
An Optimal Joint Scheduling and Drop Policy for
Delay Tolerant Networks

Amir Krifa∗†, Chadi Barakat†, Thrasyvoulos Spyropoulos†‡
†Project-Team Planète, INRIA Sophia-Antipolis, France
∗National School of Computer Sciences (ENSI), Tunisia

‡Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
Emails: {Amir.Krifa, Chadi.Barakat}@sophia.inria.fr, spyropoulos@tik.ee.ethz.ch

Abstract—Delay Tolerant Networks are wireless networks where
disconnections may occur frequently. In order to achieve data
delivery in such challenging environments, researchers have pro-
posed the use of store-carry-and-forward protocols: there, a node
may store a message in its buffer and carry it along for long
periods of time, until an appropriate forwarding opportunity
arises. Multiple message replicas are often propagated to increase
delivery probability. This combination of long-term storage and
replication imposes a high storage and bandwidth overhead. Thus,
efficient scheduling and drop policies are necessary to: (i) decide
on the order by which messages should be replicated when contact
durations are limited, and (ii) which messages should be discarded
when nodes’ buffers operate close to their capacity.

In this paper, we propose an efficient joint scheduling and drop
policy that can optimize different performance metrics, such as
the average delivery rate and the average delivery delay. Using the
theory of encounter-based message dissemination, we first propose
an optimal policy based on global knowledge about the network.
Then, we introduce a distributed algorithm that collects statistics
about network history and uses appropriate estimators for the
global knowledge required by the optimal policy, in practice.
Using simulations based on a synthetic mobility model and a real
mobility trace, we show that our history-based statistical policy
successfully approximates the performance of the optimal policy
in all considered scenarios. At the same time, our optimal policy
and its distributed variant outperform existing resource allocation
schemes for DTNs, such as the RAPID protocol [1], both in terms
of average delivery ratio and delivery delay.

I. INTRODUCTION

The traditional view of a network as a connected graph
over which end-to-end paths need to be established might
not be appropriate for modeling existing and emerging wire-
less networks. Due to wireless propagation phenomena, node
mobility, low power nodes periodically shutting down and
waking up, etc, connectivity in many wireless networks is, more
often than not, intermittent. Despite this limited or episodic
connectivity, many emerging wireless applications could still
be supported. Some examples are the provision of low-cost
Internet in remote or developing communities [2], [3], vehicular
networks (VANETs) for dissemination of location-dependent
information (e.g. local ads, traffic reports, parking information,
etc) [4], underwater networks [5], etc.

To enable services to operate even under these challenging
conditions, researchers have proposed a new networking

978-1-4244-2100-8/08/ $25.00 2008 IEEE

paradigm, often referred to as Delay Tolerant Networking
(DTN [6]), based on the store-carry-and-forward routing
principle [2]. One of the most popular DTN routing protocols,
Epidemic routing [7], as well as many of its variants,
replicate messages during transfer opportunities (“contacts”)
searching multiple paths towards a destination, in parallel.
However, the naive flooding of Epidemic routing wastes
resources and can severely degrade performance. Other routing
protocols attempt to limit replication or otherwise clear
useless messages in various ways, for example: (i) using past
meeting information [8]; (ii) removing useless messages using
acknowledgments of delivered data [9]; and (iii) bounding the
number of replicas of a message [10].

Despite a large amount of effort invested in the design
of efficient routing algorithms for DTNs, there has not been
a similar focus on drop and scheduling policies. Yet, the
combination of long-term storage and the, often expensive,
message replication performed by many DTN routing proto-
cols [7], [11] impose a high bandwidth and storage overhead
on wireless nodes [12]. Moreover, the data units disseminated
in this context, called bundles, are self-contained, application-
level data units, which can often be large [6]. It is evident that,
in this context, node buffers will very likely run out of capacity.
For the same reasons, when mobility results in short contacts
between nodes, available bandwidth could be insufficient to
communicate all intended messages. Consequently, efficient
drop policies are necessary to decide which message(s) should
be discarded when a node’s buffer is full, together with efficient
scheduling policies to decide which messages should be chosen
when bandwidth is limited, regardless of the specific routing
algorithm used.

In this paper, we try to solve this problem in its foundation.
We develop a theoretical framework based on Epidemic
message dissemination [9], [13], [14] that takes into account
all information that are relevant for message delivery. Based
on this theory, we first propose an optimal joint scheduling
and drop policy, GBSD (Global khnowledge Based Scheduling
and Drop) that can maximize the average delivery rate or
minimize the average delivery delay by deriving a per-message
utility and managing messages based on it. GBSD uses global
information about the network to derive the per-message utility

2

for a given routing metric, and thus is difficult to implement in
practice. In order to amend this, we propose a second policy,
HBSD(History Based Scheduling and Drop), employing a
distributed (local) algorithm based on statistical learning from
network history to estimate information about the current
global status of the network that can be used later to calculate
message utility. To our best knowledge, the recently proposed
RAPID protocol [1] is the only effort aiming at scheduling
(and to a lesser extend message drop) using such a theoretical
framework, but is sub-optimal in a number of respects, as we
will explain later. Simulations results based on both synthetic
mobility traces as well as real traces, show that our history-
based policy HBSD outperforms existing schemes, achieving
close-to-optimal performance in all considered scenarios.

The rest of this paper is organized as follows. Section II
describes the current state-of-the art in terms of buffer man-
agement and scheduling in DTNs. In Section III, we establish
theoretically a ”reference”, optimal joint scheduling and drop
policy that uses global knowledge about the network. Then,
we present in Section IV a learning process that enables us to
approximate the global network state required by the reference
policy. Section V describes the experimental setup and the
results of our performance evaluation. Finally, we summarize
our conclusions and discuss future work in Section VI.

II. RELATED WORK

Several solutions have been proposed to handle routing in
DTNs. Yet, an important issue that has been largely disregarded
by the DTN community is the impact of buffer management and
scheduling policies on the performance of the system1. In [16],
Zhang et al. present an analysis of buffer-constrained Epidemic
routing, and evaluate some simple drop policies like drop-
front and drop-tail. The authors conclude that drop-front, and
a variant of it giving priority to source messages, outperform
drop-tail in the DTN context. A somewhat more extensive set
of combinations of heuristic buffer management policies and
routing protocols for DTNs is evaluated in [17], confirming
the performance of drop-front. However, all these policies are
simple and/or heuristic that neither aim at optimality in the
DTN context nor do they address scheduling. In a different
work [18], we address the problem of optimal drop policy
only (i.e. no bandwidth or scheduling concerns) using a similar
analytical framework, and have compared it extensively against
the policies described in [16] and [17]. Due to space limitations,
the comparison between various drop policies is not repeated
here. We rather focus on the more general joint scheduling and
drop problem, for which we believe the RAPID protocol [1]
represents the state-of-the-art.

RAPID is the first protocol to explicitly assume both band-
width and (to a lesser extent) buffer constraints exist, and
to handle the DTN routing problem as an optimal resource
allocation problem, given some assumption regarding node
mobility. As such, it is the most related to our own proposal,

1These two problems have often been studied in somewhat different contexts,
see for instance [15] which focuses on ad-hoc networks.

Fig. 1. GBSD’s scheme.

and we will compare directly against it. Despite the elegance of
the approach, and performance benefits demonstrated compared
to well-known routing protocols, RAPID suffers from two main
drawbacks: (i) its policy is based on sub-optimal message
utilities (more on this in Section III); and (ii) in order to derive
these utilities, RAPID requires the flooding of information
about all the replicas of a given message in the queues of all
nodes in the network; Yet, information propagated thus may be
stale (a problem that the authors also note) due to change in the
number of replicas, change in delivery delays, or if the message
is delivered but acknowledgements have not yet propagated. In
this paper, we propose a policy that fixes both (i) and (ii), and
hence outperforms RAPID and other policies.

III. OPTIMAL JOINT SCHEDULING AND DROP POLICY

In this section, we assume both limited storage and band-
width. We first make a few assumptions regarding the mobil-
ity characteristics of the nodes, and then embark on finding
theoretically the optimal policy, based on these characteristics.
This policy, GBSD (Global Knowledge based Scheduling and
Drop), uses global knowledge about the state of each message
in the network (number of replicas). Hence, it is difficult to be
implemented in practice, and will only serve as reference.

A. Problem description (assumptions)
In the DTN context, message transmissions occur only when

nodes encounter each other. Thus, the time elapsed between
node meetings is the basic delay component. The meeting
time distribution is a basic property of the mobility model
assumed [19], [18]2. To formulate the optimal policy problem,
we do not make any specific assumption about the used
mobility model. Our only requirement is that the meeting time
of the mobility model is exponentially distributed or has at
least an exponential tail, with parameter λ = 1

E[U] , where
E[X] denotes the expectation of a random variable X . It has
been shown that many popular mobility models like Random
Walk [19], Random Waypoint and Random Direction [14], [13]
have such a property. Moreover, it has recently been argued that
meeting and inter-meeting times observed in many traces may
also exhibit an exponential tail [20].

Given the above problem setting and a routing metric, our
policy GBSD derives a per-message utility. This utility captures

2By meeting time we refer to the time until two nodes starting from the
stationary distribution come within range (“first meeting-time”); If some of the
nodes in the network are static, then one needs to use hitting times between
mobile and static nodes, as well. Although in this work we consider unicast
transmissions where both sources and destinations are mobile, our theory can
be easily modified to account for static nodes also.

3

TABLE I
NOTATION

Variable Description
L Number of nodes in the network

K(t) Number of distinct messages in the network at time t

TTLi Initial Time To Live for message i

Ri Remaining Time To Live for message i

Ti = TTLi -
Ri

Elapsed Time for message i. It measures the time since
this message was generated by its source

ni(Ti) Number of copies of message i in the network after
elapsed time Ti

mi(Ti) Number of nodes (excluding source) that have seen
message i since its creation until elapsed time Ti

λ Meeting rate between two nodes; λ = 1
E[U]

where
E[U] is the average meeting time

the marginal value of a given message copy, with respect to
the chosen optimization metric (e.g. overall delay or delivery).
As described in Figure 1, GBSD has two core components:
(i) Scheduling—determines which messages to replicate at a
limited transfer opportunity given their utilities, and (ii) Drop—
decides which messages to drop when a node exhausts all
available storage. We derive here such a per-message utility
for two popular metrics: maximizing the average delivery rate,
and minimizing the average delivery delay. In Table I, we
summarize the various quantities and notations we will use
throughout the paper.

B. Maximizing the average delivery rate

To maximize the average delivery rate, the per-message
utility used by GBSD is defined by the following theorem:

Theorem III.1. Let us assume there are K messages in the
network with elapsed time Ti for message i at the moment when
the drop or replication decision by a node is to be taken. For
each message i ∈ [1,K], let mi(Ti) and ni(Ti) be the number
of nodes that have “seen” the message since it’s creation3

(excluding the source), and those who have a copy of it at
this moment (ni(Ti) 6 mi(Ti) + 1), respectively. To maximize
the average delivery rate of all messages, a DTN node should
apply the GBSD policy using the following utility per message
i:

(1− mi(Ti)
L− 1

)λRi exp(−λni(Ti)Ri) (1)

Proof: We know that the meeting time between nodes is
exponentially distributed with parameter λ. The probability that
a copy of a message i will not be delivered by a node is then
given by the probability that the next meeting time with the
destination is greater than the remaining time Ri. This is equal
to exp(−λRi).

Knowing that message i has ni(Ti) copies in the network,
and assuming that the message has not yet been delivered, we
can derive the probability that the message itself will not be

3We say that a node A has “seen” a message i, when A had received a copy
of message i sometime in the past, regardless of whether it still has the copy
or if it has already removed it from its buffer.

delivered (i.e. none of the ni copies gets delivered):
ni(Ti)∏

i=1

exp(−λRi) = exp(−λni(Ti)Ri).

Here, we have not taken into account that more copies of
a given message i may be created in the future through new
node encounters, also we have not taken into account that a
copy of message i could be dropped within Ri (and thus this
policy is to some extent greedy or locally optimal). Predict-
ing the effect of future encounters complicates the problem
significantly. Nevertheless, the same assumption is performed
for all messages equally and thus can justify the relative
comparison between the delivery probabilities for different
messages. Unlike RAPID [1], we take into consideration what
has happened in the network since the message generation, in
the absence of an explicit delivery notification. Given that all
nodes including the destination have the same chance to see
the message, the probability that a message i has been already
delivered is equal to:

P{message i already delivered} = mi(Ti)/(L− 1).

So, if we take at instant t a snapshot of the network, the global
delivery rate for the whole network will be:

DR =
K(t)∑

i=1

[
(1− mi(Ti)

L− 1
) ∗ (1− exp(−λni(Ti)Ri)) +

mi(Ti)
L− 1

]

In case of congestion or limited transfert opportunity, a DTN
node should take respectively a drop or replication decision that
leads to the best gain in the global delivery rate DR. To find
this decision, we differentiate DR with respect to ni(Ti), then
we discretize and replace dn by ∆(n) to obtain:

∆(DR) =

K(t)∑
i=1

[
(1− mi(Ti)

L− 1
)λRi exp(−λni(Ti)Ri) ∗ 4ni(Ti)

]

Our aim is to maximize ∆(DR). We know that: ∆ni(Ti) =
−1 if we drop an already existing message i from the buffer,
∆ni(Ti) = 0 if we don’t drop an already existing message i
from the buffer, and ∆ni(Ti) = +1 if we keep and store the
newly received message i or replicate and forward an already
buffered message i to another node. Based on that, GBSD
ranks messages using the per-message utility in Eq.(1), then
schedules and drops them accordingly.

C. Minimizing the average delivery delay
We now turn our attention to minimizing the expected

delivery delay over all messages in the network. The following
Theorem derives the optimal per-message utility, for the same
setting and assumptions as Theorem III.1.

Theorem III.2. To minimize the average delivery delay of all
messages, a DTN node should apply the GBSD policy using
the following utility for each message i:

1
ni(Ti)2λ

(1− mi(Ti)
L− 1

) (2)

4

Proof: Let us denote the delivery delay for message i with
random variable Xi. This delay is set to 0 (or any other constant
value) if the message has been already delivered. Then, the total
expected delivery delay (D) is given by,

D =
K(t)∑

i=1

[
mi(Ti)
L− 1

∗ 0 + (1− mi(Ti)
L− 1

) ∗ E[Xi|Xi > Ti]
]

.

We know that the time until the first copy of the message i
reaches the destination follows an exponential distribution with
mean 1/(ni(Ti)λ). It follows that,

E[Xi|Xi > Ti] = Ti +
1

ni(Ti)λ
.

Then, as for the delivery ratio, we differentiate D with respect
to ni(Ti) and find Eq.(2). Note that, the per-message utility
with respect to delivery delay is different than the one for the
delivery rate. This implies (naturally) that both metrics cannot
be optimized concurrently.

IV. USING NETWORK HISTORY TO APPROXIMATE
GLOBAL KNOWLEDGE IN PRACTICE

In order to optimize a specific routing metric using GBSD,
we need global information about the network and the “spread”
of messages. In particular, for each message present in a node’s
buffer, we need to know the values of mi(Ti) and ni(Ti), which
are respectively the number of nodes that have seen the message
and those that have a copy of it. Unfortunately, this is not
feasible in practice due to intermittent network connectivity and
the long time it takes to flood buffer status information across
DTN nodes. Note that RAPID [1] assumes, for simplicity,
that the global view obtained by flooding (or a secondary,
“instantaneous” channel) is sufficient to achieve significant
performance gains over existing DTN routing protocols. Our
experiments prove that the impact of the flooding delay is non
negligible and that a much better gain can be realized if we
find estimators for the metrics involved in the calculation of
message utilities, namely m and n.

We do this by designing and implementing a learning process
that permits to a DTN node to gather knowledge about the
global network state history by making in-band exchanges with
other nodes. Each node maintains a list of encountered nodes
and the state of each message carried by them as a function of
time, which could be 0 if the message was in the node’s buffer
at the specified time or 1 if the message was seen but deleted
due to congestion.

The node maintains the time of the last list update and only
sends the list if it has been updated since the last exchange.
Using this information exchanged among nodes, all DTN
nodes start to have after a while the same history on global
network information. Yet, unlike RAPID’s approach that uses
the actual, explicit values of mi(T) and ni(T) for a specific
message i at elapsed time T , we look at what happens, on
average, for all messages at elapsed time T . In other words,
the values of mi(T) and ni(T) for message i are estimated
using measurements of m and n for the same elapsed time T
but measured for (and averaged over) all other older messages.

These estimators are then used in the evaluation of the per-
message utility.

Let’s denote by
∧
n (T) and

∧
m (T) the estimators for ni(T)

and mi(T) of message i. For the purpose of the analysis, we
suppose that the variables mi(T) and ni(T) at elapsed time
T are instances of the random variables N(T) and M(T). We
develop our estimators

∧
n (T) and

∧
m (T) so that when plugged

into the GBSD’s delivery rate and delay per-message utilities
calculated in Section III, we get two new per-message utilities
that can be used by a DTN node without any need for global
information about messages. This results in a new scheduling
and drop policy, called HBSD (History Based Scheduling and
Drop), a deployable variant of GBSD that uses the same
algorithm described in Figure 1, yet with per-message utility
values calculated using estimates of m and n.

A. Calculating estimators
∧
n (T) and

∧
m (T) for the average

delivery rate per-message utility
When the global information is unavailable, one can calculate

the average delivery rate of a message over all possible values
of M(T) and N(T), and then try to maximize it. We want
our estimators for m and n of a message to be unbiased in
terms of the average delivery rate, that is, we want to obtain
the same expression for the average delivery rate when m and
n are substituted by their estimations. In the framework of the
GBSD, this can be written as:

E[(1− M(T)
L− 1

) ∗ (1− exp(−λN(T)Ri)) +
M(T)
L− 1

] =

(1−
∧
m (T)
L− 1

) ∗ (1− exp(−λ
∧
n (T)Ri)) +

∧
m (T)
L− 1

By plugging in the per-message utility in Eq.(1) any values
of
∧
n (T) and

∧
m (T) that verify this equality, one can make sure

that the obtained policy minimizes the average delivery rate.
This is exactly our purpose. Suppose now that the best estimator
for

∧
m (T) is its average, i.e.,

∧
m (T) =

−
m (T) = E[M(T)]

(see [18] for a justification of this choice). Then, we extract
∧
n (T) from the above equality and we replace in Eq.(1) to
obtain the following per-message utility:

λRiE[(1− M(T)
L− 1

) exp(−λRiN(T))]

The expectation in this expression is calculated by summing
over all values of N(T) and M(T) for past messages at elapsed
time T . Note, that L, the number of nodes in the network,
could be calculated from the list maintained by each node in
the network. In this work, we assume it to be fixed and known,
but one could estimate it as well in the same way we do for
n and m, or using some additional estimation algorithm. We
defer this for future work. Unlike Eq.(1), this new per-message
utility is a function of past history of messages and so can be
calculated locally. It maximizes the average message delivery
rate calculated over a large number of messages. Except when
the number of messages is not large for the law of large
numbers to work, our history based policy should give the same
result as that of using the real global network information. This
will be illustrated later by our simulation results.

5

B. Calculating estimators
∧
n (T) and

∧
m (T) for the average

delivery delay per-message utility
Similar to the case of delivery rate, we calculate the estima-

tors
∧
n (T) and

∧
m (T) in such a way that the average delay

is not affected by the estimation. This gives the following per-
message utility specific to HBSD,

E[L−1−M(T)
N(T)]2

λ(L− 1)(L− 1− −
m (T))

This new per-message utility is only a function of the locally
available history of old messages and is thus independent of
the actual global network state. For large number of messages,
it should lead to the same average delay as when the exact
values for m and n are used.

V. PERFORMANCE EVALUATION

A. Experimental setup
To evaluate our new scheme, we have added an imple-

mentation of the DTN architecture to the Network Simulator
NS-2. This implementation includes (i) the Epidemic routing
protocol with FIFO and drop-tail for scheduling and message
drop in case of congestion, respectively, (ii) the RAPID routing
protocol based on flooding (i.e. no side-channel) as described,
to our best understanding, in [1], (iii) a new version of the
Epidemic routing protocol enhanced with our optimal joint
scheduling and drop policy (GBSD), and another version using
our statistical learning distributed algorithm (HBSD). The VAC-
CINE mechanism described in [16] is used with all solutions
to “clean up” the network after message delivery4.

In our simulations, each node uses 802.11b protocol to
communicate, with rate 1Mbits/s. The transmission range is
100 meters, to obtain network scenarios that are neither fully
connected (e.g. MANET) nor extremely sparse. Our simu-
lations are based on two mobility patterns, a synthetic one
based on the Random Waypoint model, and a real-world mo-
bility trace that tracks San Francisco’s Yellow Cab taxis [21].
Many cab companies outfit their cabs with GPS to aid in
rapidly dispatching cabs to their costumers. The Cabspotting
system [21] talks to the Yellow Cab server and stores the data
in a database. We used an API provided by the Cabspotting
system to extract the taxi mobility trace then we converted
it into a format readable by the NS-2 simulator. Note that this
trace describes taxis’ positions according to the GPS cylindrical
coordinates (Longitude, Latitude). In order to use it as input to
the NS-2 simulator, we had to implement a tool based on the
Mercator [22] cylindrical map projection that permits to convert
cylindrical coordinates into plane coordinates.

To each source node, we have associated a CBR (Constant
Bit Rate) application, which chooses randomly from [0, TTL]
the time to start generating messages of 85KB for a randomly
chosen destination. Other message sizes were also considered
but are not presented here due to space limitations. Unless
otherwise stated, each node maintains a buffer with a capacity

4We have also performed simulations without any anti-packet mechanism,
from which similar conclusions can be drawn.

of 10 messages. We compare the performance of the various
routing protocols using the following two metrics: the average
delivery rate and average delivery delay of messages in the case
of infinite TTL. Note, that the evaluation of the HBSD policy
requires to wait until the different nodes collect enough history
to be able to calculate their estimators, and thus include an
initial “warm-up” period before starting to account for HBSD.
As a final note, we have chosen to compare all policies in the
context of Epidemic routing, which uses up the largest amount
of resources. However, we believe that similar conclusions
could be drawn if the various policies were applied in other
routing protocols, as well, operated in a regime of limited
bandwidth or buffer space. We defer this investigation for
future work. Note also that the results presented here are
averages from 20 simulation runs, which is enough to ensure
convergence.

B. Performance evaluation for delivery rate
First, we compare the delivery rate of all protocols for the

two scenarios shown in Table II. Figures 2 and Figures 3
show the delivery rate for the Taxi trace for the case of both
limited bandwidth and buffer, and the case of limited bandwidth
and unlimited buffer, respectively. The number of sources is
changed to cover different congestion levels.

TABLE II
SIMULATION PARAMETERS

Mobility pattern: RWP Taxi Trace

Simulation’s Duration(s): 5000 36000

Simulation’ Area (m2): 1500*1500 -

Number of Nodes: 40 40

Average Speed (Km/H): 6 -

TTL(s): 750 7200

CBR Interval(s): 200 2100

Fig. 2. Average delivery rate for
limited buffer and limited bandwidth.

Fig. 3. Average delivery rate for
unlimited buffer and limited bandwidth.

TABLE III
SIMULATION RESULTS FOR THE RANDOM WAYPOINT MOBILITY MODEL IN

THE CASE OF UNLIMITED BUFFER AND LIMITED BANDWIDTH

Mobility pattern: GBSD HBSD RAPID FIFO\drop-tail

Delivery Rate (%): 83 77 65 54

Delivery Delay (s): 519,75 532 682 775

From these plots, it can be seen that: the GBSD policy
plugged into Epidemic routing gives the best performance for
all numbers of sources. When congestion-level decreases, so

6

TABLE IV
SIMULATION RESULTS FOR THE RANDOM WAYPOINT MOBILITY MODEL IN

THE CASE OF BOTH LIMITED BUFFER AND BANDWIDTH

Mobility pattern: GBSD HBSD RAPID FIFO\drop-tail

Delivery Rate (%): 55 50 36 23

Delivery Delay (s): 1469,5 1507,47 1690,7 1970,45

does the difference between GBSD and other protocols, as
expected. Moreover, the HBSD policy also outperforms existing
protocols (RAPID and Epidemic based on FIFO/drop-tail) and
performs very close to the optimal GBSD. For example, for
40 sources, and in the case of limited bandwidth and buffer,
HBSD’s delivery rate is 15% higher than RAPID and only 6%
worse than GBSD. Similar conclusions can be also drawn for
the case of Random Waypoint mobility and 40 sources. Results
for this case are summarized in Table IV and Table III.

C. Performance evaluation for delivery delay
We keep the same simulation duration and message gener-

ation rate as in Section V-B. For the taxi mobility scenario,
Figures 4 and 5 depict the average delivery delay for the the
case of both limited buffer and bandwidth, and the case of
unlimited buffer but limited bandwidth, respectively. As in the
case of delivery rate, GBSD gives the best performance for all
considered scenarios. Moreover, the HBSD policy outperforms
the two routing protocols (Epidemic based on FIFO/drop-tail,
and RAPID) and performs close to GBSD. Specifically, for
40 sources and both limited buffer and bandwidth, HBSD’s
average delivery delay is 17% better than RAPID and only 7%
worse than GBSD. For the case of unlimited buffer and limited
bandwidth, HBSD performs 13% better than RAPID and 8%
worse than GBSD. Table III and IV show that similar conclu-
sions can be drawn for the delay under Random Waypoint also,
with a gain up to 28% compared to RAPID.

Fig. 4. Average delivery delay for both
limited buffer and bandwidth.

Fig. 5. Average delivery delay for
unlimited buffer and limited bandwidth.

VI. CONCLUSION AND FUTURE WORK

In this work, we investigated both the problems of scheduling
and buffer management in delay tolerant networks. First, we
proposed an optimal joint scheduling and buffer management
policy based on global knowledge about the network state.
Then, we introduced a distributed algorithm that uses statistical
learning to approximate the required global knowledge of the
optimal algorithm. Using simulations based on a synthetic mo-
bility model (Random Waypoint), and a real mobility trace, we
showed that our policy based on statistical learning successfully
approximates the performance of the optimal algorithm in all
considered scenarios. Finally, both policies (GBSD and HBSD)
plugged into the Epidemic routing protocol outperform current

state-of-the-art protocols like RAPID [1] with respect to both
delivery rate and delivery delay, in all considered scenarios.

Note that in this work, we considered that all messages have
the same size. It would be interesting to define policies that
take into account different message sizes. For example, in case
of congestion, the end-to-end delay versus message delivery
trade-off could be influenced by the choice of dropping several
small messages or one large message that occupies the entire
node’s buffer. The consideration of routing protocols other than
Epidemic is also an interesting direction to explore.

ACKNOWLEDGMENTS

We thank Michal Piorkowski and Wei-Jen Hsu for pointing
us out to the San Francisco’s taxi cab mobility traces.

REFERENCES

[1] A. Balasubramanian, B. N. Levine, and A. Venkataramani, “DTN Routing
as a Resource Allocation Problem,” in Proceedings of ACM SIGCOMM,
2007.

[2] S. Jain, K. Fall, and R. Patra, “Routing in a delay tolerant network,” in
Proceedings of ACM SIGCOMM, Aug. 2004.

[3] A. Pentland, R. Fletcher, and A. Hasson, “Daknet: Rethinking connec-
tivity in developing nations,” IEEE Computer, 2004.

[4] P. Basu and T. Little, “Networked parking spaces: architecture and
applications,” in IEEE Vehicular Technology Conference (VTC), 2002.

[5] J. Heidemann, W. Ye, J. Wills, A. Syed, and Y. Li, “Research challenges
and applications for underwater sensor networking,” in Proceedings of
the IEEE Wireless Communications and Networking Conference, 2006.

[6] “Delay tolerant networking research group,” http://www.dtnrg.org.
[7] A. Vahdat and D. Becker, “Epidemic routing for partially connected ad

hoc networks,” Duke University, Tech. Rep. CS-200006, 2000.
[8] J. Burgess, B. Gallagher, D. Jensen, and B. N. Levine, “MaxProp:

Routing for Vehicle-Based Disruption-Tolerant Networks,” in Proc. IEEE
INFOCOM, 2006.

[9] Z. J. Haas and T. Small, “A new networking model for biological
applications of ad hoc sensor networks.” IEEE/ACM Transactions on
Networking, vol. 14, no. 1, pp. 27–40, 2006.

[10] T. Spyropoulos, K. Psounis, and C. Raghavendra, “An efficient routing
scheme for intermittently connected mobile networks,” ACM SIGCOMM
workshop on Delay Tolerant Networking (WDTN-05), 2005.

[11] A. Lindgren, A. Doria, and O. Schelen, “Probabilistic routing in in-
termittently connected networks,” SIGMOBILE Mobile Computing and
Communication Review, vol. 7, no. 3, 2003.

[12] T. Spyropoulos, K. Psounis, and C. S. Raghavendra, “Efficient routing
in intermittently connected mobile networks: The multiple-copy case,”
ACM/IEEE Transactions on Networking, Feb. 2008.

[13] R.Groenevelt, G. Koole, and P. Nain, “Message delay in manet (extended
abstract),” in Proc. ACM Sigmetrics, 2005.

[14] T. Spyropoulos, K. Psounis, and C. S. Raghavendra, “Performance
analysis of mobility-assisted routing,” in Proceedings of ACM/IEEE
MOBIHOC, 2006.

[15] A. E. Fawal, J.-Y. L. Boudec, and K. Salamatian, “Multi-hop broadcast
from theory to reality: Practical design for ad hoc networks,” in Proceed-
ings of ACM Autonomics, 2007.

[16] X. Zhang, G. Neglia, J. Kurose, and D. Towsley, “Performance modeling
of epidemic routing,” in Proceedings of IFIP Networking, 2006.

[17] A. Lindgren and K. S. Phanse, “Evaluation of queuing policies and
forwarding strategies for routing in intermittently connected networks,”
in Proceedings of IEEE COMSWARE, January 2006.

[18] A. Krifa, C. Barakat, and T. Spyropoulos, “Optimal buffer management
policies for delay tolerant networks,” in Proceedings of IEEE SECON
2008, June 2008.

[19] D. Aldous and J. Fill, “Reversible markov chains and ran-
dom walks on graphs. (monograph in preparation.),” http://stat-
www.berkeley.edu/users/aldous/RWG/book.html.

[20] M. V. Thomas Karagiannis, Jean-Yves Le Boudec, “Power law and
exponential decay of inter contact times between mobile devices,” in
Proceedings of ACM/IEEE MobiCom, 2007.

[21] “Cabspotting project,” http://cabspotting.org/.
[22] “The mercator projection,” http://en.wikipedia.org/wiki/Mercator projection/.

