
1

TCP/IP modeling and validation
Chadi Barakat

INRIA, 2004 route des Lucioles, 06902 Sophia Antipolis, France
Email : cbarakat@sophia.inria.fr

Abstract

We discuss in this paper the different issues to be considered when modeling the TCP protocol in a real environment.
The discussion is based on measurements we made over the Internet. We show that the Internet is so heterogeneous that
a simplistic assumption on TCP congestion control or on the network may lead to erroneous results. We outline some of
our results in this field and we present a novel approach for a correct validation of a model for TCP.

I. INTRODUCTION

The modeling of TCP congestion control is an important task for improving the service provided to Internet users
and the efficiency of network resource utilization. This importance is justified by the large amount of TCP traffic in
the Internet: 95% of total bytes and 85%-95% of total packets are of TCP type. A TCP source controls the rate of
application packets as a function of the way the network treats or reacts to these packets [13]. The main objective of
modeling is to come with simple expressions of TCP throughput for a certain network reaction. This has two main
advantages. First, it determines the factors impacting the performance of the protocol which gives people working on
TCP insights on how the congestion control has to be improved. For example, the modeling has shown that in case
of drop-tail buffers and synchronized TCP flows, the throughput of a TCP connection is inversely proportional to the
square of the average round-trip time (RTT) [14]. This has given an explanation to and an evaluation of the bias of
TCP against connections with long round-trip times. Using this result, [9] has proposed a modification to the standard
window increase algorithm of TCP in order to improve the fairness of the protocol. The modeling has also shown that
dropping packets randomly in network routers as done by RED (Random Early Detection) [12] improves the fairness
of TCP by making the throughput of a connection inversely proportional to the average round-trip time instead of its
square [3], [14], [15], [21]. Another possible use of an expression of TCP throughput could be the study of a change
of the parameters of TCP congestion control so as to minimize the variations of the window without adding to the
aggressiveness of the protocol. This will be useful for multimedia applications using TCP, or possibly a new version of
TCP adapted to such applications.

The second advantage of TCP modeling is that it permits network designers to improve the reaction of their network
to incoming packets at the moment of congestion, given the current control policy of TCP. Important work has been
done in this direction (e.g., [5], [8], [18], [17], [19]). The focus was and is always on the dimensioning of buffers
in network routers and on the management of their occupancy. The objectives [12] are to maximize the utilization of
network resources, to protect the TCP transfers from each other and to minimize the queueing time in routers so that
delay sensitive applications (e.g., Telnet, short WEB transfers) get a better service. A typical problem in this direction
is the tuning of RED parameters [8], [5], [17]. RED [12] is an interesting buffer management technique presented as
a solution to achieve the above objectives. For example, using the expression of TCP throughput calculated in [21], it
has been shown in [8] that when the number of TCP connections exceeds a certain threshold, the RED buffer gets into
an instable regime. This instability has been explained by the sudden jump in the drop probability when the average
queue length reaches the maximum threshold, see [12] for more details on RED parameters. This has motivated the
introduction of a new parameter to RED (the ���������	� _ parameter) in order to avoid such jump. Other works have used the
explicit expressions of TCP throughput to improve other parts of the network as the link layer on a wireless interface [6].

Recently, a new application of TCP modeling has emerged [10], [11]. It consists in using the explicit expressions
of TCP throughput to control the rate of real time flows (e.g., an audio flow) in a TCP-friendly way. The reaction of
the network (e.g., packet drop probability) is averaged over a certain time interval and the rate of the real time flow is
set to the expected throughput of a TCP connection running in the same network conditions. Clearly, a tradeoff exists
between choosing a long averaging time interval to get a smooth variation of the rate — hence a low jitter and a good
quality — and choosing short intervals to get a fast reaction to changes in network conditions.

2

Fig. 1. Measurement testbed

The modeling of TCP can be seen as a two-step procedure. First, we find the modeling of the evolution of TCP
window between congestion events as well as upon congestion. This includes the modeling of some particular mecha-
nisms of TCP such as timeouts and the limitation of the rate due to the window advertised by the receiver [13]. Second
comes the modeling of network reaction which consists, directly or after some transformation, in a modeling of the
process of congestion events. The TCP connection lifetime can be seen to be a succession of congestion events between
which TCP increases its window and upon which it reduces it. As we will see later, a model for the network also has to
describe how the round-trip time of the connection varies. The variation of the round-trip time determines the variation
of the window between congestion events. Note that TCP increases its window by the same amount during a round-trip
time regardless of its length. An example of congestion events and window evolution is depicted in Figure 4.

If the network is well defined (e.g., a single RED buffer), the modeling of TCP can be achieved with a considerable
degree of correctness. One can come with an accurate model for the network, combine it with a model for TCP, and
solve the overall model for TCP performance. All the works assuming a single bottleneck router crossed by only TCP
connections are of this type (e.g. [8], [18]). The difficulty exists when we want to approximate the throughput of TCP in
the real Internet. Some assumptions are required in this latter case to model the reaction of this huge and heterogeneous
environment. The difficulty of the analysis as well as the accuracy of the modeling change with the assumptions we
make. For a given assumption, we must expect our results to hold on some Internet paths while not on others. The
results may hold due to the correctness of our modeling on these particular paths. They may also hold due to another
phenomenon that we observed during our work in this direction, that is the cancellation of errors introduced by the
different blocks of a model for TCP. A good model for TCP must have all its blocks validated separately and these
blocks must work well on a wide range of Internet paths.

We address in this paper the problem of TCP modeling in its general form. We focus mainly on the modeling of
TCP in a real network rather than a particular environment as a single Drop Tail buffer or a RED buffer. Based on
measurements we conducted over the Internet, we discuss the different issues to be considered for a correct modeling of
TCP. We outline the different approaches in this domain and we show the need for a general approach that copes with
the heterogeneity of network reaction we observed. We will see how the heterogeneity of the Internet can change the
performance of a model from one path to another, and even from one hour to another on the same path. We introduce
the notion of separate validation of each block of a model for TCP instead of an overall model validation. We also
discuss some issues related to the use of throughput expressions in practice, particularly in TCP-friendly applications.

In the next section, we present our measurement testbed that we will refer to along the paper. In Section III, we discuss
the issues related to the modeling of TCP window evolution. The issues related to network modeling are discussed in
Section IV. In Section V, we explain our technique for the validation of a model for TCP. The paper is concluded in
Section VI.

II. MEASUREMENT TESTBED

Our testbed consists of three long-life TCP connections run between a machine at INRIA Sophia Antipolis in the
south of France and three other machines over the Internet (Figure 1). The first machine is located at ESSI next to
INRIA. The second machine is located at Paris at about 800 Km from INRIA. The third machine is located at the
University of South Australia. These can be considered as respectively LAN, MAN and WAN environments. In the

3

sequel, we use the terms LAN, MAN and WAN to distinguish between the three connections. The source is located at
INRIA and runs the New-Reno version of TCP [7]. New-Reno is a recent version of TCP able to recover from multiple
packet losses without timeout and with only one division of the window by two. The source of our connections is
fed by a simple application that has always data to send. The connections were run for many hours in different days
during the month of January 2000. We developed and we ran a tool at INRIA that looks at the trace of every connection
(packets and ACKs) and calculates a certain number of statistics on the connection such as the total number of packets
acknowledged, the total number of retransmissions, the moments at which the window is reduced, the variation of
window and round-trip time over time, etc. We accounted for all the mechanisms of New-Reno when developing our
tool, particularly the fact that a New-Reno source can recover from multiple packet losses in the same window of data.
We stored the statistics at fixed intervals in separate files. We chose these intervals in a way to get enough data in each
file. We shall assume that the network conditions are approximately the same during each interval. These intervals are
set to 20 minutes for LAN, 40 minutes for MAN, and 60 minutes for WAN.

III. MODELING TCP WINDOW EVOLUTION

Most of the effort on TCP modeling [3], [14], [15], [16], [17], [18], [21] is devoted to long transfers, namely to the
congestion avoidance mode of TCP [13]. The slow start phase [13], due to its fast window increase and its short duration,
is often ignored. The window is assumed to increase linearly in time between congestion events and to decrease to half
its size upon congestion. The moments of congestion are determined by the underlying model for the network. These
are the moments at which the source detects the loss of a packet and decides to reduce its window. Ideally, and this
is what the new versions of TCP try to approximate [7], these must be the moments of detection of the first loss in a
window of data packets.

TCP is known to increase its window in congestion avoidance mode in a linear manner but as a function of round-trip
time number rather than time. This increase is approximately equal to ����� packets per round-trip time, where � is the
number of packets covered by an ACK [21]. For the time linear increase to hold, the round-trip time is often supposed
to be constant or to vary independently from the window size, so it is substituted in the analysis by its average during
the transfer [14], [15], [21].

For the multiplicative decrease factor, it is indeed equal to one half when the source receives three duplicate ACKs
for congestion detection and when the Fast Recovery phase succeeds [7]. If it is not the case, a timeout occurs, the
window is set to one packet, and slow start is called to reach quickly the slow start threshold [13]. Some authors [3],
[21] keep the decrease factor in the case of timeout equal to one half while others [16] set the window to one packet and
assume a linear increase from this low value. We believe that there will be no difference between the two approaches
in the future given the expected low probability of timeout with the new enhancements proposed to TCP congestion
control [1]. Our measurements showed that on WAN, most of the losses are detected with timeout and this is due to the
small size of TCP window. The same result is noticed in [21]. On LAN and MAN, the window is large and the timeout
phenomenon is quite absent. In our work on TCP modeling [3], we set the multiplicative decrease factor to a constant
value � (�����) for both kind of congestion detection methods. This factor � , together with the general window increase
rate 	 we considered, permits our results to be used for the study of other congestion control policies.

Clearly, the above model is simple since it only accounts for the linear-increase multiplicative-decrease part of TCP
congestion control. Other issues have to be considered for a better modeling of TCP. We will enumerate those that
are the most important in the following sections and explain when possible how they can be introduced into the above
model.

A. Dependency between window and round-trip time

On paths where the window of the TCP connection is small compared to the bandwidth-delay product and where
packets cross multiple congested routers, one should expect that the assumption on the linearity of the window increase
will hold. Indeed, on such paths, the connection does not contribute to the queueing time in network routers and the
congestion is mostly caused by other aggressive connections. The round-trip time varies then independently from the
window size and can be substituted in the analysis by its average [21] resulting in a time linear window growth at a
rate ����
��������� , with ���� being the average round-trip time and � being the number of packets covered by an ACK.
However, this independency is not expected to hold on paths where the window of the connection is large compared to
the bandwidth-delay product. The increase in the window in this latter case will result in an increase in the round-trip

4

time which in turn will result in a sub-linear increase in the window with time [14]. One should expect that, in presence
of a linear model for TCP window evolution that uses the average round-trip time for the calculation of the window
slope, this sub-linearity will result in an overestimation of the real throughput.

To understand such dependency, we plot the variation of the round-trip time as a function of the window size on
our WAN and LAN connections (Figures 2 and 3). The WAN connection is a typical example of the first connection
whereas the LAN connection is a typical example of the second one. We measure the round-trip time for one packet per
window of packets and we note the window size upon this measurement. We average then the round-trip times obtained
for close window sizes. This gives the thick line in both figures. We see clearly how on WAN, the round-trip time is
on average constant and independent of the window. However, it is an increasing function of the window on LAN and
a sub-linear window increase should be seen on this connection. Indeed, Figure 4 shows well this sub-linear behavior.
We plot in this latter figure the variation of the real window on LAN for some seconds. The straight line corresponds to
the expected window evolution if the round-trip time were independent from the window size. This line is given by the
time linear model for TCP window evolution.

The problem with the sub-linearity of window increase is that it complicates the analysis and makes difficult (if not
impossible) to obtain simple explicit expressions for TCP throughput. The works in the literature that consider such
sub-linearity (e.g., [17], [18]) give the throughput as a solution of some implicit differential equations. Only the works
considering linear models (e.g., [3], [21]) succeed to find closed-form expressions for TCP throughput. Moreover, it
is not clear for the moment how such sub-linearity can be modeled in a complicated network as the Internet. The
importance of the sub-linearity depends on many factors as the intensity of exogenous traffic sharing the path with
the TCP connection, the buffering capacity in network routers, and the available bandwidth on the path. In a real
environment, one has to look at the traces of round-trip time and window and try to infer from these traces some
model for the dependency between round-trip time and window size. In previous works [17], [18], this inference was
not necessary since the content of the network was well defined (e.g., a single RED buffer with given bandwidth and
propagation delay) and hence the variation of the round-trip time as a function of the window size was well known. The
model for round-trip time, together with the model for window evolution and the model for network reaction, provide
the required information for the calculation of TCP throughput. For example, one can use the models developed in [4],
[17] for such calculation.

A model for round-trip time variation
Using the traces of our LAN connection, we propose a technique for the inference of the dependency between window
size and round-trip time. First, we have to define a model for the variation of the round-trip time. Then, we have to use
some fitting technique to infer the parameters of such model from the traces of the connection. It seems that the most
appropriate model for round-trip time variation is the one used in the literature for networks of one router (e.g., [14]).
Denote by � the window of the TCP connection. The model considers that the round-trip time is constant whenever
� is less than a certain window ��� . For windows larger than ��� , the round-trip time increases linearly with � at a
rate � . We write the model as follows

�������� ������
	 ���� ���������
������������

������ can be seen as the contribution of the propagation delay and the exogenous traffic to the total round-trip time.
�
���������� can be seen as the contribution of the connection to the total round-trip time when its window is large. �����
represents the bottleneck bandwidth on the path of the connection.

Given this model for the round-trip time, we use the non-linear least-square technique to infer the three parameters
������ , � and ��� of the model from the traces of the connection. Let ������ be a round-trip time measurement that
corresponds to a window � . We can write ������ as follows

���� �!� ������"	$#&%

where # is a certain error. Let #(' be the error introduced by the � th round-trip time measurement. We propose to find the
parameters of the model that minimize the sum)�*'�+�, #�-' , where . is the total number of round-trip time measurements.

We solve the minimization problem for the traces of our LAN connection shown in Figure 3. We get the thick line in
Figure 5. We also plot in Figure 5 the 95% confidence intervals as well as the measurements we obtained. Our results

5

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

R
ou

nd
-t

ri
p

tim
e

(s
)

Window size (bytes)

INRIA - Australia (day)

Average round-trip time

Fig. 2. WAN: Round-trip time vs. window

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 10000 20000 30000 40000 50000 60000 70000

R
ou

nd
-t

ri
p

tim
e

(s
)

Window size (bytes)

INRIA - ESSI (day)

Average round-trip time

Fig. 3. LAN: Round-trip time vs. window

show clearly that there is a dependency between window and round-trip time on this particular path. For small windows,
the expected round-trip time is constant and equal to 0.35s. Once the window of the connection exceeds 2246 bytes, the
expected round-trip time starts to increase linearly by 0.0493s every 10000 bytes.

B. Modeling timeouts and Fast Recovery

The above modeling does not consider these two mechanisms of TCP [7], [13]. Due to the coarse granularity of TCP
timers (500 ms in most implementations), the first mechanism introduces a certain idle time between a congestion and
its detection. The second mechanism also introduces a certain time between the detection of a congestion with duplicate
ACKs and the resumption of the window increase. During this latter time, the source is supposed to recover from losses
and to transmit new packets in order for the ACK clock not to stop.

The modeling of these two mechanisms of TCP require a detailed description of the protocol behavior at the packet
level. This behavior is quite complicated to model and varies from one version to another [7]. The Fast Recovery phase
is always ignored due to the complexity of its modeling, also because it adds a negligible contribution to the throughput
when it works well. It is assumed in [21] that once the source receives three duplicate ACKs, the window resumes its
linear increase until the next congestion event. This seems reasonable with the new versions of TCP (e.g., SACK [7])
where the Fast Recovery phase is quite robust and fast, but it is not true with the other versions as Reno [7] where Fast
Recovery may fail due to multiple losses per window. A failure of Fast Recovery results in a timeout and a slow start
from a window of one packet. A model which does not account for the Fast Recovery phase will lead to throughput

6

0

10000

20000

30000

40000

50000

60000

70000

1755 1760 1765 1770 1775 1780

In
st

an
ta

ne
ou

s
T

C
P

 W
in

do
w

 (
B

yt
es

)

Time (s)

Exact Fluid Model Window
Real Window

Fig. 4. LAN: Window vs. time

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 10000 20000 30000 40000 50000 60000 70000

R
ou

nd
-t

ri
p

tim
e

(s
)

Window size (bytes)

INRIA - ESSI (day)

Expected round-trip time

Fig. 5. LAN: Expected round-trip time vs. window

overestimation if such failures are frequent.
The timeout mechanism is studied in [21] using the probability that a packet is dropped. Denote this probability by� . The authors focus on the calculation of the probability that the source fails to receive three duplicate ACKs to trigger

Fast Recovery. This has been assumed to be the necessary and sufficient condition for the occurrence of a timeout.
Timeouts are assumed not to occur during the Fast Recovery phase. We believe that this will be the case with the new
versions of TCP that use the SACK option [7] and that have a robust and a quick Fast Recovery phase. We also believe
that with the modifications proposed to TCP error recovery in [1], the failure to receive three duplicate ACKs will no
longer be a sufficient condition to get a timeout. Sources will be able to recover from losses when more than one ACK
are received per round-trip time. In the wait for these modifications to be deployed, we will show in the following a
heuristic for the addition of the timeout mechanism to the above model according to the condition in [21].

To simplify the analysis, it is assumed in [21] that when a packet is dropped, the subsequent packets in the same
window are also dropped. The probability to get a timeout (�
 � �) as well as the average duration of a timeout period
(�
 � �) are calculated as a function of � ,

�
 � ��� ����� � ��%
 � �
 � � � �
	 �
 � 	
 � � � �
	
 � �
 � � � �����	 � �
� �
 � � � � � � %

�
 � ��� � � � 	
� 	�� � - 	�� � 	 	�� ��� 	 ��� ��� 	���� ���

� � � %

7

Sn−1

T
ra

ns
m

is
si

on
 r

at
e

Sn+1nS

Time

Fig. 6. Model without timeout intervals

S’n−1 S’n S’n+1

Sn−1 Sn n+1SZ

T
ra

ns
m

is
si

on
 r

at
e

T
im

eo
ut

D
up

lic
at

e
A

C
K

s

Time

Fig. 7. Model with timeout intervals

with

� � � 	 �� � 	�� �
 � � � �� � � 	�� � 	 �� ��� - %
and ��� being the basic timeout interval which is doubled when the source backs off its timer after the loss of a retrans-
mission [13]. In practice, ������ has been shown to be a safe value for � � [11].

Using these two functions of � , the impact of timeout intervals can be introduced into the model in the following way.
We calculate first the throughput of the connection when excluding these intervals, in other words when assuming that
the window resumes its linear increase directly after a congestion event whatever is the method of detection (Figure 6).
Denote this throughput by ��	� . Denote by ���
 the throughput of the connection in the presence of timeout intervals
(Figure 7). The throughput in both cases is equal to the ratio of the average number of packets that cross the network
between two congestion events (� ��� �) and the average time between congestion events, see [3], [21] for details. Let
{ ' } denote the process of times between congestion events when timeout intervals are excluded (Figure 6). Let ����' �
denote the process of times between congestion events when timeout intervals are considered (Figure 7). Given that the
average number of packets that cross the network between two congestion events is the same in both cases (� ��� �), it
follows that ���
 � ��	����� '����� �' � %
and ��	� � ��� ���� ' � �
Using these two equations and the fact that ��� �'�� � ��� '�� 	 �
 � ���
 � ��%
we can write ���
 � ��	�

��	 � ��	� �
 � ���
 � � �
Note that our expressions for the throughput are in terms of packets/s. Note also that our throughput corresponds to the
rate at which TCP packets leave the network, also called the receiving rate.

C. Modeling window limitation

Another problem with the previous model is that it does not consider the fact that a TCP source cannot inject into the
network more packets than the window advertised by the receiver [21]. This phenomenon can be seen in Figure 4 where
we plot the number of bytes in the network as a function of time. The model becomes sub-linear and the calculation of
a simple expression for the throughput seems to be impossible except for some particular models for the network [4],
[16], [21]. For example, the calculation is straightforward when the time between congestion events is constant. Using

8

techniques from queueing theory, the authors in [4], [17] succeed to calculate the throughput when congestion events
appear according to a homogeneous Poisson process.

For more general models for the network (e.g., a generally distributed time between congestion events), one can
always think about finding some approximations of the throughput. One possible approximation is to assume that the
receiver window is always reached between congestion events. The problem is then automatically transformed into
a simpler one with constant times between congestion events equal to the average of these times. This is the kind
of approximation used in [21]. In [3], we find bounds for the throughput which are also a good approximation. The
advantage of our bounds is that they are valid for any receiver window. The first approximation is only valid for
small receiver windows, so one needs to condition on the average window upon congestion in order to use either the
approximation or the expression of the throughput obtained when there is no window limitation.

Note that the problem of window limitation exists because of the small windows advertised by current Internet
receivers (less than 64 Kbytes). But, this is supposed to disappear in the future with the trend to increase the window
field in the TCP header and with the trend to change dynamically the buffer size allocated to the TCP connection at the
receiver [23]. It is even recommended in [2] that future studies on TCP congestion control should consider an infinite
receiver window. Models that account for the limitation of the rate will not be of big importance.

D. Fluid models versus discrete models

Some of the models for TCP assume that the window increases continuously between congestion events [15], [16],
[17], [22]. The use of a continuous model for the window facilitates the analysis since it permits the use of tools from the
theory of continuous functions as integration and differentiation. The continuous increase may hold for the congestion
window at the source but it does not hold for the volume of data in the network. Indeed, the former quantity increases
in small values (in bytes) upon ACK arrivals, whereas the latter one increases in steps of one packet every � round-trip
times [21]. This is due to the Nagle algorithm [20] which prohibits the TCP source from injecting small packets into the
network. At the moment of congestion, it is the window at the source which is divided by two rather than the number
of packets in the network [13]. So models assuming continuous increase in the window, also called fluid models, are
appropriate for the prediction of the window variation at the TCP source. The throughput obtained with these models is
the throughput that the TCP connection would realize if it is not limited by the Nagle algorithm.

The correct throughput can be obtained by one of two ways: either by using a discrete model for the window evolution
as the one in [21], or by using a fluid model and introducing some corrections into the calculated throughput so as to
account for the difference between the congestion window at the source and the volume of data in the network. In our
work on TCP modeling [3], [4], we chose the second way for the calculation of the throughput given the simplicity of
the analysis the use of fluid models permits. We present here the technique we used in order to account for the packet
nature of TCP. To illustrate this technique, we plot in Figure 8 the number of packets that cross the network between
two congestion events for both a fluid model and a discrete (or a packet) model. The line for the discrete model is
taken from [21]. On average, half of the window is assumed to be dropped in the network upon congestion (the last
round-trip time in the figure). Suppose that all the transmission rates are expressed in terms of packets/s. Denote by��� � ' � the average window size upon congestion and by ��� ' � the average time between congestion events. Let ��
denote the throughput obtained with the fluid model and ��	� the real throughput of TCP. A good approximation of ��	�
can be obtained by
� Shifting down the fluid window by 0.5 packet which results in a decrease in the throughput �� by

� ����� ���� .
� Subtracting the rate of dropped packets which is approximately equal to

Rate of dropped packets � �� ��� � '����� '�� �
It follows that ��	� � �� �

� ���
���� �

� ��� ��� ���' ���� '�� �

Using one of our results [3, Equation (3)] which says that

��� � '�� � ��� '��
������
 � � � � %

9

N
um

be
r

of
 p

ac
ke

ts
 in

 th
e

ne
tw

or
k

Time

b.RTT RTT

1

Fluid model

Packet model

Fig. 8. Fluid model vs. discrete model

we can write ��	� � �� �
� ���
���� � ��	 �

��
 � � � � � �
With this correction and as we will see in Figures 15 and 16 when validating our model, a fluid model for TCP is able
to give the same throughput as a detailed discrete model.

IV. MODELING THE NETWORK

This is the part of the model where the heterogeneity of the Internet has the greatest impact. The objective of this
part is to find a good characterization of congestion moments or loss moments. A loss moment in our terminology is
the moment at which the TCP source decides that the network is congested and that it must reduce its window. These
moments can be directly characterized by making some assumptions on the way they appear. For example, one can
assume that they appear according to a deterministic process or a Poisson process. This direct characterization is the
approach widely used in the literature [3], [15], [16], [21]. Another possible but indirect characterization consists in
finding a model for the reaction of the network to a particular TCP packet or during a small time interval. As an
example of this indirect approach we find the works that suppose that TCP packets are dropped within the network with
a constant or variable probability [18], or those assuming that loss moments form a Poisson process with a variable
intensity function of the window size of the connection [22]. The advantage of the indirect approach is that it decouples
the model for the network from the control policy at the TCP source. It happens that on some Internet paths, the
process of losses seen by a TCP connection is a function of the way it increases and decreases its window, and that this
process changes if another control policy is used, for example if packets are transmitted at a constant rate. The indirect
approach is very useful on such paths since it permits to deduce the loss process that a TCP connection will see from
the loss process seen by another connection with a different congestion control policy. We cite different applications
of the indirect approach on such paths. The first application is that one can probe the network with a certain flow of
packets (e.g., a constant rate flow) and calculate the parameters of an appropriate model for the network (e.g., packet
drop probability, variation of loss intensity as a function of transmission rate). With these parameters, it will be possible
to predict the performance of a TCP connection on the same path. Another application of the indirect approach is that
from the trace of a TCP connection, one can build a model for the network and predict the performance of another
TCP connection with another congestion control policy. This will be useful for a study of the impact of a change of
TCP congestion control parameters. A third application of the indirect approach is that a TCP-friendly application (e.g.,
TFRC [11]) can deduce the loss process that a TCP flow would see from the loss process it sees, and hence can get a
better estimate of the rate to use. All these applications are not possible with the direct approach since, without a model
for network reaction, we cannot deduce the performance of a TCP connection from the loss process seen by another
connection with another control policy. Recall that we are talking about paths where the loss process changes with the
congestion control policy.

The difficulty with the indirect approach is in the definition of a correct model for the Internet and the calculation of

10

its parameters. This may be possible for a simple network of one router (e.g., a RED buffer is known to drop packets
with a probability that increases linearly with the average queue length [12]) but it seems to be difficult for a wide
network as the Internet. It is not clear if there exists a model for the Internet that works on all paths. Certainly, the
Internet reaction to TCP packets changes from one path to another and along time on the same path. For example, on
some paths the network may drop packets with a constant probability, on other paths with a probability that increases
linearly with the congestion window, on other paths with a probability that increases logarithmically with the congestion
window, etc. One can imagine different models for the network. The question is on how many paths such models are
useful.

Given the difficulty to come with a model for network reaction that works on all Internet paths, we shall only focus
on the direct approach. Recall that the direct approach consists in using the parameters of the loss process seen by
the connection for throughput calculation. Our TCP connections are using the same control policy and thus we can
decide on the heterogeneity of the Internet from the loss processes they see. In the next section, we present some
measurement results to show how much the Internet is heterogenous. In the following section, we use the expression of
TCP throughput we found in [3] to evaluate the impact of the assumption on the network we make. Note that in [3], we
found a simple expression of TCP throughput for a general process of congestion events.

A. Diversity of loss processes in the Internet

We present in this section some of the loss processes we found on our three connections. First, we plot the distribution
of times between congestion events. Figures 9, 10, 11, 12, 13 and 14 show some samples of the distributions we got.
The figures contain for comparison some theoretical distributions (Exponential for LAN and WAN, Normal for MAN).
On LAN, the process is highly bursty which results in this pulse close to the origin. This burstiness can be also seen in
Figure 4 where the window is divided multiple times by two in short time intervals. We noticed that the congestion on
our LAN connection stays for multiple consecutive round-trip times during which the network keeps dropping packets
and the source keeps reducing its window. On MAN, the times between losses follow well a Normal distribution. On
WAN and as one must expect, the loss process is close to Poisson. Indeed, on WAN, the source has a small window and
does not contribute to the congestion of the network. The loss process it sees is the superposition of a large number of
processes in all the routers it crosses. We also found some correlation of losses on the three connections. This correlation
varies during the day between negative and positive values with an absolute value of the covariance coefficient reaching
sometimes 0.2. Tables I, II and III show some of the covariance coefficients we saw on the three connections at different
hours during the day. Recall that the covariance coefficient (of order 1) of a process { ' } is given by,

����� � ��� ' '���, � � ��� '�� -��� -' � � ��� '�� - �

This coefficient varies between -1 when inter-loss times are highly negatively correlated and +1 when they are highly
positively correlated.

Our measurements show some examples of losses that a TCP connection may see over the Internet. We expect to
see other processes on other paths. Other distributions of inter-loss times could be found. Also, some paths as those
including satellite and wireless links, may exhibit more memory than our paths which will result in a more important
correlation of losses. Using one of our results in [3], we discuss in the next section the impact of the different parameters
of a loss process on TCP throughput. This will give us an idea on how much a certain assumption on the occurrence of
losses or congestion events impacts the result of the modeling.

B. Impact of the loss process choice on TCP modeling

Most of existing models for TCP make simplistic assumptions on inter-loss times (e.g., deterministic [15], [21],
Poisson [16]). In [3], we propose a general model for the network where we only make the simple assumption that the
loss process is stationary and ergodic. We allow the inter-loss times to follow any distribution and we allow the losses
to be correlated. We derive a general expression for the throughput which uses, in addition to the packet loss probability
(�) and the average round-trip time (����), the variance of inter-loss times as well as all the covariance function of the

11

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 5 10 15 20 25 30 35

Pr
ob

ab
ili

ty
 d

en
si

ty
 f

un
ct

io
n

Inter-loss time (s)

INRIA - ESSI (day)

Exponential distribution
Measurements

Fig. 9. LAN: Inter-loss time distribution

0

0.5

1

1.5

2

2.5

0 5 10 15 20 25

Pr
ob

ab
ili

ty
 d

en
si

ty
 f

un
ct

io
n

Inter-loss time (s)

INRIA - ESSI (day)

Exponential distribution
Measurements

Fig. 10. LAN: Inter-loss time distribution

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Pr
ob

ab
ili

ty
 d

en
si

ty
 f

un
ct

io
n

Inter-loss time (s)

INRIA - Paris (day)

Normal distribution
Measurements

Fig. 11. MAN: Inter-loss time distribution

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Pr
ob

ab
ili

ty
 d

en
si

ty
 f

un
ct

io
n

Inter-loss time (s)

INRIA - Paris (day)

Exponential distribution
Measurements

Fig. 12. MAN: Inter-loss time distribution

0

0.05

0.1

0.15

0.2

0.25

0.3

0 5 10 15 20 25 30 35 40

Pr
ob

ab
ili

ty
 d

en
si

ty
 f

un
ct

io
n

Inter-loss time (s)

INRIA - Australia (day)

Exponential distribution
Measurements

Fig. 13. WAN: Inter-loss time distribution

0

0.05

0.1

0.15

0.2

0.25

0.3

0 5 10 15 20 25 30 35

Pr
ob

ab
ili

ty
 d

en
si

ty
 f

un
ct

io
n

Inter-loss time (s)

INRIA - Australia (day)

Exponential distribution
Measurements

Fig. 14. WAN: Inter-loss time distribution

12

Hour Covariance coefficient
(Traces of 20 min)

�����
 ' % '���, � �������
 ' �
11:00 + 0.034
12:00 + 0.041
12:30 + 0.113
13:00 + 0.001
13:30 - 0.191
14:00 - 0.078

TABLE I
LAN: COVARIANCE COEFFICIENT

Hour Covariance coefficient
(Traces of 40 min)

�����
 ' % ' , � �������
 ' �
15:00 + 0.106
19:00 + 0.101
20:00 + 0.015
21:00 - 0.01
22:00 - 0.048
23:00 - 0.005

TABLE II
MAN: COVARIANCE COEFFICIENT

Hour Covariance coefficient
(Traces of 60 min)

�����
 ' % ' , � �������
 ' �
11:00 - 0.197
12:00 - 0.001
14:00 - 0.102
16:00 - 0.107
20:00 + 0.023
22:00 - 0.09

TABLE III
WAN: COVARIANCE COEFFICIENT

loss process. For a window reduction factor equal to one half we find,

Throughput � �
������ � �

�		
 � � 	 �����!	��� +�, � �� � � ��
�� � �
�� and �

�
�� � are respectively the variance and the covariance function of the loss process normalized to the square of
the average time between losses.

Three terms appear under the square root in our formula. The first term corresponds to the intensity of losses or
the average inter-loss time. The second term represents the variation of inter-loss times. The third term represents the
correlation of losses. This third term is equal to zero when the loss process exhibits no correlation. If we take only the
first term, we get the famous square root formula [15] which was indeed established for a deterministic loss process.

This formula tells us exactly the error we introduce when making a certain assumption on the loss process. For
example, it tells us that the throughput is an increasing function of the variance of inter-loss times. Assuming that losses
are deterministic when they are actually Poisson should lead to an underestimation of the real throughput. In contrast,
assuming that losses are Poisson when they are deterministic should lead to an overestimation of the real throughput.

13

The next section contains some measurement results that show how the use of a wrong variance results in a wrong
throughput estimate. The formula also tells us that due to the geometrical decrease in the weights of the �

�
�� � , a small
number of covariance functions is sufficient to calculate the throughput even if the loss process is highly correlated. The
window evolution becomes independent of the past after a certain number of loss events.

V. SEPARATE MODEL VALIDATION

We introduce in this section the notion of separate validation of each part of a model for TCP. Researchers compare
directly the real throughput achieved by a TCP connection to the final result of their modeling. But as we saw, a model
for TCP is composed of two parts: a model for the window evolution and a model for losses. Proceeding for the
validation in one step hides the errors introduced by these two parts. It gives us the sum of the two errors instead of
each of them. First, this precludes us from distinguishing from which part of the model the error is mostly due. Second,
and this is the most important, the errors introduced by the two parts of the model may be of opposite signs which may
make the total error small and acceptable. The result will be a wrong estimation of the capacity of the model since, as
we will see later, this phenomenon of error cancellation does not always exist.

To avoid the problem of error superposition and possibly error cancellation, we propose to validate separately the
two parts of the model. We start first by the model for losses. Consider that a fluid linear model is used for window
evolution. To get only the error introduced by the assumption on the distribution of losses, the window of TCP should
increase continuously and linearly between losses and decrease multiplicatively by a factor 0.5 upon losses. But, TCP
window does not have this ideal behavior in reality. What we do here is to construct this ideal behavior of the window
using the moments of losses seen by the TCP connection. The average of round-trip time measurements is used for
the calculation of the linear window increase rate. The ideal window is shown by the straight line in Figure 4. We call
the version of TCP that has the window behaving as the ideal window “ideal TCP” or “exact fluid model”. Then, we
calculate numerically the throughput obtained by ideal TCP and we compare it to the result of our modeling under a
certain assumption on the loss process. The comparison gives us the error introduced by the model for losses.

The throughput of ideal TCP is calculated as follows. First, we sum over all the areas between the ideal window and
time, then we divide this sum by the total time of the measurement. This gives the time average of the ideal window.
The ideal throughput is obtained by dividing the average of the ideal window by the measured average round-trip time.
Now, to get the error introduced by the model for the window evolution, all what we need to do is to compare the ideal
throughput to the real throughput. Before this comparison, the ideal throughput has to be corrected for timeouts and for
the packet nature of TCP using the heuristics we presented in Sections III-B and III-D.

We present some results to confirm the utility of such method for validation. We take first the LAN connection.
We plot in Figure 15 the ideal throughput we obtained during the different hours of the day. We also plot in the same
figure: the real throughput, the result of a linear fluid model assuming deterministic inter-loss times, and the result of
the packet model in [21] which also considers that losses are deterministic. A model assuming deterministic losses
underestimates the ideal throughput given the high variance of inter-loss times we observed on LAN (Figures 9 and 10).
The ideal throughput in turn overestimates the real throughput due to the sub-linear growth of the window we discussed
in Section III-A. We notice that a direct comparison of the real throughput to the result of the modeling in case of
deterministic losses hides the two errors and gives us an impression that the model works correctly.

We take now the WAN connection (Figure 16). The ideal throughput approximates well the real throughput given that
the window increase on WAN is quite linear (Section III-A). However, a model with deterministic losses does not give
good performance in this case as on the LAN connection since the loss process is close to Poisson (Figures 13 and 14).
Assuming that losses form a Poisson process should give better performance. This difference in the performance of
a model with deterministic losses between LAN and WAN cannot be explained without the method for validation we
introduced. Due to our method, we conclude that it is better to take the loss process as Poisson on the WAN connection.

VI. CONCLUSIONS

We presented in this paper an overview of the different issues to be considered when modeling TCP. Our main results
can be summarized as follows:
� A linear window increase model does not hold on paths where the round-trip time is dependent of the window size.

A sub-linear window increase model needs to be considered in this case. The modeling of the sub-linearity requires
a model for the round-trip time which can inferred from end-to-end measurements.

14

800

1000

1200

1400

1600

1800

2000

2200

2400

10.5 11 11.5 12 12.5 13 13.5 14

T
C

P
 th

ro
ug

hp
ut

 (
K

bp
s)

Day time (hours)

INRIA - ESSI

Exact Fluid Model
Deterministic losses
Packet level model
Real throughput

Fig. 15. LAN: Separate model validation

20

40

60

80

100

120

140

160

10 12 14 16 18 20 22 24

T
C

P
 th

ro
ug

hp
ut

 (
K

bp
s)

Day time (hours)

INRIA - Australia

Exact Fluid Model
Deterministic losses
Packet level model
Real throughput

Fig. 16. WAN: Separate model validation

� The process of congestion events needs to be well characterized. A simplistic assumption may lead to a considerable
error on some Internet paths. In particular, underestimating the variance of times between congestion events leads
to an underestimation of the throughput.

� The validation of a model for TCP needs to be done in two steps. The model for window evolution and the model
for the network need to be validated separately. A one-step validation hides the error introduced by each part of the
model which may make the results unexplainable in some situations.

VII. ACKNOWLEDGMENTS

I would like to thank Eitan Altman and Kostya Avrachenkov for their encouragement and their valuable remarks on
earlier version of this paper. I would also like to thank my colleagues at ESSI, ENST, and the University of South
Australia who provided me with the required material to conduct the experimentations.

REFERENCES

[1] M. Allman, H. Balakrishnan, and S. Floyd, "Enhancing TCP’s Loss Recovery Using Early Duplicate Acknowledgment Response", Internet
Draft, work in progress, Jun 2000.

[2] M. Allman and A. Falk, "On the Effective Evaluation of TCP", ACM Computer Communication Review, vol. 29, no. 5, Oct. 1999.
[3] E. Altman, K. Avratchenkov, and C. Barakat, "A stochastic model for TCP/IP with stationary random losses", ACM SIGCOMM, Sep 2000.
[4] E. Altman, K. Avrachenkov, C. Barakat, and R. N. Queija, "State-dependent M/G/1 Type Queueing Analysis for Congestion Control in Data

Networks", to appear in IEEE INFOCOM, Apr. 2001.

15

[5] T. Bu and D. Towsley, "Fixed Point Approximation for TCP behavior in an AQM Network", UMass CMPSCI Technical Report, no. 00-43,
Jul. 2000.

[6] H. Chaskar, T. V. Lakshman, and U. Madhow, “On the design of interfaces for TCP/IP over wireless”, IEEE MILCOM, 1996.
[7] K. Fall and S. Floyd, “Simulation-based Comparisons of Tahoe, Reno, and SACK TCP”, ACM Computer Communication Review, Jul 1996.
[8] V. Firoiu and M. Borden, "Queue Management for Congestion Control", IEEE INFOCOM, Mar 2000.
[9] S. Floyd, “Connections with Multiple Congested Gateways in Packet-Switched Networks Part 1: One-way Traffic”, ACM Computer Com-

munication Review, Oct 1991.
[10] S. Floyd and K. Fall, "Promoting the Use of End-To-End Congestion Control in the Internet", IEEE/ACM Transactions in Networking, vol.

7, no. 4, pp. 458-472, Aug. 1999.
[11] S. Floyd, M. Handley and J. Padhye, “Equation-based congestion control for unicast applications”, ACM SIGCOMM, Aug 2000.
[12] S. Floyd and V. Jacobson, “Random Early Detection gateways for Congestion Avoidance”, IEEE/ACM Transactions on Networking, Aug

1993.
[13] V. Jacobson, “Congestion avoidance and control”, ACM SIGCOMM, Aug 1988.
[14] T.V. Lakshman and U. Madhow, “The performance of TCP/IP for networks with high bandwidth-delay products and random loss”,

IEEE/ACM Transactions on Networking, vol. 5, no. 3, pp. 336-350, Jun. 1997.
[15] M. Mathis, J. Semke, J. Mahdavi, and T. Ott, “The Macroscopic Behavior of the TCP Congestion Avoidance Algorithm”, Computer

Communication Review, Jul 1997.
[16] V. Misra, W.-B. Gong, and D. Towsley, “Stochastic differential equation modeling and analysis of TCP-windowsize behaviour”, Perfor-

mance,Oct 1999.
[17] V. Misra, W.-B. Gong, and D. Towsley, "Fluid-based Analysis of a Network of AQM Routers Supporting TCP Flows with Application to

RED", ACM SIGCOMM, Aug. 2000.
[18] A. Misra and T. Ott, "The window distribution of idealized TCP congestion avoidance with variable packet loss", IEEE INFOCOM, Mar

1999.
[19] R. Morris, "Scalable TCP Congestion Control", IEEE INFOCOM, Mar 2000.
[20] J. Nagle, "Congestion control in IP/TCP internetworks", RFC 896, Jan 1984.
[21] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modeling TCP Throughput: a Simple Model and its Empirical Validation”, ACM SIG-

COMM, Sep 1998.
[22] S. Savari and E. Telatar, "The Behavior of Certain Stochastic Processes Arising in Window Protocols", IEEE GLOBECOM, Dec 1999.
[23] J. Semke, J. Mahdavi, and M. Mathis, "Automatic TCP Buffer Tuning", ACM SIGCOMM, Sep. 1998.

