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Abstract—We present in this paper an analytical model for the calcu- Which results in a system of non-linear equations to solve. The
lation of network load and drop probabilities in a TCP/IP network with  drop probability and the average queue length in every bottle-
general topology. First we formulate our model as a nonlinear complemen- . .
tarity problem. Then we transform the model into two equivalent formu- neck as well as the throthpUt of the different T(‘?P connections
lations: fixed point formulation and nonlinear programming formulation. ~ are calculated. In [15], the authors use the technique of stochas-
These equivalent formulations provide efficient computational procedures tic differential equations to find the behavior of network traffic
for the solution of our model. Furthermore, with the help of the fixed point in the transitory regime Again their model requires the iden-
formulation we are able to prove the existence of a solution. Our model . .~ . ’ ' . .
has the main advantage of not requiring the pre-definition of bottleneck tification of bottleneck nodes before the calculation of metrics.
links. The model also takes into account the receiver congestion window In [4], the authors used Markov chains as well as fixed-point
limitation. Our approach can be used for TCP/IP networks with drop tail approach to model one and two routers TCP/IP networks. It is
buggers as well as for TCP/IP networks with active queue management bug- tcl h if thei h b il tended to th
gers. We solve the problem for some network examples and we show hownOL Cl€ar however it their approach can be easily exiended 10 the
the distribution of load varies with network parameters. The distribution ~ case of general network topology.
of load is sometimes counter-intuitive which cannot be detected by other

models making prior assumptions on the locations of bottlenecks. Several recent papers (see [10], [11], [12], [16], [22] and
references therein) have analyzed TCP-like congestion control
based on the optimization of some aggregated utility function
. INTRODUCTION for general network topology. These models all have similar-
ities with TCP, especially to versions based on ECN (Explicit
HE prediction of network behavior is an important task foCongestion Notification), but also differences. Discussions on
a well dimensioning of network resources. A typical exthe differences are given for instance in Section 4.1 in [11].
ample of such prediction is to decide on how load will be dign particular, most of the above models assume that ACKs ar-
tributed on different links of the network and how resources witlve continuously in time [10], [12] (or very frequently [11]).
be shared between the different flows. In particular, it is impof common feature of all these models is that the utility opti-
tant to know which links will be the bottlenecks so that thesaization approach is related to explicit simplified dynamic evo-
links can be dimensioned properly according to the service Wgion equations for the transmission rate of connections. Our
want to provide to users. approach, in contrast, requires as starting point only a relation
between the average throughput of a connection and its average
Most of applications in the Internet use the TCP protocglacket loss rate. The obtained results do not rely on the ex-
which reacts in a well known way to the loss of packets in thest dynamics that leads to that relation, and could be applied to
network [9]. In the steady state of a TCP connection, the copyriants of congestion control mechanisms which need not have
gestion window of the protocol is increased slowly until somg|inear increase and an additive decrease behavior. Another dif-
packets are lost and here it is divided by two to alleviate thgrence between our model and [10] is that we do not need to use
congestion of the network which is considered as the reason Bg-ECN version of TCP: in particular, our model assumes that
hind packet losses. Given this behavior of the protocol, differegsses occur if and only if a link is saturated. This means that
models have been proposed to predict the average throughpyhgfrate of acknowledgment is not a continuous function of the
a TCP connection [1], [20], [19]. These models consider thgohal throughput in the congested element, as required in [10].
network as an entity that drops packets with a certain probali-spite of the differences between our model and those based
ity. The expressions for TCP throughput together with a certaip utility optimization approach [10], [11], [12], [16], [22], it

model for the network (e.g., how packets are dropped at a routetemarkable to note that our approach also leads to a global
for a certain rate of TCP packets) can be used to give some @stimization problem.

sights on how the network and TCP connections will behave.
) ) o In the present paper we investigate the problem of network

In [3], the authors use a fixed-point approximation to calcyerformance prediction without the bottleneck pre-identification
late some metrics in a network crossed by long-life TCP connggquirement.  First, we introduce a system of non-linear in-
tions and implementing Active Queue Management techniquggyalities, which guarantees that the sum of TCP throughputs
in routers. Their model requires first the identification of bolyn each link does not exceed its capacity. We would like to
tleneck nodes. An equation is written for each bottleneck noggte that the structure of the inequalities that we propose is sim-
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inequalities and complementarity type conditions, we use tfaces and hence different capacities. For such routers, we asso-
fixed point formulation as well as the mathematical progransiate a node to each output interface. In our abstract network, we
ming formulation. By using the fixed point formulation, we arean see a node as being the part of the router where the multiple
able to prove the existence of a solution to our model. As a SEEP connections routed via the same output interface are mul-
lution of our model, we obtain packet loss probabilities, the diiplexed together. We focus on routers where each output inter-
tribution of load in the network and the location of bottleneck$ace has its own buffer. The routing engine in a router decides (at
We would like to note that our model includes the possibilitg high rate) on how the different arriving packets are distributed
of having source rate limitation (e.g., the limitation imposed byn the different output interfaces. Packets are queued (and pos-
TCP receiver window); this feature of TCP is not included in th&ibly dropped) in the buffer at the output interface before being
above mentioned models. transmitted on the link to the next router.
e I' = {7y, € I,v € V} is the incidence matrix, where

Finally, we test our general approach on several benchmark — 1 if connectioni goes through node, and is equal to
network examples, for which we are able to obtain some analytro otherwise.
ical results and good approximations. In particular, the analysig = (p1, .. pyv)) is the vector of loss probabilitieg;, cor-
of the examples shows clearly that the problem of bottleneg&sponds to the probability that a packet is lost at nader in
identification is not an easy task and that it is very sensitive gher words in the buffer at the input of the link between node
network resources distribution. For example, by slightly changind the adjacent router. We suppose here that packets from all
ing the bandwidth on a link, the bottleneck can move from a lindonnections are treated in the same manner in network nodes.
to another link and it happens that this move is not immediat®is can be the result of some randomization in the drop policy
so that the two links can be bottlenecks at the same time. TiReouter buffers (e.g., RED [6]) or the result of some randomiza-
change in bottleneck position alters significantly the behavior @fn in the multiplexing of flows in routers (in the case of drop
the network. We also observed that in some cases the additigilrouters). Thus, we suppose that all packets are dropped with
of bandwidth to some parts of the network might deteriorate tfige same probability in a node and this probability is indepen-
performance of other parts. dent from that in other nodes. It follows that the probability that

) a packet of a connection of types lost in the network is equal
In the next section we present our TCP network model a

provide methods for its solution. Then, in Section 3 we present Ky = Z Do H (1 - pa). (1)
some Benchmark network examples to show how the bottleneck
position and the load distribution are sensitive to network pa-_ . . .
rameters. The results of the analysis are validated via NS sinfu= (1, ..., Tjy)) is the sending rate vector, whetgis the

lations. Finally, in the A di tth d fgtfanding rate of a connection of typeThe sending rate can be
tﬁel():)zstelgge{elgulte ppendixiwe present thie second proo expressed [1], [14], [20], [19] as a function of the probability

with which packets of the connection are dropped within the
network.
Il. TCP NETWORK MODEL AND ANALYSIS e N;, i € I is the number of connections of type Denote
[NT] = (N1Tx, ..., N)1|Tjp)) the vector whoséth entry is the
Consider a network’ formed ofV’ nodes (the nodes will rep- sending rate of all connections of type

resent the network element at which congestion will occur). Let

I be a set of groups of persistent TCP_ conne_ctio_ns. We dengjg shall make the following assumptions:

the source node of groups I by S; and its destination node by

D;, respectively. Connections of grouE I follow a fixed path (Al: All links in the network have large delay-bandwidth prod-

m = {ui, ""_Un(i)}’ wherev corresponds to the first noc:e thauct. This allows us to neglect queuing delays in routers, and
the connections cross after leaving the source rﬂ;dandvnﬁng hence, their impact on TCP throughput.

VET; uem; (v)\v

is the last node that the connections cross before reac the
destination nodeD;. We also definer; (u) = {vi,...,u}, that

is, 7;(u) corresponds to the part of the pathfrom the source
nodesS; up to nodeu. Of course, we are aware of the fact th
the routing in the Internet is dynamic and that packets from the ) ] )

same TCP connection may follow different routes if some links e shall consider in particular some well known forms of

in the network go down. We suppose that these deficiencies Ktions between loss probabilities and throughput. The fol-
not frequent and that the routing tables in Internet routers do A@{/iNg expression (so-called “square root formula” [19]) is well

change during long periods of time so that our assumptions Sifited for a small n'umber of timeout events, which is typical in
hold. This has been shown to be the case in the Internet [$29€ delay-bandwidth product networks

where more than 2/3 of routes persist for days or even weeks. 1 [¢; Wi
Tz(lﬂ) = ]\45'52 mln{e— —, m
4 R

A2: The sending ratd;(x;) is a continuous function of the
a;gacket loss probabilityt, .

We also introduce the following objects: ei‘w hoiel, (2

o M = {1, ..., v} is the capacity vector wheye, is the ca- where)SS; is the maximal segment sizH/; , . is the receiver

pacity of nodev. In reality, a capacity is associated to a linkvindow size,d; is the average round-trip time of the connec-
rather than a router. A router may have different output intetion andc; is a constant that depends on the version of the TCP



implementation and on the characteristics of the process of inteterior, andx; are continuous in thg,’s and consequently;’s
loss times [1]. For example, if we assume that inter-loss timase continuous in the;’s, there is a feasible region with nonzero
are exponentially distributed and the delay ACK mechanismrnseasure. |
disabled, them; = 2 [1].
Even though there is a continuum of feasible solutions to (4),
The next expression [20] (which we shall refer to as “PFTKiost of them do not correspond to a real TCP network state. An
formula”) is known to be more suitable when the timeout protexample of such solutions is a one that gives high drop proba-

abilities are not negligible: bilities so that all nodes are poorly utilized. On contrary, TCP is
designed to fully utilize the available resources of the network.
Ti(ki) = (3)  We observed from numerous TCP network simulations carried
1—k; out with the help of the network simulator NS [17] that a link can
( i +Wik) + Qs (% )))A be either bottleneck with a substantial amount of packet losses
9-(EW(/<;-) P14+ Q(ki, W (k) F (k)T at its input, or it can be underutilized with negligible packet-
2 ! 11—k loss probability. These two states of a link are quite mutually
_ 4 exclusive. The latter observation leads us to the follovdom-
if W(ki) < Wiaus plementaritytype conditions
1—r; ; ;
b ( 1“7 Q( Wl )F)( )Tl Dv | By — Z'yiv H (1 _pu) NiTi("'@i) = O> (5)
T ~ s P P ;
0, iy i 9 i VWomazx i)40 i€l uem; (v)
forveV.
otherwise
These conditions say that packets are only dropped in nodes
where which are fully utilized. These are the bottleneck nodes that
B limit the performance of TCP connections. Other nodes are well
Wi(g) = 2/.3 +2/(1- Q)/(EQ) +1/9, , dimensioned so that they do not drop packets and thus they do
Q(g;w) = min{l,(1-(1-¢)°)(1+(1-¢q)°x not impact the performance of TCP.
<= (- @™ /L= (- 9"}, We shall refer to the system of (4) and (5), plus the natural
F(q) = 1+q+2¢*+4¢%+8¢" + 16¢° + 32¢°, condeiti?)na refer to the system of (4) and (5), plus the natura
and whereb; is the number of packets acknowledged by an 0<p, <1, wevy, (6)

ACK, andT¢ is the basic timeout duration. ] ] )
as theComplementarity Problem Formulati¢@P formulation).

A. Network analysis and complementary formulation
B. Solution algorithms

It is clear that the capacity at each node cannot be exceeded
by the rate of packets that cross it. This leads to the following We provide below two approaches to solve CP. We first show
system of inequalities that the Complementarity Problem Formulation is equivalent to
a Fixed Point FormulationFP formulation). Since conditions
for the existence of fixed point solutions are well known, this
S v | IT (0 =pu) | NiTi(k:) < poy vV (4 will allow us to establish the existence of a solution for the ini-
iel u€m;(v) tial problem. The fixed point approach will also suggest an iter-

where the left-hand term represents the sending rate of Té‘ﬁ’e solution method. We shall ”.‘e.” mt_roduce a second solution
method through a non-linear optimization problem.

connections crossing nodereduced by the number of packets
dropped before reaching the output interface.of

Fixed point iteration approach.
Thus, we have obtained a system|©f inequalities for|V/|

unknownspy, ..., pjv| that we have to solve in order to model the Lemma 1:The CP formulation (4), (5) and (6) is equivalent
performance of TCP connections and the distribution of load tmthe following Fixed Point formulation
network nodes. First, let us show that this system of inequalities

is feasible. Py = Plig.y) {pv—
Proposition 1: Under A2, the system of inequalitigd) is
feasible. Moreover, there is a continuum of feasible solutions. a(uv - Z %)( H (1— pu))Niﬂ(p)) }, (7)
i€l u€m;(v)

Proof. There is an obvious feasible solutign; = 1,Vv €
V', which results in a strict inequality in (4). Since this point isvherea: > 0 and Py, ;;{x} is the projection on the interval



[0, 1], that is, suggests a practical algorithm for its calculation. Namely, we
can calculate a solution by using the following:

0, x<0,
Proag{z} =4 2, 0<2<1,
1, 1< pFD = Prg ) {pS)’“L ®)

Proof:

k k
First let us prove that any solution of CP is a solution of FP., & | Hv — v | IT =P | NTi(p™) },
Take anyv € V. According to the complementarity condition el uemi(v)
(5), if the inequality (4) is strictp,, = 0. Hence, we have

0= PI’[OJ]{—O((/LU - Z’Yiv( H (1 _pu))Nzﬂ(p))}a

i€l wem; (v)

where« is a parameter that can be chosen to control stability
and the speed of convergence.

Mathematical Programming Formulation.
and consequently, satisfies (7). Now, ip, > 0,
Next we propose yet another formulation which also leads
Ay = iy — Z%U( H (1 —pu))NiTi(p)) =0 to an efficient computational algorithm for the solution of the
el wem (v) system (4), (5) and (6). This third formulation is based on the
application of the nonlinear mathematical programming to com-
we havep, = Prg 1{p, }, thatis true, sincg, € [0, 1]. In case plementarity problems [5]. Therefore, we shall refer to it as
bothp, = 0 andA, = 0, the equality (7) holds trivially. Nonlinear Programming formulatio(NP formulation). Let us

consider the following nonlinear mathematical program
Next let us show that any solution of FP is also a solution of

CP. The condition (6) follows immediately from the definition min Z Dozo 9)
of the projection. Next we show that the inequality (4) holds.
Suppose on contrary that, < 0. Then, it follows from (7)

thatp, is necessarily equal to one. Howeverpjf = 1, A, = subjectto
1, > 0. Thus, we came to the contradiction and hence (4) holds.
Finally, we need to show that the complementarity condition (5)

holds, namely, we need to show that it is not possible to have > v | [] (1 —pu) | NiTi(p) + 20 = po,

py > 0 andA, > 0 simultaneously. Suppose on contrary that i€l u€m;(v)

these two strictinequalities hold. The inequallty > 0 implies

thatp, — aA, < 1. Hence, according to (7), 0<z, 0<p, <1, vweV
Pv = Pv — O»/A:U'

Note that variables, play the same role as the supplementary
The latter implies thaf\,, = 0, which is the contradiction. Thus, variables introduced in linear programming. They transform a
the complementarity condition (5) holds as well. This completéystem of inequalities into a system of equations. The intuition
the proof. m behind the mathematical program (9) can be explained as fol-
lows: we start from a feasible point inside the region defined by
Now, using the FP formulation, we are able to prove the exigequalities (4), and then, by minimizing, .\, pv 2y, We try to
tence of a solution to our model. satisfy the complementarity conditions (5). Since in (9) we min-
imize a continuous function over a compact set, this program has
Theorem 1:The TCP network model (4), (5) and (6) has & global minimum. Furthermore, the value of the objective func-
solution. tion evaluated at this minimum is zero if and only if the original
system (4), (5), (6) has a solution. Thus, due to Theorem 1, the

Proof: From Lemma 1 we know that the TCP networkn ihematical program (9) provides a solution to the system (4),
model (4), (5) and (6) is equivalent to the Fixed Point formul%) (6).

tion (7). Under Assumption A2, the mapping (7) is well-defined

and continuous on the compact and convexsety [0, 1]. Fur-  we would like to emphasize that the main advantage of using
thermore, (7) maps the set,cy [0, 1] into itself. Hence, all ejther FP formulation or NP formulation is that one does not
conditions of Brouwer Fixed Point Theorem [8], [18] are satigieed to care as in [3] about locating bottleneck nodes in order to
fied and we can conclude that the system of (4), (5) and (6) h&stablish a system of equations that solves the problem. If there

a solution. B s noa priori information on the location of the bottlenecks,
then one can need to check up2d’| cases. As we shall see
Fixed point iteration algorithm. later in the section on the Benchmark examples, the localization

of bottleneck nodes is not always so intuitive. A small change
The FP formulation provides not only the theoretical meams network parameters may shift the bottleneck from one node
to prove the existence of a solution to our model, but it algo another.



C. Rough approximation model for TCP throughput. We are interested in the case when TCP
has no restrictions on its throughput other than the network ca-

For TCP/IP networks with high delay-bandwidth productdacity. Hence, we také/’;,,, = oo for our analytical calcu-
the packet loss probabilities, are typically small (connec- lations andiW;, ., = max,cy {u,} for our numerical calcula-
tions operate at large windows). Therefore, we can simplify ofipns. In all our experiments, we have used the New Reno TCP

model even further. Equations (1) and (4) take now the form Version and we have séilSS; = 512Bytes. For routers, we
have chosen RED as queue management policy with the follow-

Ky = Z Do, ing parameters: mithresh=10 packets, makresh=30 pack-
ets, queudimit=50, p.max=0.1, and averagingeight=0.002.

VET;
D i NiTs < pus. A. One node case
i€l

As an example, if we use the square root formula for TCP For completeness of the presentation let us consider a single
throughput, we obtain the following system of equations anghde example. Namely, let different type TCP connections

inequalities cross a single node. In the case of the rough approximation
I model, we have the following equation for the packet loss prob-
> Yig——— <, vEeV, (10) ability
i€l \/ ZUETI’I Po m & & -
el
o | o — ZV' ki —0. vevV (11) Clearly, the above equation always has a unique solution which
v v . X% ) 7 |S |Ven b
i€l \/ ZUGW,’: Dov g y . m N \/7 5
iy/Ci
where we denotéV;/c/6; by k; to simplify notations. In the Pe=3 (Z 0. ) : (12)
sequel, we shall refer to the above system asdbgh approxi- i=1 !

mation modelNote that the rough approximation model can beote that if the delay-bandwidth products are large; (>> 1),
written in an elegant form by using the matrix notations intrahe above formula gives a small packet loss probability. We may
duced in the beginning of the present section. Namely, the éxpect that the rough approximation model and the following
equalities and the equations for the rough approximation modebre precise model have close solutions
can be written as follows:

N, (¢

2 -p) = p
2.5, , =P =n

[NTIT < M, [M — [NT|T)upy = pto.

.Remark 1:There are arguments in favor of infinke;, ;. In _The above equation leads to the following equivalent quadratic
this case, we allow TCP to load the network as much as possi ation
without any limitation from the side of the receiver. Clearly it )
is important to model such a situation as well. Note that if we p=(—+2p+1=0,
takeW, .. = oo, the Assumption A2 will be violated at points i

x; = 0. However, if one choosei = = max,ey {1, }, the Withp. asin(12). Ithas two roots:

Assumption A2 holds and TCP rates are only bounded by the 1 1 T
network resources. Pro = = (( +2) x4/ —(—+ 4)> .
' 2 \'ps Dx D

l1l. BENCHMARK EXAMPLES The root corresponding tof” in the above expression is greater
than one. Therefore we choose the root corresponding-to “

In this section we present several benchmark examples. E\'/:é)rq small values op. this root has the following asymptotics

though we have succeeded to prove the existence of a solu-
tion to our model, the uniqueness is still an open problem. We

are able to show the uniqueness for some benchmark exampfegis, we can see that indeed for the case of large delay-
We compare the analytical results and approximations with thgndwidth products the rough approximation model gives re-
fixed point iterations (8), the numerical solution of mathemayits that are very close to the ones of the original model (4), (5)

ical program (9) and with simulations obtained via NS. Acand (6). In particular, the two models have unique solutions.
tually, the numerical solutions obtained via (8) and (9) coin-

cide within the computer precision. However, we would like

to note that the method of fixed point iterations achieves tRe Simple two node tandem network

solution much faster in comparison with (9). We have cho-

sen the parameters of the simulations so that to avoid timedet a group ofN TCP connections of the same type succes-
outs. Thus, we could use the simple square root formula @yely cross two nodes with capacities andu. (see Figure 1).

p=p. — 2% + o(p?).



T The above inequality and equation lead to
M1 H2 > L

p2 = ——=(1—p2) < pr (1 —p2) < pr.
Fig. 1. Topology for Example 2 \/ZTQ

The latter means that, < p, which is the contradiction, and
hence possibility (a) cannot be realized. In case (b), according

We denote the probability of packet loss at the first node by complementarity conditions (14), inequalities (13) become
p1 and the probability of packet loss at the second nodg:by equalities which lead to

From (2) the sending rate of a TCP connection is given by
po = p1(l —p2) < pa.

1 c
T(pr,p2) = o\ p1 + (1—p1)ps This is again the contradiction, and consequently, possibility (b)

cannot be realized as well. Only possibility (c) is left. In this

Then, according to (4), we have case, (13) and (14) imply
T(p1,p2)(1=p1) < pa, T(p1,p2)(1=p1)(1=p2) < p2. (13) \kﬁu —p1) = 17)
P1
wherek = N./c/6. The complementarity conditions (5) take L
the form —(1-—
p1) < pia. (18)
p1 (1 — T(p1,p2)(1 —p1)) =0, v

If equation (17) has a solution, inequality (18) is satisfied as
p2 (12 = T(p1,p2)(1 = p1)(1 = p2)) = 0. (14) w1 < ps. The existence and uniqueness of a solution to (17) has
First let us consider the rough approximation model: been shown in the previous subsection. Therefore, the system

(13),(14) has a unique solution jf; < ps. In particular, we
k <y k < (15) conclude that in this case the first node is a bottleneck.
VP1+p2 b VP1+Dp2 Ha,

The caseu; > u9 is more difficult to analyze. It turns out

that if we setu; = us = p and we start to increase the value of

k k
P <'“1 B m) =0, p2 (“2 B m) 11, then initially there will be an intervay, 1.*) inside which
there is a solution to the system of equations

We note that for the rough approximation model, the analysis
of the two casesy; < po andpuy > po is the same. Letus T'(py,p2)(1—p1) = p1, T(p1,p2)(1—p1)(1—p2) = pa, (19)
consider for example the cage < u». Clearly,

=0. (16)

with bothp; andp, positive, and then for the intervgl*, oo),

k < the second node becomes a bottlenggk £ 0). To analyze
/D1 + p2 H2 this phenomenon, one can directly solve the system of equa-

tions (19) for the intervaly, u*). However, it is simpler to use
and hence from complementarity conditions (16), we conclugie “perturbation approach”. Takg = 1 + ¢ andu, = p and

thatpe = 0. The first inequality in (15) becomes equality. Theook for the solution of the system (19) in the following form
latter leads to the expression for the packet loss probability jf(s) = p* + g + ... andpa () = gae + ... . p is the solution

the first node. , , of equation (17) ang; andg are two coefficients to calculate.
= L _ N-c After the substitution of these series into equations (19), expand-
pi o pio? ing nonlinear expressions as power series and collecting terms

Now let us consider the cagg = s = . Inequalities (15) with the same power af, we obtain the next system for the first

which become equalities, and conditions (16) are now satisfi8¢ier approximation

for all p; andp, such thatp; + p2 = N2¢/u?6%. That is, the +(1=p)g =0

rough approximation model has a non unique solutigm, if= « p1)d ’

H2. . . Zp* p*
(L+pDar + (1= pi)a = — 11: -

Next we analyze the more precise model (13),(14). In par- ) ) ]
ticular, we shall see that (13) and (14) always possess a unidf¢ Solution of the above equations gives

solution. First we consider the cage < uo. According to -
conditions (14), there could be three possibilities: (a) only the pi(e) =pi — et (20)
second node is a bottlene¢l; = 0,p, > 0); (b) both nodes k
are bottleneckgép; > 0, po > 0); and (c) only the first node is a o -
bottleneck(p; > 0,p2 = 0). In case (a), (13) and (14) imply pa(e) = ms +..= m + ... (21)
1
k k Using the approximate expression for(c), we can estimate

(1= p2) = pa.

o< o
N w1, N p*. Namely,u* = p+ &, wheres* = k,/pj.



Two node tandem network with only one type TCP sessions “ y .
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In turn, the above set of equations gives the following single
T, Ts equation for unknown:.
Fig. 3. Topology f k1
g. 3. Topology for Example 3 — (24)

k2 k2
2 + 2
o _ o (m1—2)*  (p2 —2)
By using either the fixed point iteration method (8) or the non-
linear programming (9) we can obtain the packet loss probalijenote the left hand side of this equation p). Next, we
ities p1 andp, (see Figure 2). At the same Figure 2 we alsprove that the graph of = f(x) intersects the ling = z only
plot the packet loss probabilities obtained by NS. The followingt one point (see Figure 4). Towards this end, we compute the

parameters were used: = 40, 0 = 204ms, u = 10Mbits/s.  derivative

We would like to note that the analytical approximations (20) i k3 n k2 )
and (21) are so good that they cannot be distinguished from the roN ' (1 — )~ (2 — )3
plots obtained via (8) or (9). fiz) =~ ;2 B e

_|_
(o —x)*  (p2 —)?

C. Two node network with cross traffic and observe that it is negative far € [0, min{uq, ua}).
Hence, the functionf(x) is monotonous on the interval
Next we consider a two node tandem network with cross trafy min{;,, 1,}), and consequently, equation (24) always has
fic (see Figure 3). a unique solution. The latter implies that the system (22),(23)
has a unique solution as well. Note that the system (22),(23) can

Let us show that both nodes in this example are bottlenecis, sqyed via the direct application of Newton type methods for
Namely, we need to show that the following system of equatiofss solution of nonlinear systems.

always has a solution
Let us now consider a particular symmetric case when we are

k1 ko : . .
4 = [, (22) able to obtain exact analytical expressions. Let= sy = p,
vPitp2  /P1 01 = 0, = 03 =: 0 andN; = N, = N3 =: N. Clearly, in this

casep; = po = p. After straightforward calculations, we get

M ks (23)

ViiEm v _(14V2)? eN? _ 342v2 oN?
wherek; = N;,/c;/0;. Here we first analyze the rough approx- 2 (O1)? 2 (0p)?
imation model. Later on we shall show that the refined approgs a1so obtain
imation model gives practically the same results as the rough T T3 NG
approximation model. The system (22),(23) is equivalent to the T 2.
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Fig. 5. Two node network with cross traffic Fig. 6. Two node network with cross traffic

This symmetric two node network with cross traffic was an-
alyzed in [7] to study TCP fairness. In particular, in [7], the

ratio T,/T) is estimated as 1.5. Thus, we can see that our L } Ta
model agrees well with previous observations. The fact that T,
T,/T; ~ 1.5 means that TCP fairness is between max-min fair- H1 Ha He [
ness {»/77 = 1) and proportional fairness§/7; = 2) [2], ’7 1 T

[10], [13]. 2

. . Fig. 7. Topology for Example 4
Next we study a non symmetric case. We fix = p = 9 pology P

10Mbits/s and we vary the value gf; (The other parameters
areN; = Ny = N3 = 20,60, = 0y = 03 = 204ms) We pIOt
the packet loss probabilities , p. and the values of throughputs
Ty, T, T5 with respect to the ratig; /u2 in Figures 5 and Fig-

ure 6, respectively. Note that if we incregsefrom the value = 12Mbits/s, us = 8Mbits/s and we vary capacity
v and keepy; unchanged, the throughput of connection 3 i3, over the range [10Mbits/s;22Mbits/s]. In Figures 8 and 9,
deteriorated. At the first sight, this fact might appear to be syjrn plot packet loss probabilities;, p», ps, and sending rates
prising, as we are only increasing the total capacity of the net; 1, Ty, respectively. The probabilities are calculated with
work. However, we can propose the following explanation fqpe help of the fixed point iteration method (8). The plots show
this phenomenon: with the increase of the capacity of nodet@at first only the node 2 is a bottleneck (we call it, phase 1), then
the throughput of type 1 connections increases as well; the lafigiie 3 also becomes a bottleneck (phase 2), then with the further
creates an additional load on node 2, which leads to the detefigrease in the value of,, all three nodes become bottlenecks
ration in the performance of connections of type 3. (phase 3), and finally for large values @f only nodes 1 and
. 3 are left as bottlenecks (phase 4). Even though this sequence

, Finally, we have plo_tted the same graphs for the more pr@f’changes in the network is quite intuitive, it is practically im-

cise model (4),(5) and it turns out that for the set of the netWOHf)ssible to relay on intuition to predict the boundaries for these

parametg-rs underl consﬂeranor:, t?e res#lts from the_roughg ases. This fact highlights utility of the formal approaches such
proximation model and the results from the more precise modgl - and NP formulations.

(4),(5) are practically indistinguishable. The figures also show
graphs from NS simulations which validate our modeling re- The non monotonous behavior of the sending f&tés an-
sults. other interesting fact. We have already noticed such behavior in
the previous Example 3; the increase of the capacity in one part
of the network can sometimes lead to the decrease of through-
puts of some TCP connections. We also note that the previous
examples of one node network and two node tandem network
Finally let us consider a three node tandem network (sedth cross traffic, are the limiting cases of this more general
Figure 7). We set the following values of the parameter®pology and can be used to construct approximations when ei-
01 = 304ms, 05 = 03 = 204ms, Ny = Ny = N3 = 20, therug << 1, 3 OF o >> i1, 43.

D. Three node tandem network



Packet loss probabilities

Throughput (in packets/s)

Several approaches exist for modeling and analyzing TCP/IP
networks. On one hand, there is the approach that focuses Sy}
single TCP connection and calculates its throughput as a fur]%:-
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Fig. 9. Three node tandem network

IV. CONCLUSIONS

tion of the characteristics of the packet loss process.

other hand, there are approaches that consider the whole
work and try to predict the throughput of all connections si- ./

22

On the

simple Benchmark network examples demonstrate that the lo-
calization of bottlenecks is not intuitive and TCP throughput is

not always a monotonous function of the total capacity of the

network.

V. APPENDIX. ANOTHER PROOF OF EXISTENCE

Here we give another proof of existence of a solution to (4),
(5) and (6), which is based on the Nash Theorem [8] and uses
the technique proposed in [16]. Unfortunately, it is possible to
use this approach only in the case of a simple relation between
the throughpuf; and the packet loss probability on the path
such as square root formula. We chose to present both proofs
since problems of obtaining the existence of fixed point solu-
tions are encountered often in other settings and one or the other
proof techniques could thus be used in other networking con-
texts (such as in the framework of [3]).

Theorem 2:Let the relation between the throughgiitand
the packet loss probability on the path be given by the square
root formula (2). Then, the system of (4), (5) and (6) has a
solution.

Proof: Let us define the functions

H (l_pu) X

uem; (v)

. 1 C; Wzmaa:
szsl mln{a m, 0.

ho(po,p”) = _(fv(pvvpv))zv

wherep” = (p1,..., Pu—1,Pv+1, - Pv|). We have introduce
the notationp?, as we want to study the behavior of functions
f.», andh,, with respect to the probability,, having the other
probabilities fixed.

fv(pvvpv) = My — Z’Yw

icl

and

Next let us show that the functiorig, are quasi-concave in
po, that is, the level setép, |h, (p,,p”) > a} are convex. We
note that the functiorf, (p,, p¥) is a constant minus the sum of
functions of the form

. 1
o(pv) = c(1 = py) mm{\/ﬁ,d},

ere the constanis b € [0,1] andc depend orp”. We note
at the functionp(p,,) is piece-wise differentiable o), 1]. In
Hg{_ticular, we have

multaneously, taking into account their mutual interaction. This 1

paper belongs to the second research direction. We proposed a
model for the network and we presented three equivalent formu-
lations (CP, FP and NP) of it. In particular, FP and NP formula-
tions lead to efficient computational procedures and FP formula-
tion helps us to prove the existence of a solution. The presented

¢'(pv) =
—cd, if —— >d,
va-+bp
_c(a + bp,) +0.5(1 — py) i 1 <d
(a+bp)?? " Vatbp

model does not require the pre-identification of bottleneck linkéence, we can see that this function is decreasing on the interval
and include the possibility of the source rate limitation. Eveld, 1]. Since the sum of decreasing functions is again decreasing,



the functionf, (p., p¥) is increasing ip,,. Now we consider two [20] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modeling TCP Through-
cases: (a)t‘l)(()’pv) > 0 and (b)fv(o,p”) < 0. In the case (a)7 g:tst:mig?;ilggg/lodel and its Empirical ValidationACM SIGCOMM
the function, (p., p*) is decreasing ip,, for the whole interval |21} v. paxson, "End-to-End Routing Behavior in the InterneACM SIG-

[0, 1], and hence it is quasi-concave. Note that in the case (a) the COMM, Aug 1996.

; v i i ; — [22] M. Vojnovic, J.-Y. Le Boudec, and C. Boutremans, “Global fairness of
functionh, (pv,p ) achieves its maximum af, = 0. In the case additive-increase and multiplicative-decrease with heterogeneous round-

(b), asfu(1,p") = i > 0, the functionf, (p,, p”) necessarily trip times”, IEEE INFOCOM March 2000.
crosses zero on the internv@l 1]. The latter implies that in the

case (b) the functioh, (p,, p¥) is unimodal, and hence, quasi-
concave. Moreover, in this case its maximal value is equal to
zero.

Since all functions:, (p,, p”) are quasi-concave jm, for any
fixed p¥, we conclude from the Nash theorem [8] that there ex-
ists at least one sép7, ...,pl*v‘) € X,ev [0, 1] such that

py = arg max hy(p1, ..., Py_1,Pvs Pyg1s - Pjy)), v E V.
Pv€[0,1]

From the proof of the quasi-concavity bf (p,,, p¥), it immedi-
ately follows that eithep? = 0 or f,(p},p"*) = 0, and in both
casesf, (pk,p"*) > 0. Hence the sefp7, -+ Pjy|) is @ solution
to (4) and (5). |
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