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ABSTRACT
In this paper, we present a model for TCP/IP flow control
mechanism. The rate at which data is transmitted increases
linearly in time until a packet loss is detected. At that point,
the transmission rate is divided by a constant factor. Losses
are generated by some exogenous random process which is
only assumed to be stationary. This allows us to account for
any correlation and any distribution of inter-loss times. We
obtain an explicit expression for the throughput of a TCP
connection and bounds on the throughput when there is a
limit on the congestion window size. In addition, we study
the effect of the TimeOut mechanism on the throughput. A
set of experiments is conducted over the real Internet and
a comparison is provided with other models which make
simple assumptions on the inter-loss time process.

1. INTRODUCTION
We analyze in this paper the performance of TCP (Trans-
mission Control Protocol), the widely-used transport proto-
col of the Internet [15, 30]. TCP is a reliable window-based
flow control protocol where the window is increased until
a packet loss is detected. Here, the source assumes that
the network is congested and reduces its window. Once the
lost packets are recovered, the source resumes its window in-
crease. As a performance measure, we consider the through-
put of a long time TCP connection having an infinite amount
of data to send. A mathematical model is presented to find a
closed form expression for the throughput of the connection.
We assume that the reader is familiar with basic mechanisms
of TCP such as Slow Start and Congestion Avoidance algo-
rithms, the two methods for loss detection: Duplicate ACKs
and TimeOut, the Delay ACK mechanism, the limitation on
the congestion window due to receiver buffer, etc. (see [5]
for a survey on TCP issues).
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A remarkable attention has been given to TCP modeling
within the research community [1, 10, 17, 18, 21, 22, 23,
27, 29]. This is not surprising since 95% of today Inter-
net traffic is carried over TCP. Closed form expressions for
the throughput have been obtained. These expressions have
helped to understand the impact of different network and
TCP parameters on the throughput of the connection and
on the efficiency of network resource utilization (e.g. Fair-
ness). Recently, these expressions have been also used to
adapt the rate of UDP flows (e.g. audio and video) in a way
to be friendly with TCP flows [11, 12].

The mathematical analysis of TCP requires two steps. First,
we need to construct a model for the window size evolution.
Most of the existing models ignore the Slow Start phase
and make the assumption that the source stays always in
Congestion Avoidance mode. A fluid model has often been
used. The window of the connection is assumed to increase
linearly as a function of time until a loss occurs; then it
is divided by two. An initialization to one packet has been
proposed in [23] in case of losses detected via TimeOut. The
phase of recovery from losses is assumed to be negligible and
the source resumes its linear increase directly after the re-
duction. In [27], a packet-level model has been proposed
to account for the discrete nature of TCP. Indeed, the vol-
ume of data in the network at any moment is in multiple of
packets. It increases by one once the increase in the win-
dow exceeds the packet size. Later in our paper, we will
show how a fluid model can be corrected to account for this
discreteness of TCP.

Second, TCP analysis requires a characterization of time
between congestion events (i.e. between moments at which
the congestion window is reduced). Namely, one needs to
model the impact of the path between the source and the
destination on the connection. Particular models are con-
sidered in the literature. The fixed point approach used
in [18, 21] gives a deterministic time between congestion
events. The assumptions made in [27] can also be shown to
imply a deterministic time between congestion events. An
exponentially distributed time with a constant intensity has
been considered in [23] between congestion events. In [29],
the intensity of the exponentially distributed time between
congestion events is assumed to increase with the window
size. Instead of working in real time, the authors in [22, 26]
chose to work in a virtual time. This time is obtained by
sampling the congestion window at the moments of ACK
arrivals. Again, they consider the case where times between



congestion events in this virtual time are identically and
exponentially distributed. The distribution as well as the
moments of the congestion window are found in this virtual
time and a method is suggested to go back to the real time.
An expression of TCP throughput is provided for each of
these models. Our experimentations over the Internet show
however that the times between congestion events can have
general distribution. They can vary from an approximately
deterministic case to a considerably bursty case. Moreover,
some correlation may exist between these times. We note, in
particular, that if packets are dropped independently with
a constant probability then the times between drops are not
independent (since the instantaneous transmission rate is
variable). We believe that the Internet is so heterogenous
that different types of distributions of times between conges-
tion events will always exist. We also believe that making
simple assumptions on the process of congestion events will
lead to a wrong estimation of TCP throughput. In par-
ticular, we have shown in [1] that the throughput of TCP
increases when the moments at which the congestion win-
dow is reduced tend to appear in bursts. This results in
performance problems in applications based on explicit ex-
pressions for TCP throughput. Consider for example the
case of TCP-friendly applications using explicit expressions
for TCP throughput to adapt their rate (see [11, 12] and
references therein). These are typically real time applica-
tions designed to compete fairly for the available bandwidth
with TCP transfers. Suppose that these applications use an
expression for TCP throughput that makes a simple assump-
tion on the process of congestion events (e.g. deterministic
or Poisson). These applications will suffer when the process
of congestion events is highly bursty. They can perform bet-
ter and transmit at a higher rate by basing their throughput
calculation on a more precise model for congestion events.

In this paper, we investigate the case of a general sequence
of times between congestion events. In the sequel, we call
a congestion event a loss event. A loss (event) is a moment
where the congestion window is reduced by a given constant
factor. It can be the result of multiple packet losses. Ideally,
a TCP connection must divide its window by two whatever
is the number of packet losses within a Round Trip Time
(RTT) [27]. All we assume is that this process of loss mo-
ments is stationary ergodic. With this minimal assumption,
we are able to obtain explicit expressions for the through-
put of TCP. Our loss model is general enough to allow us
to capture any correlation or any distribution of inter-loss
times.

For the dynamics of TCP, we decided to focus on the trans-
mission rate which is the number of packets in the network
(or the volume of data) divided by the RTT of the connec-
tion. The source is assumed to have always data to send.
The number of packets in the network is thus equal to the
number of packets that can be fit within the window. De-
note by X(t) the transmission rate of the connection at time
t. At any moment, we can multiply X(t) by RTT to get
the window size in terms of packets. We assume that X(t)
increases linearly with time at a rate α. If we denote by
b the number of data packets covered by one ACK, then
α = 1/(bRTT 2). Let ν denote the decrease in the transmis-
sion rate when a loss event occurs. Usually ν is equal to one
half but we consider a more general scenario to account for

other possible flow control mechanisms (see e.g. [6]). The
moments of losses are modeled by a general stationary er-
godic point process [4] with non-null and finite intensity λ.
Let {Tn}+∞n=−∞ be a particular realization of the point pro-
cess. Consider for the moment the case where losses are
quickly detected without the need for a long TimeOut pe-
riod (e.g. via Duplicate ACK mechanism or via an efficient
fine-granularity TimeOut mechanism). Then, the evolution
of the transmission rate can be described by the following
equation

Xn+1 = νXn + αSn, (1)

where Xn is the value of X(t) just prior to the arrival of the
loss at Tn and Sn := Tn+1 − Tn. The pair {Tn, Xn} can be
considered as a marked point process [4].

In the next section, we use the machinery of stochastic pro-
cesses to study this model of the rate evolution. We compute
the throughput, that is the time average of process X(t). We
also compute the first two moments of the transmission rate
at loss arrivals for the stationary regime. Then different
examples of loss processes are studied: deterministic, Pois-
son, i.i.d. and Markovian arrival processes. The expression
of the throughput is provided for each of these particular
cases. In Section 2.3, we extend our model to account for
the case where there is a limitation on the evolution of the
transmission rate caused by the receiver advertised window;
we provide bounds on the throughput for that model. In
Section 2.4, we explain how to extend our model to the case
when some losses are detected via a conservative coarse-
granularity TimeOut mechanism which is used in most TCP
implementations. In section 3, we present the testbed as well
as the results of our experimentations. In particular, our re-
sults demonstrate that different types of loss processes exist
in the Internet and that often the distribution of inter-loss
times cannot be approximated by a constant or by an ex-
ponential distribution. Our experimentations show also the
common problem of linear rate increase models. When the
transmission rate of TCP indeed exhibits a linear increase,
our model gives excellent results. The linear rate increase
is known to hold for TCP connections in which the prop-
agation delay is large in comparison with queuing delays,
since in that case, RTT is almost constant (see [2]). How-
ever, in the case where queueing delays are non negligible
as in Local Area Networks, TCP window growth exhibits
some sub-linearity due to the increase of the RTT with the
window size. In this case, we find that linear rate models
overestimate the real throughput. We conclude Section 3
with a method to correct the error caused by the fluid as-
sumption. With this method, the deterministic case of our
fluid model has given the same results as the packet level
approach described in [27]. Finally, we conclude the work
in Section 4.

2. THE MAIN RESULTS
We first note that the equation (1) is a particular case of
stochastic linear difference equations [8, 13]. Since the inter-
loss time process is stationary ergodic and since ν < 1 and
E[Sn] < ∞, it follows from Theorem 2A in [13] (see the
appendix of [1] for more details) that equation (1) has a



stationary solution given by

X∗
n = α

∞X
k=0

νkSn−1−k. (2)

Moreover, if the window evolution starts from an arbitrary
window size X0, it will converge almost sure to the above
stationary regime [8, 13]

lim
n→∞

|Xn −X∗
n| = 0, P − a.s.

2.1 The computation of the first two moments
of Xn and the throughput

Here we calculate the expectation and the second moment
of the transmission rate at the instants of losses as well as
the throughput.

Proposition 1. Let λ = 1/E[Sn] be an intensity of the loss
process and let R(k) = E[SnSn+k] be a correlation function
for the process {Sn}+∞n=−∞. Then,

E[X∗
n] =

α

λ(1− ν)
(3)

E[(X∗
n)2] =

α2

1− ν2
[R(0) + 2

∞X
k=1

νkR(k)] (4)

Proof. To calculate (3) and (4), we use the expression (2)
for the stationary regime.

E[X∗
n] = α

∞X
k=0

νkE[Sn−1−k] =
α

λ

∞X
k=0

νk =
α

λ(1− ν)

Similarly, we obtain

E[(X∗
n)2] = E[α

∞X
j=0

νjSn−1−jα

∞X
k=0

νkSn−1−k]

= α2E[

∞X
k=0

kX
j=0

νjSn−1−jν
k−jSn−1−k+j ]

= α2
∞X

k=0

kX
j=0

νkE[Sn−1−jSn−1−k+j ]

= α2
∞X

k=0

νk

�
R(0) + 2

Pr
j=1 R(2j), k = 2r,

2
Pr

j=1 R(2j − 1), k = 2r − 1.

Then, we regroup the terms of the last series to get

E[(X∗
n)2] = α2R(0)

∞X
j=0

ν2j + 2α2
∞X

k=1

R(k)νk
∞X

j=0

ν2j

=
α2

1− ν2
[R(0) + 2

∞X
k=1

νkR(k)]. 2

Remark 1. The expectation computed in (3) is taken with
respect to the loss instants. This expectation is also referred
to as Palm expectation in the context of point processes [4].

Remark 2. We note the remarkable insensitivity property,
that E[X∗

n] does not depend on the correlation between inter-
loss times nor on their moments of order greater than one.

Next, by using the expression (2) and the concept of the
Palm probability, we proceed for the calculation of TCP
throughput

X = lim
T→∞

1

T

Z T

0

X(t)dt.

Our main result is the following close expression for X as
a function of the loss intensity λ, the correlation functions
R(k), the linear increase factor α (thus b and RTT) and the
multiplicative decrease factor ν.

Proposition 2. The throughput is given by

X = λα[
1

2
R(0) +

∞X
k=1

νkR(k)] (5)

Proof. X is equal to the expectation of the transmission
rate E[X(t)] at an arbitrary time point. To compute E[X(t)]
one can use the following inversion formula (see e.g., [4] Ch.1
Sec.4)

E[X(t)] = λE0[

Z T1

0

X(t)dt] (6)

where E0[·] is an expectation associated with Palm distribu-
tion. In particularly, P 0{T0 = 0} = 1. Now using formula
(6) and expression (2), we can write

E[X(t)] = λE0[

Z T1

0

(νX0 + αt)dt] = λE0[νX0S0 +
α

2
S2

0 ]

= λE0[αν

∞X
k=0

νkS−1−kS0] +
λα

2
E0[S2

0 ]

= λα

∞X
k=0

νk+1R(k + 1) +
λα

2
R(0)

= λα[
1

2
R(0) +

∞X
k=1

νkR(k)] 2

Remark 3. Often the covariance function C(k) = R(k)−
E[Sn]2 is used instead of the correlation function R(k). Then,
the formulas (4) and (5) become

E[(X∗
n)2] =

α2

1− ν2
[C(0) + 2

∞X
k=1

νkC(k)] +
α2

λ2(1− ν)2
,

X = λα[
1

2
C(0) +

∞X
k=1

νkC(k)] +
α(1 + ν)

2λ(1− ν)
.

We express now the throughput as a function of the prob-
ability that a TCP packet is lost, or more precisely as a
function of the probability that a TCP packet causes the
source to enter the Fast Recovery phase and to divide its
window. Denote this probability by p. This factor is often
used in the literature to model the impact of the network
on TCP dynamics. Define A(t) as the number of packets
transmitted on the TCP connection until time t, and L(t)
as the number of loss events until time t. p is simply equal
to

p = lim
t→∞

L(t)

A(t)
= lim

t→∞
λtR t

0
X(τ)dτ

=
λ

X
=

1

dX
. (7)



This allows us to write our main result (5) in another form so
as to grasp the influence of p and of RTT on the throughput
for general distribution of inter-loss times. Define the nor-
malized correlation function: R̂(k) = R(k)/d2. Then using
(7) and α = 1/(bRTT 2), we get

X =
1

RTT
√

pb

vuut1

2
R̂(0) +

∞X
k=1

νkR̂(k).

If we define, similarly, the normalized covariance as Ĉ(k) =
C(k)/d2 (where C(k) is defined in Remark 2) then we obtain
the following formula for TCP throughput

X =
1

RTT
√

pb

vuut 1 + ν

2(1− ν)
+

1

2
Ĉ(0) +

∞X
k=1

νkĈ(k). (8)

As it was already shown for simple loss models [18, 21, 27],
we see that also for general losses the throughput of TCP
is inversely proportional to RTT and to the square root of
p. The distribution and the correlation of inter-loss times
figure in the terms below the root.

Remark 3. Note that formula (5) can also be rewritten in
terms of the second moment of the transmission rate at loss
instants

X =
λ(1− ν2)

2α
E[(X∗

n)2].

2.2 Examples of loss process
Now let us consider some important particular cases of the
general loss process.

2.2.1 IID random losses (General Renewal Process)
Here, we model the loss process as a general renewal process.
Namely, we assume that Sn, n = ...,−1, 0, 1, ... are i.i.d. ran-
dom variables. Then the formulas (3), (4) and (5) take the
following form.

Proposition 3. Let {Sn}+∞n=−∞ be i.i.d. with d := E[Sn]

and d(2) := E[S2
n]. Then,

E[X∗
n] =

αd

1− ν
,

E[(X∗
n)2] =

α2

1− ν2
[d(2) +

2νd2

1− ν
],

X = E[X(t)] =
α

d
[
1

2
d(2) +

νd2

1− ν
]. (9)

In particular, if the inter-loss times are exponentially dis-
tributed, we have

X =
αd

1− ν
. (10)

For ν = 0.5, this is similar to the expression for the through-
put obtained in [23]. If the inter-loss times are deterministic,
we get

X =
1 + ν

2(1− ν)
αd (11)

Substituting d from equation (7) into equation (11) and re-
calling that α is equal to 1/(bRTT 2), we get for ν = 0.5 the
famous square root formula obtained in the literature [18,
21, 27]

X =
1

RTT

r
3

2bp
, (12)

where p is the probability that a TCP packet is lost. This
can also be obtained directly from (8) as Ĉ(k) = 0 for all k
in the case of deterministic inter-loss times.

Remark 4. We note from (9) that the throughput can be
expressed as a constant, that depends only on the average
inter-loss times, plus a term which grows linearly with the
variance of the inter-loss times. Hence for large burstiness
in losses (which implies large variance of inter-loss times)
we shall get a large underestimate of the throughput if we use
the exponentially distributed assumption on inter-loss times
(e.g. [23]) or if we assume that they are fixed constants.

2.2.2 Correlated losses modeled as a Markovian Ar-
rival Process

In this section we consider correlated losses which are mod-
eled by Markovian Arrival Process (MAP) [19, 20, 24, 25].
It was shown in [3] that for a given general point process,
there is a sequence of MAPs which converges to the point
process in distribution. In particular, this implies that in
principle the general point process can be approximated by
appropriate MAPs. Furthermore, PH-renewal process [25]
and Markov Modulated Poisson Process (MMPP) [9] are
particular case of the Markovian arrival process.

Let us briefly review the definition and some properties of
the Markovian Arrival Process. Let N(t) be a counting
process associated with MAP, that is, N(t) is the number
of arrivals (or losses in our setting) in the interval (0, t].
Also let J(t) be an auxiliary state variable. Then MAP can
be described in terms of a two-dimensional Markov process
{N(t), J(t)} on the state space {(i, j)|i ≥ 0, 1 ≤ j ≤ m}
with the following infinitesimal generator

Q =

26664
C D 0 0 · · ·
0 C D 0 · · ·
0 0 C D · · ·
...

...
...

...
. . .

37775
where the matrix C ∈ Rm×m governs the transition of the
process J without arrival (loss) and it has negative diagonal
elements and nonnegative off-diagonal elements. The matrix
D ∈ Rm×m governs the transitions of J with the simulta-
neous arrivals and it has nonnegative elements. Thus, the
underlying Markov process J(t) has the following infinitesi-
mal generator

Q = C + D.

Further, we assume that Q 6= C and C is a stable matrix.
This ensures that J(t) does not get absorbed in a class of
states in which arrivals stop. When J(t) = i, the rate of
transitions to state j 6= i is Qij . If such a transition occurs
then an arrival occurs simultaneously with the transition
with probability Dij/(−Cii −Dii).

Let {Sn}∞n=1 be a sequence of the inter-arrival times for



MAP and let {Jn}∞n=1 be a sequence of the states of the
underlying Markov process at the arrival epochs. Then
{Jn, Sn}∞n=1 is a Markov renewal process [14] with the fol-
lowing transition probability matrix [25]

F (x) =

�Z x

0

exp{Cu}du

�
D = (I − exp{Cx})(−C)−1D

Note that T = F (∞) = −C−1D is a transition probabil-
ity matrix of a discrete time Markov chain embedded at
the instants of arrivals. Let µ be its stationary distribu-
tion. Now if we take the initial distribution of the underlying
Markov chain J(t) as µ, the arrival process becomes interval-
stationary or event-stationary. The event-stationary version
of MAP has the following joint distribution function for the
inter-arrival times [16]

FS0···Sn(x0, ..., xn) = µ

nY
i=0

{(I − exp{Cxi})T}e (13)

Consequently, the joint Laplace-Stieltjes transform is given
by

f(z0, ..., zn) = E[exp{−
nX

k=0

zkSk}] = µ

nY
k=0

{(zkI−C)−1D}e.

(14)
Next, using the Laplace-Stieltjes transform (14), we can eas-
ily calculate the first two moments and the correlation func-
tion of the inter-arrival time process. Namely,

E[Sn] = − d

ds
(µ(zI − C)−1De)|z=0 = −µC−1e, (15)

E[S2
n] =

d2

ds2
(µ(zI − C)−1De)|z=0 = 2µC−2e (16)

R(k) = E[SnSn+k] =
∂2

∂z0∂zk
f(z0, ..., zk)|zi=0

= µC−2DT k−1C−2De. (17)

To derive the expression for the correlation function R(k) we
have used the following formula for the differentiation of an
inverse matrix-valued function: (A−1(z))′ = −A−1(z)A′(z)
A−1(z) [7].

Note that MAP becomes MMPP with infinitesimal genera-
tor R and arrival rate matrix Λ, if we take C = R − Λ and
D = Λ.

Now, employing (15), (16) and (17), we can calculate the
first two moments of the process {Xn}.

Proposition 4. Let the loss process {Sn} be represented
by MAP. Then,

E[X∗
n] = − α

1− ν
µC−1e (18)

E[(X∗
n)2] =

α2

1− ν2
2µ(C−2 + νC−2D[I − νT ]−1C−2D)e

(19)
Proof. The above formulas are immediately obtained
from (3), (4) with the help of (15), (16), (17) and the fol-
lowing derivation

∞X
k=1

νkR(k) = µC−2D

∞X
k=1

νkT k−1C−2De

M

M__
2

Transmission rate

Time

Tn Tn+1 Tn+2

Figure 1: TCP rate evolution with limitation

= µC−2Dν

∞X
k=0

νkT kC−2De = νµC−2D[I − νT ]−1C−2De

2

Next, using (5), we calculate the throughput of TCP.

Proposition 5. Let {Sn} be a Markovian Arrival Process.
Then, the throughput of TCP is given by

X = − α

µC−1e
µ(C−2 +

1

2
C−2D[I − νT ]−1C−2D)e. (20)

2.3 Bounds for the model with transmission
rate limitation

In the previous sections we did not include in the model-
ing the fact that TCP transmission rate may stop growing
when the congestion window exceeds the window advertised
by the receiver. This latter quantity indicates the maximum
number of packets that can wait at the destination before
being handed to the application [23, 30]. Thus, in this sec-
tion, we shall assume that the transmission rate is limited
by a maximal value of M . We take ν = 0.5 given that TCP
divides the minimum of the receiver window and the con-
gestion window by two upon congestion. Note here that the
transmission rate can be limited by other factors such as the
buffer size at the source or the available bandwidth in the
network. The difference from the case where the limitation
is due to the receiver window is in the reduction factor which
can be less than two.

The example of the window evolution is presented in Fig-
ure 1. The stochastic difference equation (1) is respectively
modified to the following form

Xn+1 = M ∧ (
1

2
Xn + αSn), (21)

where ∧ stands for minimum operation. Note that the model
becomes nonlinear and it is probably not possible to obtain
the explicit expressions for E[Xn] and X for the general
loss process. We shall thus use the results of the previous
sections to obtain bounds for the performance measures in
this case.

Before deriving the bounds we shall establish a stability re-
sult for the process Xn using a Loynes-type construction.

Theorem 1. Assume that {Sn} is a stationary process.
Then there exists a stationary process {X∗

n} defined on the



same probability space, and satisfying the recursion (21).
Furthermore, for any initial state X0 we have P-a.s.

lim
n→∞

sup
k≥n

|Xk −X∗
k | = 0. (22)

That is, for any initial state X0, the process {Xk}k≥n con-
verges in distribution to the stationary process as n →∞.

Proof. Define on the same probability space the family of

processes {X(n)
k , k ∈ Z}, n = 0, 1, ... as follows. X

(n)
k := 0

for k ≤ −n, and for k > −n it is given by the recursion (21).

For each k, X
(n)
k is increasing with respect to n and thus it

has a limit (which is obviously finite) which we denote by

X∗
k . This limit satisfies (21) since for every n, X

(n)
k satisfies

it. Finally, the stationarity of the sequence {Sn} implies
that {X∗

k} is stationary as well. The convergence of Xn to
X∗

n follows from the fact that

|Xn+1 −X∗
n+1| = |M ∧ (

1

2
Xn + αSn)−M ∧ (

1

2
X∗

n + αSn)|

≤ 1

2
|Xn −X∗

n|
To show that the above inequality holds, one needs to con-
sider four cases. If the both values of ( 1

2
Xn + αSn) and

( 1
2
X∗

n + αSn) are less or alternatively greater than M , then
the inequality is obvious. Let us consider then not so obvi-
ous cases. For example, let ( 1

2
Xn + αSn) > M and ( 1

2
X∗

n +
αSn) < M , then

|Xn+1 −X∗
n+1| = M − (

1

2
X∗

n + αSn)

≤ (
1

2
Xn + αSn)− (

1

2
X∗

n + αSn)

≤ 1

2
|Xn −X∗

n|.
Thus,

|Xn −X∗
n| ≤ 2−n|X0 −X∗

0 | → 0 as n →∞.

Since both X0 and X∗
0 are finite (they are bounded between

0 and M) this implies (22).
2

Now we note that equation (21) can be rewritten as

Xn+1 =
1

2
Xn + αSn ∧ (M − 1

2
Xn).

Since 0 ≤ Xn ≤ M , we have

1

2
Xn + αSn ∧ M

2
≤ Xn+1 ≤ 1

2
Xn + αSn ∧M.

The above estimates prompt us to derive lower and upper
bounds for the throughput, using the next auxiliary stochas-
tic processes defined on the same probability space as Xn:

X̌n+1 =
1

2
X̌n +

M

2
∧ (αSn) =

1

2
X̌n + α(

M

2α
∧ Sn), (23)

and

X̂n+1 =
1

2
X̂n + M ∧ (αSn) =

1

2
X̂n + α(

M

α
∧ Sn). (24)

Proposition 6. Let {Sn} be a stationary stochastic point

process. Assume that X0 = X̌0 = X̂0. Then for all n ≥ 0,
X̌n ≤ Xn ≤ X̂n. Moreover,

2αď ≤ E[Xn] ≤ 2αd̂ (25)

where the expectation E[Xn] is taken with respect to the

stationary regime, ď = E[Šn], d̂ = E[Ŝn], and where Šn :=
M
2α
∧ Sn, Ŝn := M

α
∧ Sn.

Proof. We show by induction that X̌n ≤ Xn. It holds for
n = 0. Assume it holds for n = k. Then, consider two cases
Sk ≤ M

2α
and Sk > M

2α
. For Sk ≤ M

2α
, one has

Xk+1 =
1

2
Xk + αSk ≥ 1

2
X̌k + αSk = X̌k+1.

And if Sk > M
2α

, then

Xk+1 =
1

2
Xk + (M − 1

2
Xk) ∧ (αSk)

≥ 1

2
Xk + (M − 1

2
Xk) ∧ (

M

2
)

=
1

2
Xk +

M

2
≥ 1

2
X̌k +

M

2
= X̌k+1

The first inequality is true, since Xk ≤ M . Hence, X̌k+1 ≤
Xk+1 and according to the induction principle, the inequal-
ity X̌n ≤ Xn holds for all n ≥ 0. Consequently, E[X̌n] ≤
E[Xn] for all n ≥ 0.

Since by the results of [13] and Theorem 1 both processes
{X̌n} and {Xn} converge to the stationary regime, we can
let n go to infinity. This results in the lower bound.

The upper bound is obtained in the similar manner by using
the auxiliary process (24).

2

Next we calculate the lower and upper bounds for the through-
put.

Proposition 7. Let ď(2) := E[(Šn)2], Ř(k) := E[Šn−kSn]

and d̂(2) := E[(Ŝn)2], R̂(k) := E[Ŝn−kSn]. Then, the lower
and upper bounds for the throughput are given by

X ≥ αλ

 
Ř(0)− 1

2
ď(2) +

∞X
k=0

1

2k+1
Ř(k + 1)

!
, (26)

X ≤ αλ

 
R̂(0)− 1

2
d̂(2) +

∞X
k=0

1

2k+1
R̂(k + 1)

!
. (27)

Proof. To obtain the lower bound for the throughput we
again use the auxiliary process (23). Suppose that {Xn} is
in a stationary regime and define

X̌(t) =

�
1
2
X̌∗

n + αt, t ∈ [Tn, Ťn],
1
2
X̌∗

n + αŠn, t ∈ [Ťn, Tn+1],
(28)

where Ťn = Tn + Šn (See Figure 2). Similarly to (2), one
can write the expression for the stationary version of {X̌n},
that is

X̌∗
n = α

∞X
k=0

(
1

2
)kŠn−1−k.

Now, using (28) and the above expression for X̌∗
n, we obtain
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the lower bound

X = λE0[

Z T1

0

X(t)dt] ≥ λE0[

Z T1

0

X̌(t)dt]

= λE0[

Z Š0

0

(
X̌∗

0

2
+ αt)dt +

Z S0

Š0

(
X̌∗

0

2
+ αŠ0)dt]

= λE0[
1

2
X̌∗

0 Š0 +
α

2
Š2

0 + (
1

2
X̌∗

0 + αŠ0)(S0 − Š0)]

= λE0[
1

2
X̌∗

0S0 + αŠ0S0 − α

2
Š2

0 ]

= λE0[
1

2
α

∞X
k=0

(
1

2
)kŠ−1−kS0 + αŠ0S0 − α

2
Š2

0 ]

= αλ

 ∞X
k=0

(
1

2
)k+1Ř(k + 1) + Ř(0)− 1

2
ď(2)

!
.

Now, by using the auxiliary process (24), one can calculate
the upper bound for the throughput in the similar fashion.

2

Note that the two bounds given in Proposition 7 coincide
with the throughput given by (5) as M/(αd) → ∞. How-
ever, when M/(αd) → 0, the upper bound provided in (27)
goes to 2M . Therefore, we propose to take as an upper
bound the minimum between M and the upper bound given
in (27). The lower bound converges to the following expres-
sion

X ' M − λM2

8α
(29)

as M/(αd) goes to zero. As was shown in [1, 27], the expres-
sion (29) appears to be a very good approximation of the
throughput when the maximal rate is frequently reached. It
is the throughput obtained by TCP when the transmission
rate reaches its maximum between each two losses.

2.3.1 Bounds for Poisson and IID cases
Assume first that the loss process is Poisson. Then formulas
(26) and (27) give the following bounds on the throughput

2α

λ

�
1− e−Mλ/2α

�
≤ X ≤ 2α

λ

�
1− e−Mλ/α

�
.

Note that 2α/λ is the throughput for a Poisson loss pro-
cess in the case of an infinite maximum window size (see
Subsection 2.2.1).

Consider next the more general case of an IID loss process.
The correlation functions Ř(k) and R̂(k) are simply equal to

dď and dd̂ respectively. We have then the following bounds,

αλ

�
Ř(0)− 1

2
ď(2) + dď

�
≤ X ≤ αλ

�
R̂(0)− 1

2
d̂(2) + dd̂

�
2.3.2 Bounds for MAP loss process
Note that the quantities ď, d̂, ď(2), d̂(2) and Ř(k), R̂(k) can
also be easily calculated for the loss process modeled by
MAP. Indeed,

ď = E[Šn] =

Z ∞

0

(
M

2α
∧ x)µdF (x)e

= µ

Z ∞

0

(
M

2α
∧ x) exp{xC}dxDe

= µ[I − exp{M

2α
C}]C−2De,

d̂ = E[Ŝn] = µ[I − exp{M

α
C}]C−2De,

and, similarly,

ď(2) = µ

�
−M

α
exp{M

2α
C}C−2D + 2[exp{M

2α
C} − I]C−3D

�
e,

d̂(2) = µ

�
−2

M

α
exp{M

α
C}C−2D + 2[exp{M

α
C} − I]C−3D

�
e.

To compute Ř(k) and Ř(k), k ≥ 1, we use the joint distri-
bution (13).

Ř(k) =

Z ∞

0

· · ·
Z ∞

0

(
M

2α
∧ x0)xk µ exp{Cx0}D · · ·

exp{Cxk}De dx0 · · · dxk

= µ[I − exp{M

2α
C}]C−2DT k−1C−2De

R̂(k) = µ[I − exp{M

α
C}]C−2DT k−1C−2De

For k = 0, we have

Ř(0) =

Z ∞

0

(
M

2α
∧ x)xµ exp{Cx}Dedx =

µ

�
−M

2α
exp{M

2α
C}C−2D + 2[exp{M

2α
C} − I]C−3D

�
e

R̂(0) =

µ

�
−M

α
exp{M

α
C}C−2D + 2[exp{M

α
C} − I]C−3D

�
e

2.4 Modeling conservative TimeOuts
We assumed till now that losses are quickly detected. This is
indeed the case when losses are detected via duplicate ACKs
(the Fast Retransmit algorithm) or via a fine-granularity
correctly-set retransmission timer. However, most TCP im-
plementations use a coarse-granularity timer for the detec-
tion of losses in the case where three duplicate ACKs can-
not be received. The objective is to be conservative and
to reduce the load on the operating system. This coarse-
granularity together with the back-off mechanism of the re-
transmission timer in case of retransmission losses introduce
some idle times during which the congestion window is not
increasing and the transmission rate is approximately equal
to zero. We call these losses followed by an idle time before
the resumption of the transmission TimeOut losses (TO).
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Figure 3: A model for TCP with TO and TD losses

The idle period involves the time between the loss of a
packet and the receipt of the ACK for its retransmission.
This includes any back-off of the retransmission timer due
to retransmission loss. Losses which are detected quickly
without the need for an idle period are called TD losses.
We include in this section these idles times into our explicit
expression for the throughput. Similarly, it can be included
into the expressions for the bounds on the throughput.

Let λTO denote the number of TO losses per unit of time.
Let Z denote the average duration of the idle period after
TO losses. Define Tn as the instant at which the transmis-
sion rate resumes its increase after the nth loss (TD or TO),
and let Sn = Tn+1 − Tn. If the nth loss is of TO type, the
connection gets in an idle period at time Tn−Z until instant
Tn where the transmission is resumed. During the idle pe-
riod, the transmission rate is equal to zero. We assume that
after the idle period, the transmission rate jumps directly
to half its value before the TO loss. This is justified by the
fact that the slow start phase after TimeOut is fast com-
pared to the linear increase phase and can be neglected. A
problem with this assumption is that it is not valid when the
retransmission timer is backed-off. After a back-off of the
retransmission timer, the source gets in the linear increase
phase at a small window. However, our experimentations
have shown that this back-off is rare. We depict in Figure 3
a sample of the transmission rate evolution in presence of
TO losses according to our model.

Define now the sequence (see Figure 3)

S′n =

�
Sn if the loss is TD
Sn − Z if the loss is TO.

Proposition 8. Assume that the process S′n is stationary
1 and let λ′ = 1/E[S′n] and R′(k) = E[S′nS′n+k]. Then the
throughput is given by

X = λ′α[
R′(0)

2
+

∞X
k=1

1

2k
R′(k)](1− λTOZ). (30)

Proof. Consider a new point process {T ′n} whose inter-
arrival times are {S′n}, and consider the process describing

1Note that the distribution of the time between the nth and
the (n + 1)th loss may depend on the type of nth loss (TD
or TO). This however does not prevent the process {S′n} of
being stationary.

T ’n

S’n S’n+1 S’n+2

T ’ T ’n+1 n+2 T ’n+3

Transmission rate

Time

Figure 4: A model for TCP with TO and TD losses
when eliminating the TimeOut periods

the evolution of the transmission rate when we eliminate the
idle periods. This is shown in Figure 4. This is precisely the
model described by equation (1), where Sn is replaced by
S′n and Tn replaced by T ′n. According to Proposition 2, the
throughput for the new model is given by

X
′
= λ′α[

R′(0)

2
+

∞X
k=1

1

2k
R′(k)].

This is equal to the number of packets transmitted in the
original model averaged only over the periods other than
TimeOuts.

The expected number of TO losses that occur during any
interval [0, t] is λTOt. Hence the fraction of time in which
the connection is idle in the original model is given by λTOZ.

The throughput in the original model is thus (1−λTOZ)X
′
+

λTOZ · 0 which establishes (30).
2

λTO and Z are not a part of the network model but rather
the results of a particular reaction of the TCP source to
packet losses. We provide here a method for the approxima-
tion of these two parameters as a function of times between
losses. The calculation is inspired by [27]. Assume that we
are able to characterize the process {S′n} and thus to calcu-

late X
′
. The problem is how to infer λTO and Z in order to

calculate the real throughput X. Define Q as the probability
that a loss is of type TO. Q is related to our parameters by
the equation λTO = Qλ. In [27], Q and Z are calculated as
functions of the probability that a TCP packet is lost. More
precisely, it is the probability that a packet causes the source
to enter the Fast Recovery phase and to divide its window
by two. Denote this probability by p. As in Section 2.2.1,

p can be taken equal to λ′/X
′
. Using the expressions of Q

and Z from [27], the calculation of X is straightforward.

3. MODEL VALIDATION
Our work has been mainly motivated by the fact that the
loss of TCP packets over the Internet may present a more
complicated structure than the simplistic approaches pro-
posed in the existing literature. We have run real TCP con-
nections between several Internet sites. For each connection
we measure the time between loss events (i.e. between mo-
ments at which the window is divided by two). We study
then our model under different assumptions on the type of
the loss process. After that, we evaluate how well linear rate



increase models approximate real TCP performance. We in-
troduce at the end a method to account for the discreteness
of TCP. With this method, our model under deterministic
inter-loss time assumption gives very close results to the de-
tailed discrete model in [27]. This can also be considered
as a proof that [27] accounts only for deterministic loss pro-
cesses.

3.1 Experimentation testbed
We ran at different days during the month of January 2000,
three TCP transfers to three different machines. Each trans-
fer consists of a continuous flow of data during a whole
day. The source machine (clope.inria.fr) is running the
New Reno version of TCP and is located at INRIA Sophia-
Antipolis in south of France. The destination machines are
located respectively at the ESSI school at 1 km from INRIA
(nessie.essi.fr), at the ENST school at Paris (solo.enst.
fr), and at the University of South Australia (linus.levels.
unisa.edu.au). TCP Packets are of 1460 Byte size (not in-
cluding TCP and IP headers). The machine in Australia ad-
vertises a window of 22 packets and those at ESSI and ENST
advertise a window of 44 packets. These can be considered
as three long-life TCP transfers across LAN (Local Area
Network), MAN (Metropolitan Area Network), and WAN
(Wide Area Network) networks. The three destinations im-
plement the Delay ACK mechanism, so α = 1/(2RTT 2).

Data packets and the corresponding ACKs are captured
with the tcpdump tool [28] at INRIA. Given the TCP version
of the source, we developed a tool that looks at the trace of
every connection and provides the instants of window reduc-
tions (Tn). In the case of a loss detected via TimeOut, the
tool provides the duration of the TimeOut period. In gen-
eral, our tool determines the times Sn and S′n, the param-
eters λTO and Z, and the average RTT from the measured
trace file.

Each connection is run for 24 hours. Its trace however is
divided at fixed intervals in a way to get a sufficient number
of losses. We fix this interval to 20 minutes for ESSI, to 40
minutes for ENST and to one hour for Australia. This gives
us a set of trace files for every connection. For each trace
file, we measured the real throughput of the connection and
we compared it to the expected throughput using both the
expressions we derived from our fluid model, as well as the
expression from the packet level model in [27]. We examined
the validity of different models for the distribution of inter-
loss times (deterministic, Poisson, iid, general correlated).
The different moments and correlation functions of inter-
loss times are calculated from the trace file.

We studied separately the effect of assumptions on the loss
process and the correctness of our fluid model for TCP trans-
mission rate evolution. The validation of the loss model
was done as follows. We reconstruct for a given trace file
the evolution in time of the proposed fluid model (i.e. the
mechanism with a linear increase and multiplicative decrease
with a silence time during TimeOuts and with the maximum
limit on the congestion window; see Figure 8). We call this
process the Exact Fluid Model and we calculate exactly its
throughput. This throughput is calculated by computing
the area below the transmission rate between two losses,
and then by summing all the areas and dividing the result

800

1000

1200

1400

1600

1800

2000

2200

2400

10.5 11 11.5 12 12.5 13 13.5 14

T
C

P
 th

ro
ug

hp
ut

 (
K

bp
s)

Day time (hours)

INRIA - ESSI

Exact Fluid Model
Correlated losses
IID losses
Poisson losses
Deterministic losses

Figure 5: LAN connection

by the transfer time. The exact fluid model throughput is
exactly the throughput we are trying to estimate in our anal-
ysis and which we (and other authors that use linear rate
increase models to study TCP) are claiming represents real
TCP throughput. Our measure of how well a given model for
the distribution of inter-loss times approximates the real loss
process will be how close the throughput predicted by our
close form expression (5) agrees with the exact fluid model
throughput. If the loss model is good (according to the
above criterion), we are still not guaranteed that the mea-
sured throughput of the real TCP connection agrees with
our throughput formulas. We expect the latter to be close
to real TCP throughput if the linear rate increase model
is appropriate, which is not always the case as we will see
later. Ideally, the exact fluid model throughput must not
deviate from the real TCP throughput and the throughput
calculated under a given assumption on the type of the loss
process should follow closely that of the exact fluid model.

3.2 Validation of the model for losses
We focus in this section on the identification of the loss pro-
cess. As already mentioned, our measure of how well a given
model for the distribution of inter-loss times approximates
the real loss process, is how close the throughput predicted
by our close form expression (5) agrees with the exact fluid
model throughput. Different loss processes are considered:
deterministic, Poisson, general iid, general correlated.

We plot in Figures 5,6, and 7 the results for the three con-
nections (LAN,MAN, and WAN respectively) as a function
of time. We clearly notice that our general model gives the
same result as the exact fluid model although five terms are
only considered in the infinite sum in formula (5). We notice
also that the iid model gives approximately the same result
as the correlated model which means that losses are rarely
correlated especially in MAN and WAN networks. Some cor-
relation can be seen in the LAN environment. For instance,
around 13:30 the loss process has a negative correlation co-
efficient equal to -0.2.

Consider now the Poisson and deterministic cases. We look
in Figures 5,6, and 7 at points where losses are iid. It is clear
from the expression of the throughput in the iid case (9)
that at a constant loss intensity, the throughput of TCP
increases with the variance of inter-loss times. Thus, a com-
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parison of the exact fluid model throughput to the through-
put predicted in the Poisson and deterministic cases indicate
how much the times between losses vary. For example, the
further we are from the throughput predicted in the deter-
ministic case, the more important is the variance of times
between losses. On the LAN connection, the variance of
inter-loss times is more than that of the exponential distri-
bution. This is caused by the bursty occurrence of losses we
discovered on this connection as shown in Figure 8. On such
connection, one expects that models assuming deterministic
inter-loss times will give bad results compared to the real
throughput. On the MAN connection, we see that the vari-
ance of inter-loss times is closer to that of a deterministic
distribution than that of an exponential distribution. Fi-
nally, on the WAN connection, it is clear that losses occur
according to a Poisson process.

The above three figures show well that the inter-loss time
process change from one path to another. It changes also on
the same path. This observation confirms the utility of our
general model for losses on TCP connections.

3.3 Validation of the model for TCP
In this section we compare the exact fluid model to real TCP
on the three connections we are considering. Our objective
here is to test the validity of the TCP modeling (the linear
growth assumption as well as the fluid assumption). The re-
sults are provided in Figures 9, 10, and 11. On the LAN and
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Figure 8: Fluid model vs. real window on the LAN
connection
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Figure 9: LAN connection

MAN connections, the exact fluid model overestimates real
TCP. This overestimation increases with the real through-
put. It is mainly due to the sub-linearity of TCP congestion
window evolution, which can be seen in Figure 8. This sub-
linearity is in turn due to the increase of the RTT with the
congestion window (i.e. due to the increase of queuing time
with respect to propagation delay). Linear rate increase
models assume that the RTT is independent of the window
size and use the average of the RTT to calculate the slope of
the transmission rate increase. This overestimation does not
exist on the WAN connection where the window is usually
small and where the propagation delay plays a major role.

Models taking simple assumptions about the loss process de-
viate from the exact fluid model which in turn deviates from
real TCP. Occasionally, they can give good results when the
two deviations cancel each other. As an example, the as-
sumption that inter-loss times are deterministic works well
on the LAN connection, even though the loss process has
a considerable variation (see Figure 8). This is due to the
cancellation effect we described. Our approach solves the
problem of inter-loss time modeling. However, the problem
of TCP window evolution modeling still persists.

Another source for overestimation in our model is the fluid
approximation. In fact, the transmission rate of TCP does
not increase continuously but rather jumps when the number
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Figure 10: MAN connection
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Figure 11: WAN connection

of packets injected into the network increases by one. How-
ever, the window at the source can be assumed to change
continuously as a function of time. We use the packet level
model in [27] to correct this problem of discreteness. Fig-
ure 12 shows how the number of packets in the network
changes as a function of time between two congestion events.
The dashed thick line represents our fluid model and the
continuous thick line represents the discrete TCP behavior
described in [27]. Assume that X(t) is measured in packets
per unit of time. A good approximation is to shift down
our process X(t) by 1/(2RTT ) then to subtract from the
throughput the deterioration caused by the last RTT before
the resumption of the transmission (Figure 12). It has been
assumed in [27] that the number of packets transmitted dur-
ing the last RTT is equal to half the window size. Thus, half
E[X∗

n] ∗RTT must be subtracted from the average integral
of the transmission rate between two loss events in order
to account for this last RTT before the resumption of the
transmission. We get the following throughput

Xd = X − 1

2RTT
− E[X∗

n] ∗RTT

2E[Sn]

= X −
�

b

2
+

1

2(1− ν)

�
αRTT

Using this correction, we compare in Figures 9, 10, and 11
our model with deterministic inter-loss times (11) with the
packet level model in [27]. The results of these two models
practically coincide for all three connections. These results
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Figure 12: Fluid model vs. packet model
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Figure 13: WAN connection

are close to the real throughput on the LAN and MAN con-
nection and not on the WAN one. In general, the model
in [27] is close to the real throughput in two cases: when
the linear rate increase assumption is correct and losses are
quite deterministic (MAN connection) or when the linear
rate increase assumption is not valid and inter-loss times
vary considerably (LAN connection). The correctness of the
model in the latter case is due to error cancellation between
the model for TCP and the model for losses.

3.4 Validation of bounds
To validate the derived bounds for the case of window size
limitation, we choose to work on the WAN connection where
our model for TCP is most appropriate. We plot the results
for the whole day (Figure 13). First, we see that from 0
to 10 o’clock the throughput calculated in the case of no
limit on the congestion window significantly deviates from
the exact fluid model. Our exact fluid model accounts for
the rate limitation. This deviation means that the receiver
advertised window is frequently reached during these hours
and our bounds can be applied to estimate the throughput.
We plot our two bounds on the same figure. They are indeed
quite close to the exact fluid model throughput. We plot also
the throughput obtained by the asymptotic approximation
in equation (29). This approximation is valid only when the
maximum window is frequently reached. The figure shows
that it approximates well the exact fluid model. One can
envisage the use of this approximation once the expectation
of the transmission rate at loss moments computed by (3)
exceeds the maximum rate.



4. CONCLUSIONS
In this work, we presented an analysis of TCP throughput
under a general loss process. The only assumption on the
loss process under consideration is stationarity and ergod-
icity. We provide explicit expression for the throughput in
the case of no limit on the transmission rate. The through-
put is shown to be inversely proportional to RTT and to the
square root of the packet loss probability, as was already
observed for much simpler loss models [18, 21, 27]. We fur-
ther provided bounds for the case when a limit exists on the
maximum window size. We extend our work to include also
the TimeOut mechanism.

The importance of our model is justified by the different
types of loss processes we observed when measuring Internet
traffic. The model we proposed is able to capture any cor-
relation or any distribution of inter-loss times. Several ex-
isting models can be seen as particular cases of our general
approach. On paths where TCP transmission rate indeed
increases linearly between congestion moments, our model
gives excellent results. However, on paths where TCP win-
dow growth is sub-linear, we notice some overestimation of
the real throughput. In a future work, we will try to ac-
count for this sub-linearity in TCP modeling. Another di-
rection for future research could be the identification of the
parameters of the Markovian Arrival Process proposed to
characterize losses on correlated paths.
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