
An Efficient Approach for Content Delivery in
Overlay Networks

Mohammad Malli, Chadi Barakat, Walid Dabbous
Projet Planète, INRIA-Sophia Antipolis, France

E-mail:{mmalli, cbarakat, dabbous}@sophia.inria.fr

Abstract— The replication of digital content in overlay net-
works makes the identification of the best server an interesting
problem. In this paper, our aim is to reduce the content transfer
time, which we define as the time required to download a digital
content by a client using TCP. Our scheme consists of ranking
the servers from the best one to the worst one based on a metric
that corresponds to a prediction of the content transfer time
from each server. Our prediction function considers the critical
performance parameters that have an impact on the quality of
the transfer, such as the load of the servers and the characteristics
of the path between the client and the servers. Once the servers
are ranked, the client can download the content on point-to-point
from the best server, or in parallel from a subset of servers at
the top of the list (best servers). Our experimental results show
that our approach for identifying the best server(s) outperforms
the existing classical solutions. Moreover, these results show that
the proposed metric predicts the transfer time of a content with
around 96% accuracy.

I. INTRODUCTION AND MOTIVATION

Service replication is a scalable solution for the distribution
of digital content over the Internet. The need for this replica-
tion is caused by the increasing number of Internet users and
by the desire to improve the QoS. Also, it is important for
achieving a high availability of data. Many overlay networks
are proposed and installed to realize this replication : (i)
Content Distributed Networks (CDN), where client requests
are forwarded by request redirectors, and where the contents
are stored in mirror servers geographically distributed over the
Internet. Many companies, like Akamai [1], provide CDNs to
content providers. (ii) Peer-to-peer networks (e.g., Kazaa [2]),
where peers behave as clients and servers.

In the following discussion, we consider a server as being
either a server among a set of replicated servers in a CDN or
a peer in a peer-to-peer network. The best server is the one
which is able to provide the requested service to the client with
a better QoS than all other servers. The central server is the
resolver (or the redirector) in the overlay network. It receives
requests from clients and provides them back the address(es)
of the best server(s). Also, we mean by client a standard client
in the client/server paradigm, or a peer that requests a content
in a peer-to-peer network. Clearly, the best server varies from
one client to another based on the position of the client and
the state of networks and servers.

Our aim is to minimize the time required to serve a client.
We consider in this work a service that consists of clients
downloading files from a set of replicated servers using the
TCP protocol and where the QoS provided to clients is

maximized if the transfer time was minimized. We call this
transfer time the latency.

We propose an efficient scheme for ranking the set of servers
that are candidates to serve a client from the best one to
the worst one. Servers are ranked based on a metric that
corresponds to a prediction of the transfer time of a content
from each server to the client. The originality of this metric is
in the fact that it considers the characteristics of the paths
between servers and client together with the server’s load.
Once the ordered list of servers is obtained, the client can
download the content from the best server or in parallel from
a certain number of best servers.

Choosing the best server amounts to downloading the file
from the server that is able to provide the minimum transfer
time. This improves the QoS provided to clients and avoids
network and server congestion by distributing the load over
servers and network paths that are less loaded than others.
Before explaining our scheme, we first present a brief overview
of the solutions proposed in the literature for server selection:
(1) Using the DNS (Domain Name System) to get the IP ad-
dress of the best server. This widely used technique is simple:
the DNS servers distribute the IP addresses of multiple servers
associated to a unique name with a round robin algorithm. It
is clear that this solution is not designed to improve the QoS
since it does not consider any static or dynamic performance
limitations. It only ensures basic load balancing. (2) Offering
the client a list of servers and let him choose manually the best
server to contact. The client choice in this case is based on
his own criteria, for example the geographical proximity. (3)
Using more sophisticated techniques that take into account one
or many parameters having an impact on the content transfer
time. Next, we describe some of these techniques.

The binning solution in [4] requires that the client and
servers determine their own bins by measuring their RTT
(Round-Trip Time) to a set of landmark points. By knowing
the bins of the client and servers, the DNS server can classify
the servers (from the best one to the worst one) based on
the distance between their bins and the client’s one. With
this solution, the client does not measure the performance of
the paths that connect it to the servers but rather of those
that connect it to the landmark points. The drawback of
this approach can be observed in the case where a client
and a server have a short delay path to the landmark points
while not having such a short delay path between them.
Moreover, having a short delay may not be enough to obtain

a good transfer time, since other parameters can impact the
performance as well, as the available bandwidth and the server
load.

[6] uses a technique which combines server push and
client probe approaches. The server push consists in the server
sending to clients or to DNS servers his current performance
information every time there is a considerable change in this
performance. The client probe consists in the client measuring
the path between it and each server as for example the
measurement of the available bandwidth. The main problem of
this solution is the fact that it requires installation of proxies
that act as probing agents and that characterize the paths
between clients and servers. To be efficient, a proxy needs to
be installed for each nearby set of clients. The proxy estimates
the transfer time from a server and considers this estimate as
equal to what the clients located behind it would obtain. But,
the proxy estimate of the transfer time does not necessarily
correspond to the actual transfer time to the client, even though
the proxy and the client can be nearby located. A mismatch
can appear in cases when a bottleneck link, which is highly
congested or has a high packet loss rate (e.g., a wireless link),
exists on the server - client path while it does not exist on the
server - proxy path.

This paper is organized as follows. The next section de-
scribes our scheme: its goals and the communication protocol.
Then, we present our prediction function, the evaluation of this
function, and a discussion on the prediction cost in Section III.
Finally, the conclusion is presented in Section IV.

II. COMMUNICATION PROTOCOL

A. Goals

Our scheme enhances the transfer time by providing to the
client the address(es) of the best server(s) after ranking the
replicated servers from the best one to the worst one based
on transfer time prediction. The addresses are provided to the
client via the central server and the transfer time prediction is
done by each replicated server, so the service is completely
transparent to clients. The scheme avoids the congestion in the
network and contributes to traffic balancing since it takes into
account the available bandwidth on the paths. It also avoids
overloading the servers since it takes into account the load of
the servers in the selection process.

B. Scheme Description

Our scheme consists of a set of agents located in the central
server and the replicated servers. (i) The central server holds
the service relay agent which is a well-known application-
layer gateway, and the classifier agent which ranks the servers
to provide back to the client the IP address(es) of the best
one(s). (ii) Each replicated server holds: a load-estimator
agent which calculates continuously the request arrival rate
and service rate in the server, a probing agent which probes
the client and predicts the time needed to transfer the requested
content to the client, and a service application which provides
the client with the requested content if the server has been
selected by the central server as being the best one.

The following are the basic steps realized before establish-
ing the connection between the client and the best server for
content download (see Figure 1):
(1) The client sends its request to the service relay agent in the
central server. (2) The service relay agent calls the classifier
agent and gives it the client’s IP address and client receiving
buffer space (obtained from the window size advertised by
the client in the TCP header). (3) The classifier agent sends
the client’s IP address and client receiving buffer space to the
probing agents located in a certain set of replicated servers.
For example, to serve a French client, the classifier agent
sends the client information to the probing agents located
in the replicated French servers. (4) Each probing agent
in a replicated server probes the client in order to obtain
the performance of the path between them, and reads the
current server performance parameters determined by the load
estimator agent. (5) Each probing agent computes the predicted
transfer time metric defined in Section III-A. (6) Each probing
agent sends the obtained value of the predicted transfer time
to the classifier agent in the central server. (7) The classifier
agent compares the predicted transfer time values received
from the different probing agents and sorts these values in
an increasing order. (8) The classifier agent sends to the
client the IP address(es) of the best server(s) (which provide
the smallest transfer time value). (9) A TCP connection is
established between the client and the best server. In case a
set of IP addresses is provided as corresponding to the best
servers, the client can open a TCP connection with each of
these servers and download the content in parallel. The main

Client

(3)

(5)(6)

(7)

(8)

(1)

(2) (4)
(9)

(2)

agentrelay
Service

agent

agent
Service

Application
Classifier

Probing

Best Server

Client

Central Server

Fig. 1. Communication architecture

reason for which we propose to implement the probing agent
on the server side is to make the service transparent to clients.
Another reason is that the probing agent can easily read the
size S of the requested content and estimate the load of the
server without sending to the network any message asking for
the values of these parameters.

The probing agent predicts accurately the content transfer
time by considering: (i) the characteristics of the path to the
client: the available bandwidth denoted by A, the round-trip
time denoted by RTT , and the packet loss rate denoted by P .
(ii) The performance limitations of the server: the maximum
congestion window value Wmax that can be buffered for
transmission, and the idle time lost due to the buffering
of the requests in the server (time between the arrival of
a request and the establishment of the corresponding TCP

connection). This idle time depends on the server load. (iii)
The performance limitation of the client, which is represented
by its receiving buffer space communicated to the service relay
agent by the advertised window field in the TCP header and
then communicated to the server by the classifier agent.

III. TRANSFER TIME PREDICTION

A. Prediction Function

To predict the content transfer time from a server to a client,
we consider that: (i) the server uses TCP New Reno for content
download. (ii) The server has an initial congestion window W1

equal to 1 packet and its congestion window during the i-th
round trip time Wi is limited by the value Wmax which is
imposed by server or client buffer limitations. (iii) The client
sends an acknowledgment (ACK) for every b data segments
received from the server. The value of b is usually equal to
2 due to the Delayed ACK functionality in TCP. (iv) The
channel drops packets independently of each other with a
constant probability P . Thus, the average number of packets
successfully transmitted between the beginning of the transfer
and the first packet loss in this case is 1

P .
The parameters and functions used in our latency prediction

function are expressed in the following units: (i) Wi, Wmax, d,
and E[Wss] are in packets of size m bytes. (ii) E[Ts], E[Lss],
E[Lca], RTT , and PTT are in seconds, (iii) m, E[Sss], and
S are expressed in bytes, and finally (iv) A, Rmax, and Rca

are in bytes per second.
To estimate the transfer time of a content of size S, we

propose the following function denoted by PTT (Predicted
Transfer Time):

PTT = E[Ts] + E[Lss] + E[Lca]. (1)

E[Ts] is the mean request waiting time, i.e., the average
time that a request spends in the socket’s arrival queue of a
server before it is handled by a thread. E[Lss] is the transfer
time spent during the slow start phase at the beginning of the
download, and E[Lca] is the transfer time spent during the
congestion avoidance phase.

We model the socket’s arrival queue of a server and its
associated threads (of number c) as an M/M/c queue, where λ
is the mean request arrival rate, and µ is the mean service rate.
Using known results from queuing theory [8], we can write:

E[Ts] =
(λ

µ)
√

2·(c+1) − 1

c · (µ − λ)
. (2)

Basically, λ is calculated in the kernel of the server platform
by marking permanently in a certain file the time when a SYN
packet arrives to the socket’s arrival buffer. µ is calculated by
marking permanently in a certain file the time when a thread
begins to serve a request (queued in the socket’s arrival buffer)
and the time when it finishes serving this request (the TCP
connection state is created in the server and the ACK is sent
back to the client). Then, λ and µ are updated periodically by
the load estimator agent and stored in a file that the probing
agent can read when necessary.

We use γ as the rate of exponential growth of TCP conges-
tion window Wi during the slow start phase:

Wi+1 = Wi +
Wi

b
=

(
1 +

1
b

)
· Wi = γ · Wi. (3)

The end of the slow start phase can be caused by the
occurrence of a packet loss along the path in one of three
cases (if the content size allows): (i) the bandwidth is saturated
on the path server - client (client sending rate reaches A).
This case can only happen if the product available bandwidth-
delay is less than the maximum window value (A.RTT <
Wmax ·m). (ii) The congestion window value of the slow start
phase reaches the buffering capacity Wmax (client sending
rate reaches Wmax · m

RTT), then after a certain time, a packet
is lost on the path server - client due to the random loss
process of rate P we are assuming (in opposite to case (i),
the available bandwidth A is not reached here). (iii) Before
reaching the buffering capacity or the available bandwidth on
the path server - client, a packet is lost on the path after an
average number of packets equal to 1

P has been successfully
transmitted to the client. We note WP the client window size
reached at the end of the slow start phase in case (iii):

logγWP∑
i=0

γi =
1
P

, (4)

so:

WP =
1
γ
·
(

γ − 1
P

+ 1
)

. (5)

The maximum sending rate that can be reached at the end of
the slow start phase can be expressed by taking the minimum
over the last three mentioned cases:

Rmax = min

(
A,Wmax · m

RTT
,
1
γ
· (γ − 1

P
+ 1) · m

RTT

)
.

(6)
Small size contents can be completely transferred during

the slow start phase. When the content size is large, it starts
being transmitted in the slow start phase, then continues its
transmission in the congestion avoidance phase. In the next
two sections we investigate these two cases.

1) Transfer completed in the slow start phase: In this case,
we consider that rS+1 round-trips are required to complete the
download. The download ends before TCP transmission rate
reaches Rmax. The latency components have the following
expressions:

E[Lss] = (rS + 1) · RTT, and E[Lca] = 0

if γrS · m

RTT
≤ Rmax, (7)

where,

rS∑
i=0

γi =
S

m
. (8)

It follows that,

rS = logγ

(
S · (γ − 1)

m
+ 1

)
− 1, (9)

and,

γrS · m

RTT
=

S · (γ − 1) + m

γ · RTT
. (10)

Hence, when the transfer is completed in the slow start
phase before reaching Rmax, the transfer time is:

E[Lss] = logγ

(
S · (γ − 1)

m
+ 1

)
· RTT and E[Lca] = 0

if
S · (γ − 1) + m

γ · RTT
≤ Rmax. (11)

2) Transfer completed in the congestion avoidance phase:
The content size is longer than being achieved in the slow
start phase, so it continues its transmission in the congestion
avoidance phase (or in the steady state) where the transmission
is completed after that the sender rate has reached Rmax:

S · (γ − 1) + m

γ · RTT
> Rmax. (12)

We evaluate the window expected to be reached at the end
of the slow start phase by the following expression:

E[Wss] = Rmax · RTT

m
= γn =




A · RTT
m if Rmax = A

Wmax if Rmax = Wmax · m
RTT

1
γ · (γ−1

P + 1) if Rmax = 1
γ · (γ−1

P + 1) · m
RTT

(13)

So, we express the number of rounds n which is required
to reach the window size E[Wss] (i.e., to reach Rmax) since
the beginning of the transfer as:

n =




logγ(A · RTT
m) if Rmax = A

logγWmax if Rmax = Wmax · m
RTT

logγ(γ−1
P + 1) − 1 if Rmax = 1

γ · (γ−1
P + 1) · m

RTT
(14)

We note rn +1 the number of slow start rounds required to
transfer E[Sss] data bytes in the case where the transmission
is completed after that the sending rate reaches Rmax (see
Equation (12)), thus:

rn =




n if Rmax = A

n + d
Wmax

if Rmax = Wmax · m
RTT

n if Rmax = 1
γ · (γ−1

P + 1) · m
RTT

(15)

d is the average number of packets which is transmitted
successfully in the slow start phase between the time when the
transmitting buffer is saturated and the time when the transfer
is completed or a packet loss is occurred. We evaluate d in
these two cases as the following:

d =




S
m − ∑logγWmax

i=0 γi if S
m ≤ 1

P

1
P − ∑logγWmax

i=0 γi if S
m > 1

P

(16)

so,

d =




S
m − γ·Wmax−1

γ−1 if S
m ≤ 1

P

1
P − γ·Wmax−1

γ−1 if S
m > 1

P

(17)

The time required to transfer E[Sss] data bytes can be
expressed as:

E[Lss] = RTT · (rn + 1), (18)

Thus, Equations (14), (15), (17), and (18) give:

E[Lss] = RTT ·




logγ(A · RTT
m) + 1

: if Rmax = A

logγWmax +
S
m + 1

γ−1
Wmax

− 1
γ−1

: if Rmax = Wmax · m
RTT and S

m ≤ 1
P

logγWmax +
1
P + 1

γ−1
Wmax

− 1
γ−1

: if Rmax = Wmax · m
RTT and S

m > 1
P

logγ(γ−1
P + 1)

: if Rmax = 1
γ · (γ−1

P + 1) · m
RTT

(19)

The maximum number of bytes that can be sent in the case
where the transmission is completed after that the sending rate
reaches Rmax (the condition in Equation (12) is satisfied), can
be expressed as:

E[Sss] = m·




∑n
i=0 γi if Rmax = A

∑n
i=0 γi + d if Rmax = Wmax · m

RTT

∑n
i=0 γi if Rmax = 1

γ · (γ−1
P + 1) · m

RTT
(20)

Hence, we can evaluate the transfer time required to com-
plete the transfer in the congestion avoidance phase or in the
steady state phase (if the content size allows), as:

E[Lca] =
S − E[Sss]

Rca
, (21)

where Rca is the TCP average throughput in the congestion
avoidance phase (or in steady state). From [7], we use the
following expression:

Rca = min
(
A,Wmax · m

RTT
,Rp) (22)

where,

Rp =
m

RTT ·
√

2·b·P
3

+ 4 · RTT · min(1, 3 ·
√

3·b·P
8

) · P · (1 + 32 · P 2)

(23)

So,

E[Lca] =
1

Rca
·




S − 1
γ−1 · (γ · A · RTT − m)

: if Rmax = A

0
: if Rmax = Wmax · m

RTT and S
m ≤ 1

P

S − m
P

: if Rmax = Wmax · m
RTT and S

m > 1
P

S − m
P

: if Rmax = 1
γ · (γ−1

P + 1) · m
RTT

(24)

Therefore,

PTT =




Equation (2) + Equation (11)
: if S·(γ−1)+m

γ·RTT ≤ Rmax

Equation (2) + Equation (19) + Equation (24)
: if S·(γ−1)+m

γ·RTT > Rmax

(25)

Computing PTT is of low complexity. Indeed, the param-
eters used in this function can be determined dynamically
by the server without any major difficulty. Practically, the
server probes directly the client using any method that can
estimate the available bandwidth, the round trip time, and
the loss rate on the path with the client [5], [9]. Besides,
the server can determine easily its request arrival rate λ and
its request service rate µ by implementing the correspondent
agents described above.

B. Prediction Evaluation

To determine the accuracy of our PTT function, we com-
pute the ratio of the computed PTT over the measured ReTT
by downloading 40 files, of various sizes ranging between
5KB and 100MB, from 20 ftp servers located in Europe,
USA, and Asia [10]. We obtain an average ratio (PTT over
ReTT) equal to 96% with a probability 95% that the real
average ratio is in the interval: [91%, 99%]. We validate in
Figure 2 the accuracy of the prediction in the case of short
files, where the transfer is very probably completed in the
slow start phase, and in Tables I, II, and III in the case of
large files, where the transfer is very probably completed in
the congestion avoidance phase (or the steady state).

We do not consider in our results the mean request waiting
time in the server (Equation (2)) due to the inability to read
remotely from the WWW servers the parameters required
to compute such information (λ, µ and c). For non highly
loaded servers, the request waiting time can be neglected.
Concerning the estimation of A, we use a technique similar to
that proposed in [11]. We send 4 separate 23-packet streams.
The size of the first packet in a stream is 32 bytes, and the size
of each other packet in the stream is the size of the previous
one incremented by 32 bytes. We calculate the rate of each
receiving stream’s echos, then we evaluate A as the average
value of the obtained rates for the 4 streams.

Figure 2 shows the accuracy of the transfer time prediction
for 10 small size contents (between 5KB and 400KB)
gathered in Sophia Antipolis from 4 ftp servers located in
Canada, Poland, Italy, and Netherlands. In this figure, each
point is the average result of 6 times file transfer which are
very probably achieved in the slow start phase. Then, we
investigate the case of large size file transfer. In this case, we
study the impact of the different parameters on the transfer
time prediction.

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250 300 350 400

T
ra

ns
fe

r
T

im
e

(in
 s

)

File size (in KB)

PTT
ReTT

Fig. 2. Transfer time prediction for small size contents

To prove the weakness of the prediction based only on the
geographical proximity, number of hops or RTT, we present
the following scenario: a client (in Sophia Antipolis) down-
loads a file of size 75MB from two servers, Sberlin (in Berlin)
and Sparis (in Paris), during a congested period. We choose to
download such big file size during a congested period in order
to observe the effect of the bandwidth limitation. As shown in
Table I, Sparis is closer to the client than Sberlin in term of
geographical proximity, number of hops and RTT. While the
best server selection based on these criterias must be Sparis,
the selection based on our PTT function is Sberlin, which is
the correct choice verified by the real transfer time (ReTT). We
observe (in both downloads) that the download rate obtained
after dividing the file size by the transfer time, is limited by A.
Thus, the good performance of our prediction in this scenario
is caused by the fact that our PTT function considers the
limitation of the available bandwidth (see Equation (22)).

Considering the available bandwidth alone is not sufficient;
Wmax should also be taken into account in the prediction
function. Table II proves this claim, where the transfer is
achieved in the congestion avoidance phase for the different

large document sizes collected from Sberlin (in Berlin) to the
client (in Sophia Antipolis). During these connections, the
measured parameters have the following values: A is equal to
24.34Mbps, P is equal to zero, and Wmax (imposed by the
client maximum receiving window) is equal to 65535bytes.
We observe that the download rate obtained, after dividing
each file size by its transfer time, is limited by Wmax∗m/RTT
(equal to 12.2Mbps) even though there is more available
bandwidth on the path and a negligible packet loss ratio.
This is caused by the receiving window limitation which is
taken into account in our metric (see Equation (22)). Thus,
the window size limits the transmission rate to much less than
the measured bandwidth on the path bottleneck, which is equal
to 98.25Mbps.

Sberlin Sparis

hops 13 10
RTT 41 ms 23 ms

A 10 Mbps 8 Mbps
P 0 0

PTT 60.30 s 75.12 s
ReTT 63 s 77 s

S/ReTT 9.523 Mbps 7.792 Mbps

TABLE I

TRANSFER TIME PREDICTION WHEN A LIMITS THE DOWNLOAD RATE

PTT (in s) ReTT (in s) S/ReTT (in Mbps)
5.4 MB 3.85 4 10.8

14.63 MB 9.90 11 10.64
25.26 MB 16.88 18 11.23

66 MB 43.60 45 11.73
95.81 MB 63.16 64 11.98
102.24 MB 67.63 68 12.03

TABLE II

TRANSFER TIME PREDICTION WHEN Wmax LIMITS THE DOWNLOAD RATE

Shkong

S 9.75MB RTT 381.839ms P 0.03
A 5.77Mbps Wmax 45 Rp 115.93kbps

PTT 688s ReTT 701s S/ReTT 113.87kbps

Spoland

S 10.64MB RTT 96 ms P 0.04
A 6.6Mbps Wmax 45 Rp 370.156kbps

PTT 235.334s ReTT 239s S/ReTT 364.789kbps

TABLE III

TRANSFER TIME PREDICTION WHEN P LIMITS THE DOWNLOAD RATE

After showing the critical impact of the available bandwidth
(in Table I) and the maximum receiving window size (in
Table II) limitations on the transfer time prediction, we present
in Table III a trace where the server’s maximum sending rate
is reduced due to a non-negligible packet loss rate. This trace
is the result of 2 files transfer from 2 FTP servers (one located
in Hong-Kong and another in Poland) to our end host in
Sophia Antipolis. During these connections, the value of the
packet loss rate is significant. We observe in Table III that
the download rate obtained, after dividing each file size by its
transfer time, is limited by Rp (see Equation (23)) which is

less than the available bandwidth on the path and the limited
rate imposed by Wmax. Thus, the sending rate limitation is
caused by the packet loss rate, which is considered in our
metric (see Equation (22)).

C. Prediction Cost

As shown in Section III-B, using our PTT function can
provide an accurate transfer time prediction, but it requires
the measurement of the available bandwidth, RTT, and packet
loss rate. Measuring the available bandwidth accurately may
have an expensive cost for applications of short duration.
CPROBE [9] probing tool has a default probing overhead
approximately equal to 30, 000 bytes and up to 4 seconds of
measurement time. Recently developed, ABwE [3] provides
quick (< 1 second) measurements of available bandwidth. So,
our prediction function can be more useful for applications
such as downloading large files (like software from CDN,
video from peer-to-peer network, etc.) where the overall
response time (including the probing time) that can be obtained
by serving from the best server is still less than the transfer
time that can be obtained by serving from any other server.

IV. CONCLUSION

In this paper, we propose an efficient scheme to reduce
the transfer time of a content stored in a set of replicated
servers. Our solution is based on a metric that aims to predict
accurately the transfer time of a content transmitted using TCP.
Our prediction function considers the critical performance
parameters that have an impact on the quality of the transfer
such as the load of the servers and the characteristics of the
path between the client and the servers. Our experimental
results show that the server selection based on our prediction
function outperforms the others solutions (e.g., those based
only on the geographical proximity or the round trip time).
Moreover, the results show that our proposed function predicts
the transfer time of a content with around 96% accuracy.

REFERENCES

[1] Akamai, http://www.akamai.com.
[2] Kazaa, http://www.kazaa.com.
[3] J. Navratil, L. Cottrell, ABwE: A Pratical Approach to Available

Bandwidth Estimation, PAM 2003, April 2003.
[4] S. Ratnasamy, M. Handly, R. Karp, S. Shenker, Topologically-Aware

Overlay Construction and Server Selection, Infocom, June 2002.
[5] Cooperative Association for Internet Data Analysis,

http://www.caida.org/.
[6] Z. Fei, S. Battacharjee, E. W. Zegura, M. H. Ammar, A Novel Server

Selection Technique for Improving the Response Time of a Replicated
Service, IEEE Infocom, March 1998.

[7] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, Modeling TCP Through-
put: a Simple Model and its Empirical Validation, in proceedings of
ACM SIGCOMM, August 1998.

[8] Leonard Kleinrock, Queueing systems volume I: theory, 1975.
[9] BPROBE and CPROBE, http://cs-people.bu.edu/carter/tools/Tools.html.

[10] OpenBSD FTP, http://www.openbsd.org/ftp.html.
[11] R. Carter, and M. Crovella, Dynamic Server Selection using Bandwidth

Probing in Wide-Area Networks, technical report, Boston, 1996.

