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ABSTRACT
Packet sampling techniques introduce measurement errors
that should be carefully handled in order to correctly charac-
terize the network behavior. In the literature several works
have studied the statistical properties of packet sampling
and the way it should be inverted to recover the original
network measurements. Here we take the new direction of
studying the spectral properties of packet sampled traffic. A
novel technique to model the impact of packet sampling is
proposed based on a theoretical analysis of network traffic
in the frequency domain. Moreover, a real-time algorithm is
also presented to detect the spectrum portion of the network
traffic that can be restored once packet sampling has been
applied. Preliminary experimental results are reported to
validate the proposed approach.

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: Network
Operations—Network Monitoring

General Terms
Measurement, Algorithms, Theory

Keywords
Packet sampling, Measurement, Aliasing, Variance

1. INTRODUCTION
Packet sampling techniques are very useful to reduce the

complexity of network monitoring systems [5, 6]. They sim-
ply consist on capturing a subset of packets, which are then
used to infer the original traffic properties. Packet sampling
is known to introduce estimation errors that should be very
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carefully handled in order to correctly characterize the net-
work behavior [13]. This problem has been faced by the
scientific community in recent years and many novel analy-
sis and sampling techniques have been proposed, e.g., [7, 8,
15, 10, 16, 4, 11].

These previous works, among others, have shed the light
on many of the statistical properties of packet sampling.
Several inversion methods 1 have followed combining stochas-
tic analysis and statistical inference. In this paper, we look
at packet sampling from another interesting perspective,
that of the spectral density of the traffic bit rate averaged
over some time intervals, called bins, and tracked over time.
In fact, the traffic is not fixed, but varies over time forming
a signal composed of several frequencies. We try to eval-
uate the parts of the spectrum that get altered because of
sampling and identify efficient non-biased inversion meth-
ods. Our target is not only the volume of the traffic or its
marginal distribution at some time instant, but rather how
many frequencies we can still recover after sampling. This
way we can make sure that the main frequencies in the orig-
inal traffic are preserved, which is of major importance for
applications like anomaly detection and network tomogra-
phy [3, 14, 1]. By the help of Fourier Transforms, we de-
velop an original theoretical framework able to explain the
impact of packet sampling on the traffic spectral density. In
particular, the error in the estimation of the traffic volume
is modeled as an aliasing effect in the frequency domain [17].
Moreover, by leveraging the theoretical analysis, a real-time
algorithm is also designed to detect the spectrum portion of
the network traffic signal that can be restored once packet
sampling has been applied. Preliminary experimental re-
sults are reported to validate the proposed approach.

The rest of the work is organized as follows: Sec. 2 overviews
the related work; Sec. 3 formulates the problem of estimat-
ing the binned traffic rate in the frequency domain; in Sec. 4
the effects of packet sampling are modeled; in Sec. 5 a filter-
bank is proposed to process a stream of sampled packets and
to estimate the portion of the spectrum of the original traffic
that can be restored; Sec. 6 shows preliminary experimental
results; finally the last section draws conclusions and future
research.

2. RELATED WORK
We review the body of the literature relevant to our dis-

cussion. In [7] a method is proposed that allows the direct

1In sampling terminology, inversion is the process of es-
timating original traffic properties from sampled measure-
ments.



inference of traffic flows by observing the trajectories of a
subset of all packets traversing a domain. The key idea is
to sample packets based on a hash function computed over
the packet content. Using the same hash function yields the
same sample set of packets in the entire domain, and enables
the reconstruction of packet trajectories. The approach al-
lows also to cope with unreliable report transport.

[8] focuses on the frequencies at which different numbers
of packets per flow occur. In particular, the paper: (i) shows
how to smooth the estimated flow size distribution in order
to deal with short flows that disappear; (ii) uses maximum
likelihood estimation to derive the full distribution of packet
and byte flow lengths; (iii) exploits protocol level details to
render the estimators more accurate.

In [9] a method for sampling flow records on some router
interface is proposed. It is based on a threshold-based sam-
pling strategy that sets the sampling probability according
to the size of the flow record. The theoretical properties
of the estimator have been derived. Moreover, it has been
demonstrated that the algorithm has an accuracy slightly
smaller than a modified version of the sample and hold algo-
rithm proposed in [10]. Finally, several strategies to dynam-
ically control the volume of the sampled traffic are proposed
and compared.

In [15] the Sketch Guided Sampling (SGS) has been pro-
posed. It sets the packet sampling probability according
to an estimate of the size of the flow the packet belongs
to. This translates into an increase in the packet sampling
rate of the small and medium flows at slight expense of the
large flows, resulting in much more accurate estimations of
various network statistics. Other interesting proposals have
been conceived to deal with large flows [2, 10, 16, 4, 11].

[13] demonstrates that it is impossible in practice to re-
cover the spectral density of the packet arrival process and
the distribution of the number of packets per flow using tra-
ditional packet based sampling. Thus, it proposes to sample
flows rather than packets in order to achieve higher accuracy
at the expense of an increased computational complexity.

3. PROBLEM FORMULATION IN THE FRE-
QUENCY DOMAIN

Our objective is to estimate the amount of data sent from
a sender node (S) to a receiver node (R) during consecutive
time intervals of duration T , which will be referred to as bins.
A node can be a net or a subnet with some IP address prefix,
a domain, an edge router, etc. The estimation is carried
out using packet sampling, i.e., each packet is captured with
a uniform probability p. Packets captured during the same
bin are summed together, then the resulting binned value is
tracked over time to understand the traffic behavior.

To model the spectral density of the traffic signal, we di-
vide the time axis into small time slots with size t0. In
each slot, no more than one packet can be transmitted. In
practice, this t0 corresponds to the transmission time of the
smallest packet over the monitored link. We define d(k)
as the amount of data sent by S during the time interval
[(k) · t0, (k + 1) · t0[, where k ∈ N . To be more precise, if
the transmission of an entire packet has been accomplished
during the time interval [(k) · t0, (k + 1) · t0[, d(k) will be
equal to the size of the sent packet, otherwise d(k) will be
equal to 0. Moreover, we take the bin size T to be an integer
multiple of t0, i.e., T is made by T/t0 slots. The expected
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Figure 1: Expected spectrum of original packet
stream d(k).

Fourier Trasform of d(k) can be expressed as follows [17]:

E[D(f)] =

+∞
∑

k=−∞

E[dk] · e−j2πkft0 =

+∞
∑

n=−∞

D0(f −
n

t0
), (1)

where D(f) is the Fourier Transform of d(k) and D0(f) = 0,
for |f | > 0.5

t0
. This expression has a general validity because

the spectrum of any discrete-time signal is periodic with
period equal to 1/t0, if the time between two subsequent
samples is equal to t0. Basically, D0(f) is a function that
we introduce and that includes all frequencies of the signal
d(k) in the interval [−0.5/t0, +0.5/t0]. Moreover, we define
fM , fM ≤ 0.5

t0
, as the maximum frequency of the spectrum

D0(f). To better clarify the meaning of our notation, Fig.
1 pictures a typical example for E[D(f)].

As first step, we model the spectrum of the traffic signal
under the ideal assumption of capturing all packets, i.e.,
p = 1. Given that the measurement bin lasts T/t0 time slots,
summing the data received in a bin time can be expressed as
filtering d(k) using a discrete-time filter with pulse response
h(k) = 1 for k = 0 . . . T/t0 − 1, and h(k) = 0 for k ≥ T/t0.
The corresponding transfer function is:

H(f) = e
−jπf( T

t0
−1)t0 · sin(πfT )/sin(πft0). (2)

H(f) is a low-pass filter with cutoff bandwidth B ≈ 0.445
T

and static gain equal to T/t0 [12]. Moreover, it is worth
noting that the spectrum of H(f) is periodic (with period
1/t0) because the corresponding pulse response is discrete.
Thus, H(f) acts as a low-pass filter in the frequency band
[−0.5/t0, 0.5/t0].

2 To provide a further insight into the fil-
ter H(f), Fig. 2 plots the module of its transfer function
obtained for t0 = 1s and T = 10s.

Being H(f) a linear filter, it holds that the expected Fourier
Transform of d̄(k), the filtered version of the traffic signal
d(k), is:

E[D̄(f)] = H(f)E[D(f)] =
T

t0

+∞
∑

n=−∞

D̄0(f − n/t0), (3)

where D̄0(f) = t0
H(f)D0(f)

T
. The last equality in Eq. (3)

holds because both H(f) and E[D(f)] are periodic functions
with the same period 1/t0. Fig. 3 plots an approximated
model of E[D̄(f)].

Now, we present our approach to move from a discrete-
time signal representation to a continuous-time one. This
is shown in Fig. 4: the signal d̄(k) is decimated by a factor

2Frequency components of d(k) outside the interval
[−0.5/t0, 0.5/t0] can be filtered out only using an interpo-
lator, i.e., a continuous time filter, that reconstructs a con-
tinuous version of the signal d(k).
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Figure 2: Module of H(f) (t0 = 1s and T = 10s).
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Figure 3: Approximated model of E[D̄(f)].

T/t0, i.e., one sample of d̄(k) is taken every bin, then the
resulting signal d̄T (k) is processed with Zero Order Holder

(ZOH), which is a device that keeps the output d̂(t) equal
to the last received sample. Using the Poisson summation
formula [17], the expected spectrum of d̄T (k), i.e., the deci-
mated version of d̄(k), is:

E[D̄T (f)] =
+∞
∑

n=−∞

D̄0(f − n/T ). (4)

It is worth noting that the spectrum E[D̄T (f)] is the sum
of the functions D̄0(f−

n
T

), which are obtained by translating
T
t0

D̄0(f) by integer multiples of 1
T

and by dividing the result

by T/t0. As a consequence, and given that the bandwidth of
D̄0(f) is B ≈ 0.445

T
[12], the decimation does not introduce

aliasing. Moreover, the transfer function of the ZOH is:

GZOH(f) = e−jπfT · sin(πfT )/(πfT ), (5)

which is a low-pass filter with unitary static gain and band-
width equal to that of H(f). With respect to H(f), the
ZOH is also able to filter out all high frequency components
of the input signal, so that, the expected spectrum of the
continuous-time signal d̂(t) is no more periodic and can be
expressed as follows:

E[D̂(f)] = GZOH(f)E[D̄T (f)] ≈ GZOH(f)D̄0(f). (6)

This is no other than a low-pass filtered version of the base-
band component of the expected spectrum of d(k). The

signal d̂(t) is the binned traffic rate that network operators
track over time for management and monitoring purposes,
thus our aim is to evaluate the impact of packet sampling
on the spectrum of this signal and to propose conservative
values for T and p to be used. Note that most of the difficulty
comes from the fact that the spectrum of the original signal
d(k) is unknown from sampled traffic.
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Figure 4: Continuous time reconstruction of original
packet stream d(k).

4. MODELING PACKET SAMPLING
Following the same methodology, we derive the spectrum

of the traffic bit rate estimated from sampled packets. We
show how this spectrum is related to the spectrum of the
original traffic and we identify the part of the spectrum (i.e.,
the set of frequencies) that can be recovered without noise.
We relate this finding to the values of the sampling rate p
and the measurement bin T under consideration. One can
use this result to set the values of p or T , or both together,
such to avoid aliasing and to recover a traffic signal close, if
not identical, to the original one. First, we state our main
result then we follow with its derivation.

Main result: for a traffic rate signal with maximum fre-
quency fM in the baseband, an averaging interval T and a
packet sampling rate p, estimation errors are fully avoided
iff 0.445

T
< p

t0
−fM . In the other cases, the estimation errors

are due to frequency aliasing effects that cannot be filtered
out.

Suppose that packets are sampled with some uniform prob-
ability 0 < p < 1 and denote by dp(k) the volume of sampled
data in the time slot [(k) · t0, (k +1) · t0[, k ∈ N . The signals
d(k) and dp(k) are related to each other, as for each k, dp(k)
is equal to d(k) with probability p and to 0 with probability
1−p. Let us express the time-slot corresponding to the n-th
captured sample of d(k) as tn = (n

p
+ ∆n)t0, ∆n being a

random variable modeling the time between sampled pack-
ets. Under this hypothesis we can compute the spectrum of
dp(k) as:

Dp(f) =

+∞
∑

n=−∞

d(
n

p
+ ∆n)e

−j2πf( n
p

+∆n)t0 (7)

=

+∞
∑

n=−∞

d(
n

p
+ ∆n)e

−j2πf n
p

t0

(

1 +

+∞
∑

i=1

(−j2πf∆nt0)i

i!

)

. (8)

Since we are interested in low-frequency components with
|f | < 1

T
, we can safely assume that f∆nt0 ≪ 1 or equiva-

lently ∆n ≪ T/t0. This simply means that the bin size is
very larger than the jitter of the inter-arrival time between
sampled packets. Thus:

Dp(f) ≈

+∞
∑

n=−∞

d(n/p + ∆n)e
−j2πf n

p
t0 . (9)

Assuming further that E[d(n
p

+ ∆n)] ≈ E[d(n
p
)], i.e., the

stationarity interval of d(k) is greater than ∆nt0, we can
compute the expectation of both members of Eq. (9) as fol-
lows:

E[Dp(f)] ≈
+∞
∑

n=−∞

E[d(n/p)]e−j2πf n
p

t0 . (10)

Thus, in the frequency band of interest, the spectrum of the
sampled traffic E[Dp(f)] can be viewed as the spectrum of
the original traffic E[dk] sub-sampled with frequency p

t0
. Re-

calling the spectrum of the signal E[dk] reported in Eq. (1),
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Figure 5: Expected spectrum of sampled packet
stream dp(k).

it holds that [17]:

E[Dp(f)] ≈ p
+∞
∑

n=−∞

D0(f − n · p/t0). (11)

An example of this spectrum is plotted in Fig. 5 where we
can see the aliasing introduced by packet sampling. In gen-
eral, the entire baseband component D0(f) cannot be esti-
mated from Dp(f). We define BD(p) as the largest frequency
component of D0(f) that can be restored from Dp(f), i.e.,
only frequency components of d(k) with |f | ≤ BD(p) can
be reconstructed from dp(k). In other words, if we filter
dp(k) using a low-pass filter with bandwidth B, such as H(f)
whose cutoff bandwidth is approximately 0.445

T
, we have to

impose B ≤ BD(p) = p

t0
−fM to achieve a correct estimate3.

It is worth pointing out that in real cases, the maximum
traffic baseband frequency fM could be very close to 0.5/t0,
thus it is not possible to fully avoid aliasing effects. As
a consequence, BD(p) should be defined as the maximum
frequency that can be estimated with a reasonably small
error due to aliasing.

Once sampled, the reduced traffic dp(k) is filtered using
H(f) to obtain the signal d̄p(k). Its average spectrum can
be expressed as:

E[D̄p(f)] ≈ pH(f)
+∞
∑

n=−∞

D0(f − n · p/t0). (12)

By isolating the baseband component D̄0(f), this can be
rewritten as:

E[D̄p(f)] ≈ p
T

t0
D̄0(f) + pH(f)

∑

n6=0

D0(f − n · p/t0) (13)

Finally, in order to move to a continuous time representation
that models the averaging of the sampled traffic over bins
of T/t0 slots, the signal d̄p(k) has to be decimated by a
factor T/t0 before being interpolated using a ZOH (see Fig.
6). Using the Poisson summation formula as done to derive
Eq. (4), and provided that the filter H(f) has removed
the aliasing due to the sampling, the expected spectrum of
d̄(p,T )(k), i.e., the decimated version of d̄p(k), can be written
as:

E[D̄(p,T )(f)] ≈ p
+∞
∑

n=−∞

D̄0(f − n/T ). (14)

By applying the ZOH, one can extract a continuous time

reconstruction of the sampled traffic whose spectrum is pGZOH (f)

D̄0(f)
,

3It can be easily shown that the same result holds for any
slot size which is an integer sub-multiple of t0.
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Figure 6: Continuous time reconstruction of sam-
pled packet stream dp(k).

i.e., a low-pass filtered version of the base-band component
of the average spectrum of d(k) scaled by p. Compared to
Eq (6), this implies that the signal dp(k) modeling the sam-
pled traffic should be divided by p in order to compensate
the scaling due to sampling and obtain the same spectrum
as the time averaged reconstruction of the original traffic.

5. ESTIMATING BD(P ) USING A FILTER-
BANK

The distortion of the signal dp(k) is due to the tails of the
spectrum of the signal d(k) translated and folded together in
the bandwidth of interest [−B, +B]. For a sampling proba-
bility p, we expect to have a number of replicas equal to 1−p

p
,

see Fig. 5. If we assume a constant energy density n0 for
the tails of the spectrum of the original traffic d(k), and we
refer to NE(B) as the energy of the noise in the bandwidth
of interest [−B, +B], we can write

NE(B) ≤ 2 · [(1 − p)/p] · B · n0. (15)

The inequality holds because the replicas of D0(f) do not
necessarily sum up with the same phase in the band of in-
terest. Eq. (15) is very important because it tells us that as
long as we increase p, not only the total energy of the noise
decreases but also its first order derivative with respect to
p decreases. As a consequence, by inspecting the behav-
ior of the variance (i.e., proportional to the energy) of any
low-pass filtered version of dp/p, we can infer if the noise
introduced in a bandwidth B is significant.

Herein, we leverage this theoretical finding to propose an
algorithm that estimates BD(p) by properly processing the
output of a bank of low-pass filters. The traffic is supposed
to be sampled in the network at rate p, hence information
on the original traffic, typically fM and the shape of the
baseband component, is not available. The only option left
is either to down sample further the traffic at the monitor,
or to play with the monitoring time bin. By calculating
the variance of the traffic and tracking its behavior with the
new sampling rate and the time bin, one can estimate the
bandwidth BD(p) of the traffic signal that can be restored at
p. Note that knowing BD(p) allows one operator or a router
to properly select the minimum monitoring time resolution
T at which sampled packets should be averaged over time
without paying for aliasing. In fact, we remember that once
BD(p) is estimated, the bin size T can be set as:

T = 0.445/BD(p). (16)

Before starting the description of the algorithm, it is im-
portant to underline two facts. If we filter the signal dp1/p1,
obtained using a sampling probability p1, with two different
low-pass filters, namely FB1 and FB2 , having respectively
bandwidth B1 and B2, with B1 < B2, we expect to collect a
larger amount of noise due to aliasing by using the second fil-
ter (see Eq. (15)). Moreover, if we filter two different signals
dp1/p1 and dp2/p2, with p1 < p2, using the same low-pass
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Figure 7: Filter-bank.

filter, we expect to collect a smaller amount of noise when
the second signal is processed. In any case, when p is suffi-
ciently large, the energy of the noise will be negligible (see
Eq. (15)). Thus we will estimate BD(p) as the largest band-
width for which a perturbation of p does not introduce any
significant change in the variance of the binned and sampled
traffic.

To accomplish this task, we propose a filter-bank made
by W low-pass filters with bandwidths equal to B1, B2, . . . ,
BW , Bj < Bj+1∀j. The tool is described in Fig. 7. Each
filter is fed with the inverted sampled traffic dpi

/pi. The
output of each filter is analyzed over time bins inversely
proportional to the filter bandwidth, according to Eq. (16).
For each bin size, the variance of the filtered signal is eval-
uated. We define V ar(pi,Bj) to be the estimated variance of
the output of the filter-bank i.

In parallel, L filter-banks, identical to the one described
above, are applied to the signals dp1/p1, dp2/p2, . . . , dpL

/pL,
obtained by further under-sampling dp, with p1 < · · · <
pL < p, respectively. For a given bandwidth Bj , we com-
pare the values of V ar(pi,Bj) obtained for several values of
pi < p. If we find that those variances are too dissimilar
among them, we have to conclude that the frequencies in
the interval [−Bj , Bj ] cannot be safely estimated using the
current value of p. Thus a smaller Bj should be considered
(see also Fig. 8). The bandwidth BD(p) we are looking
for is the largest among those Bj not presenting an aliasing
problem.

It could happen that the outcome of the analysis is that
the current value of p is very large compared to the maxi-
mum allowed one, even for the largest Bj . This information
could be fruitfully exploited to reduce the packet sampling
probability inside the network.

Notice that, the proposed algorithm is based on linear
filters. Thus, it can easily run in real time using cards
equipped with Digital Signal Processors. Further details
about the filter-bank will be provided in the next section.

6. EXPERIMENTAL RESULTS
We have processed a real packet trace collected in January

2009 over a trans-pacific 150 Mbps link 4. Experiment pa-

4The trace is available at http://mawi.wide.ad.jp/mawi/
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Param. Description Value

t0 time-slot 2.13 · 10−6s
T bin size [1s, 400s]

p sampling probability [10−4, 1]
L no. of filter-banks 16
W no. of filters in each filter-bank 11
th threshold for Var. comparisons [0.1, 0.2]
N no. of Var. comparisons 2,3

Table 1: Experiment parameters.

rameters are listed in Tab. 1. Fig. 9 shows the module of the
spectrum of the inverted sampled traffic dp(k)/p, obtained
for several values of p, when 10,000 packets of the aggregate
trace are considered. By comparing the plot obtained for
p = 1 with respect to the other ones, it is straightforward to
note that: (i) only low frequencies of the original traffic can
be recovered, even using a very high sampling probability as
p = 0.1; (ii) the harmonic tones of the original traffic, i.e.,
those obtained for p = 1, appear translated in the frequency
spectrum of the sampled traffic signals as expected by the
Poisson summation formula; (iii) the noise across the con-
tinuous component of the traffic signal grows with 1/p as
expected by inequality (15).

Regarding the effectiveness of the filter-bank proposed in
Sec. 5, we have processed the packet trace with values of p in
the range [10−4, 1]. Each decade of this range has been split
into 3 octaves, so that we have considered L = 16 possible
values for p. Moreover, we have considered W = 11 low
pass filters, whose respective bandwidths, according to (16),
allow the bin size T to range over the interval [1s, 400s].
Given Bj and p = pi, the algorithm compares the ratios
∣
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∣

∣

∣

∣

with respect

to a threshold th0 = 1 + th. N is the number of consecutive
sampling rates tested to decide on the appropriateness of Bj

and pi. The considered value of p = pi is admissible for the
bandwidth Bj iff all the considered ratios are smaller than
th0. To further improve accuracy, we require that the ratio
between V ar(pi, Bj) and the square of the estimated traffic
volume is smaller than th (small relative error).

In our experiments we have set N to 2 or 3, and we have
varied th in the range [0.1, 0.2]. For each bandwidth Bj ,

samplepoint-F/2009/
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Figure 9: Baseband component of Dp(f)/p: (a) p = 1; (b) p = 0.1; (c) p = 0.03; (d) p = 0.005.
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Figure 10: Minimum allowed packet sampling probabilities (up) and absolute relative errors (down).

we have recorded the smallest admissible value of p and the
absolute relative estimation error of the traffic volume cal-
culated over time windows of T seconds each.

Fig. 10 shows both maximum (solid lines) and average
(dashed lines) values of the minimum allowed packet sam-
pling probability and the absolute relative error, for each
considered value of T . By looking at Fig. 10, it is clear that,
regardless of N and th, our algorithm, for each bandwidth
Bj (linked to T by Eq. (16)), provides admissible packet
sampling rates that ensure negligible average estimation er-
rors. It also clear how the required sampling rate increases
when the traffic is monitored over smaller and smaller in-
tervals. For example, seen from traffic spectrum viewpoint,
the use of packet sampling rates smaller than 0.05 is only
admitted for bin sizes T not smaller than 100s. Finally, as
expected, it is straightforward to note that the proposed al-
gorithm becomes more conservative, i.e., provides smaller
values of packet sampling probability, as N increases and th
decreases.

7. CONCLUSIONS AND FURTHER RESEARCH
A novel technique to model the impact of noise caused

by packet sampling is proposed in this paper, exploiting a
theoretical analysis in the frequency domain. Moreover, a
real-time algorithm is presented to detect the spectrum por-
tion of the network traffic signal that can be restored once
packet sampling has been applied. Preliminary experimen-
tal results have been reported to validate the proposed ap-
proach. Our future research will focus on the extension of
the proposed approach to larger contexts as network-wide
monitoring, application-level analysis and anomaly detec-
tion.
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