 35.03
9.31 10.21 44724 32765 1.64 686 110.65 0.1667 68.46 123.66 1.93
10.21 12.09 44487 32591 2.91 976 52.66 0.1404 74.71 102.84 0
12.09 14.73 44377 32511 3.56 1169 37.35 0.1219 78.94 98.39 0
14.74 17.52 43433 31819 3.31 1355 35.41 0.1074 73.90 94.19 0

TABLE III

STATISTICS ON THE LONG-DISTANCE CONNECTION
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Fig. 4. Short-distance connection
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Fig. 5. Medium-distance connection

transmission rate evolution. The validation of the loss model
was done as follows. We reconstruct for a given trace file
the evolution in time of the proposed fluid model (i.e. the
mechanism with linear increase and multiplicative decrease,
silence time during Timeouts, and maximum limit on the
congestion window; see Fig. 7). We call this process theExact
Fluid Model (EFM) and we compute exactly its throughput.
This is done by computing the area below the transmission
rate between two consecutive losses, then by summing all
the areas and dividing the result by the transfer time. The
EFM throughput is the throughput we are trying to estimate in
our analysis and which we (and other authors that use linear
rate increase fluid models to study TCP) are claiming that
it represents the real TCP throughput. Our measure of how
good a given model for the distribution of inter-loss times is,
will be how close the throughput predicted by our closed-form
expression (6) agrees with the EFM throughput.

Note that if the loss model is good according to the above
criterion, we are still not guaranteed that the real throughput
of TCP agrees with our throughput formulas. We expect the
latter to be close to the real TCP throughput if the linear rate
increase model is appropriate, which is not always the case as
we will see later. In fact, on some paths as our LD connection,
the increase of TCP rate is far from linear (sub-linear) which
leads to a considerable throughput estimation error even if we
use the right model for loss events in our general formula.

B. Validation of the model for losses

We measure how close is the throughput predicted by our
closed-form expression (6) to the EFM throughput. Different
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Fig. 6. Long-distance connection
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Fig. 7. Fluid model vs. real window on the short-distance connection

loss processes are considered: deterministic, Poisson, general
iid, general correlated. We plot the results in Fig. 4, 5 and 6
as a function of time for the three connections SD, MD and
LD. For Timeouts, we measure the functionsQ andZ directly
from the traces rather than using those computed in [35]. The
figures also show the real throughput of TCP. We clearly notice
that our general model gives the same result as the exact fluid
model although five terms are only considered in the infinite
sum in formula (6). The iid model gives approximately the
same result as the correlated model which means that losses
are rarely correlated especially on the medium-distance and
the long-distance connections. Some correlation can be seen
on the short-distance connection, which is illustrated by the
distance that separates the ”general correlated” throughput line
from the ”iid” throughput line. Our analysis of the traces of the
SD connection indicates indeed that loss events appear mostly
in bursts. This burstiness of loss events can be seen in Fig. 7,
where we plot the congestion window of the SD connection
versus time during 25 seconds.

Consider now the Poisson and deterministic cases. The
expression of the throughput in the iid case (12) states that at
constant loss intensity, the throughput of TCP increases with
the variance of inter-loss times. Thus, a comparison of the iid
throughput line to the Poisson and deterministic throughput
lines indicates how much times between loss events vary. On
the SD connection, the variance of inter-loss times is more
than that of the exponential distribution. This is caused by the
bursty occurrence of losses we discovered on this connection
as shown in Fig. 7. On such connection, one should expect that
models assuming deterministic inter-loss times would give bad
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Fig. 8. Short-distance connection
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Fig. 9. Medium-distance connection

results compared to the real throughput. Interestingly enough, it
is not the case due to the problem of TCP rate sub-linearity that
we will explain later. On the MD connection, we see that the
variance of inter-loss times is closer to that of a deterministic
distribution than that of an exponential distribution. Finally, on
the LD connection, it is clear that losses occur according to
a Poisson process, which is in some sense an expected result
due to the high degree of multiplexing in Internet routers.

C. Validation of the model for TCP

We compare the exact fluid model (EFM) to real TCP on
the three connections. Our objective is to test the validity of
the linear growth assumption and the fluid assumption. The
results are plotted in Fig. 8, 9, and 10. On the SD and MD
connections, the exact fluid model overestimates real TCP and
the overestimation increases with the real throughput. This is
mainly due to the sub-linearity of TCP congestion window
evolution, which can be seen in Fig. 7. TCP rate sub-linearity
is due to the increase in the RTT with the congestion window,
which in turn is due to the increase in the queuing time in
bottleneck routers. We refer to [5] for an example on how
this correlation between the RTT and the window size can
be modeled. Unfortunately, as shown in [5], the modeling of
the sub-linearity of TCP is complex even under the simple
assumption that the loss process is Poisson. Note that this
problem of sub-linearity does not exist on our LD connection
where the window size is usually small, the propagation
delay is large, and the TCP connection does not contribute
considerably to the queuing time in network routers.

Another source of error in our model is the fluid approxi-
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Fig. 10. Long-distance connection

mation. In fact, the transmission rate of TCP does not increase
continuously but rather jumps when the number of packets
injected into the network increases by one. This is due to
the Nagle algorithm [31] which prohibits a TCP source from
injecting small packets into the network. However, the window
size at the source can be assumed to change continuously
with time between loss events. Fig. 11 explains the difference
between the congestion window size (continuous line) and the
number of packets in the network (dashed line). The expression
of the throughput given by our fluid model corresponds to the
average window size rather than to the number of packets in
the network, so this expression has to be corrected to account
for the area between the dashed and continuous lines.

We explain here how our model can be adapted to account
for the discrete nature of TCP. Assume thatX(t) is measured
in packets per unit of time. A good approximation is to shift
down our processX(t) by 1/(2RTT ), then to subtract from
the throughput the error caused by the number of packets lost
upon congestion (Fig. 11). We introduce this last error since
many packets can be lost upon a congestion event, and since
we are interested in the computation of the throughput rather
than the average sending rate. We follow [35] by assuming that
on average, half of the window size is lost upon congestion.
We also add the last RTT where some packets are transmitted
until the detection of the congestion. On average, the number
of these transmitted packets is equal to half the window size.
We approximate the window size during these last two RTTs
by the window size given by our fluid model upon loss events,
i.e. E [X∗

n] ∗ RTT .12 Thus, we subtractE [X∗
n] ∗ RTT from

the average integral of the transmission rate between two loss
events. This gives the following corrected expression for the
throughput:

Xd = X − 1

2RTT
− E [X∗

n] ∗RTT

E [Sn]
= X −

(
b

2
+

1

1− ν

)
αRTT

Using this correction, we compare in Fig. 8, 9, and 10 our
model with deterministic inter-loss times (14) to the packet
level model in [35]. We also plot in the figures the throughput
obtained with our model under the assumption that losses are
Poisson. We use forQ andZ the expressions computed in [35]
rather than those obtained from measurements as above. The
two lines deterministic and Poisson are indexed by ”Dis+TO”
to denote the fact that they account for the discrete nature of
TCP, and that they use the expressions ofQ andZ from [35].
The line for deterministic losses coincides with that of the

12One can use another model for the number of packets lost upon congestion
if statistics on the loss process at the packet level are available.
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Fig. 11. Fluid model vs. packet model

packet level model for all three connections. Both lines are
close to the real throughput on the SD and MD connections,
but not on the LD one. On the MD connection, the result
for deterministic losses is good since the linear rate increase
assumption is correct and losses are quite deterministic. On the
SD connection, the result is good due to the TCP sub-linearity
phenomenon we have explained above. Concerning the result
for Poisson losses, it is better than the result for deterministic
losses on the LD connection since the loss process on this
connection is closer to Poisson than to deterministic. On the
MD connection, the real throughput is somewhere between the
deterministic and Poisson lines. This is expected since the loss
process itself on the MD connection is less variable than a
Poisson process.

D. Validation of bounds

To validate the derived bounds for the case of window size
limitation, we choose to work on the LD connection where
our model for TCP is most appropriate (the rate is linear). We
plot the results for the whole day in Fig. 12. First, we see that
from 0 to 10 o’clock (slack periods) the throughput calculated
in the case of no limit on the congestion window (Eq. (6))
significantly deviates from the exact fluid model. Our exact
fluid model accounts for the rate limitation. During the rest of
the day both throughputs coincide. This deviation means that
the receiver advertised window is frequently reached during the
slack periods, and hence our bounds can be applied to estimate
the throughput. The saturation of the throughput is clearly
reflected by the last line in Table III, where we measure the
fraction of time during which the LD connection is transmitting
at its maximum window size.

We plot our two bounds given by Proposition 8 on the
same figure. They are quite close to the exact fluid model
throughput. The figure also shows the throughput obtained by
the asymptotic approximation in (32), which we recall is valid
when the maximum window size is frequently reached. The
figure shows that (32) approximates well the exact fluid model.

IV. CONCLUSIONS

In this work, we presented an analysis of TCP throughput
under a general loss process. The only assumption we made
on the loss process is stationarity and ergodicity. We provided
an explicit expression for the throughput in the case of no
limit on the transmission rate. The throughput was shown to
be inversely proportional to RTT and to the square-root of the
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Fig. 12. Long-distance connection

packet loss probability, as was already proved in the literature
for much simpler loss models [24], [28], [35]. We also provided
bounds on the throughput for the case when a limit exists on the
maximum window size. Furthermore, we extended our work to
include the Timeout mechanism and to account for the discrete
nature of TCP. We explained how our model can be used to
compute moments of the TCP transmission rate of order higher
than 1, in particular the variance.

The importance of our model is justified by the different
types of loss processes we observed while measuring Inter-
net traffic. The model we proposed is able to capture any
correlation and any distribution of inter-loss times. Several
existing models can be seen as particular cases of our general
approach. On paths where TCP transmission rate increases
linearly between congestion events, our model gives excellent
results. However, on paths where TCP window growth is sub-
linear, we notice some overestimation of the real throughput.
In a future work, we will try to account for this sub-linearity
in TCP modeling. We will also try to characterize the loss
process at the packet level and to compute based on that, good
expressions for the functionsQ and Z that model Timeouts.
Another future work will be the use of the expression of the
variance of the TCP transmission rate to design congestion
control mechanisms for real time applications that are friendly
with TCP and that exhibit low rate variability.
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