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Modeling Internet backbone traf�c at the �ow level
Chadi Barakat∗, Patrick Thiran, Gianluca Iannaccone, Christophe Diot, Philippe Owezarski

Abstract� Our goal is to design a traf�c model for non
congested Internet backbone links, which is simple enough
to be used in network operation, while being as general
as possible. The proposed solution is to model the traf�c
at the �ow level by a Poisson shot-noise process. In our
model, a �ow is a generic notion that must be able to
capture the characteristics of any kind of data stream. We
analyze the accuracy of the model with real traf�c traces
collected on the Sprint IP (Internet Protocol) backbone
network. Despite its simplicity, our model provides a good
approximation of the real traf�c observed in the backbone
and of its variation. Finally, we discuss the application of
our model to network design and dimensioning.

Index Terms� Traf�c modeling, Poisson shot noise,
noncongested IP backbone links, measurements.

I. INTRODUCTION

Modeling the Internet traf�c is an important issue. It
is unlikely that we will be able to understand the traf�c
characteristics, predict network performance (e.g., for
Quality of Service (QoS) guarantees or Service Level
Agreement (SLA) de�nition), or design dimensioning
tools without analytical models. The successful evolution
of the Internet is tightly coupled to the ability to design
simple and accurate models.

The objective of this work is to design a traf�c model
that can be used by network administrators to assist in
network design and management. Such a model needs to
be simple, i.e., it has to be fast to compute and to rely on
simple parameters that can easily be acquired by a router.
Currently, network operators have very basic information
about the traf�c. They mostly use SNMP [10] that
provides average throughput information over 5 minutes
intervals. An analytical model could provide more accu-
rate information on the traf�c. It could be used in various
applications such as detection of anomalies (e.g., denial
of service attacks or link failures), prediction of traf�c
growth, or assessment of the impact on network traf�c of
a new customer or of a new application. Consequently,
a second desired property of the model is to be protocol
and application agnostic: it needs to be general enough to
evaluate link throughput independently of the application
nature and of the transport mechanism.

∗ Corresponding author.

Packet level models for high speed links are dif�cult
to calibrate, because of the high level of multiplexing of
numerous �ows whose behavior is strongly in�uenced by
the transport protocol and by the application. In addition,
monitoring the traf�c at the packet level becomes critical
at OC-192 and above link speeds.

Recently, a new trend has emerged, which consists
in modeling the Internet traf�c at the �ow level (see [5]
and the references therein). A �ow here is a very generic
notion. It can be a TCP (Transmission Control Protocol)
connection or a UDP (User Datagram Protocol) stream
(described by source and destination IP addresses, source
and destination port numbers, and the protocol number),
or it can be a destination address pre�x (e.g., destination
IP address in the form a.b.0.0/16). Flows arrive at random
times and share the available bandwidth in the network
according to certain rules. From a simplicity standpoint,
it is much easier to monitor �ows than to monitor packets
in a router. Tools such as NetFlow already provide �ow
information in Cisco routers 1.

In this paper, we propose a model that relies on
�ow-level information to compute the total (aggregate)
rate of data observed on an IP backbone link. We are
interested in capturing the dynamics of the traf�c at short
timescales (i.e., in the order of hundreds of milliseconds).
For the purpose of modeling, the traf�c is viewed as the
superposition (i.e., multiplexing) of a large number of
�ows that arrive at random times and that stay active for
random periods. As explained earlier, a �ow is a generic
notion that must be able to capture the characteristics of
any kind of data stream.

In contrast to other works in the literature (e.g., [5],
[7], [18]), we choose to model a link that is not con-
gested (congestion possibly appears elsewhere on the
�ow path). This assumption is valid, and is in fact
the rule, for backbone links that are generally over-
provisioned (i.e., the network is designed so that a
backbone link utilization stays below 50% in the absence
of link failure [15]). It is driven by our main objective
to provide a link dimensioning tool usable in backbone
network management.

The contribution of this work is the design of a �ow-
based Internet traf�c model using simple mathematical

1http://www.cisco.com/warp/public/732/Tech/net�ow
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tools (Poisson shot-noise). Thanks to the notion of shots
we introduce in the purpose of modeling �ow trans-
mission rates, our model is able to compute the total
rate of data in the backbone using �ows' characteristics
(i.e., arrivals, sizes, durations). Once the model is in-
troduced, the paper focuses on its confrontation to real
data collected on the Sprint IP backbone network. This
confrontation illustrates the ef�ciency of the model in
computing the traf�c in the backbone and its variation.
We then discuss the application of our model to network
design and management. In particular, we study the im-
pact of the different parameters of the model (�ow arrival
rate, �ow size, �ow duration) on the characteristics of the
traf�c in the backbone.

In the next section, we survey the related literature
and position our contribution. Section III describes the
traces we use throughout the paper for the validation of
our model. In Section IV, we present our model and
we analyze its performance in Section V. Section VI
explains how shots can be determined, and Section VII
discusses some issues related to the practical use of
our model. In Section VIII, the model is confronted
to the real traces. We discuss the use of our model to
network dimensioning in Section IX. Conclusions and
perspectives on our future work are presented at the end.

II. RELATED WORK

Many authors ([11], [14], [21], [24]) have analyzed
the Internet traf�c and have shown that it behaves in
agreement with long range dependent and asymptotically
self-similar processes. This �nding made a revolutionary
step departing from more traditional short-range depen-
dent Markovian models.

The other body of the literature (e.g. [5], [7], [18])
studies fairness issues by modeling Internet traf�c at
the �ow level. The main objective is to show how the
capacity of the network is shared among the different
�ows, or equivalently, to compute the response times of
�ows. Processor sharing queues [20] are used to model
congested links in the network. In [5], an M/G/∞ model
is proposed for the number of active �ows on a non-
congested backbone link. It coincides with a particular
case of our model where all �ows would have exactly
the same rate. In [7], a multi-class processor sharing
queue is used to compute the queue length and the packet
loss probability in an Active Queue Management buffer
crossed by TCP �ows of different sizes. The average
response time of a TCP �ow is obtained. Note that all the
above �ow-based models make the assumption that �ows
arrive according to a homogeneous Poisson process.

Our model is different from the above works in that
(i) it is designed for non congested links as those

Date Length Avg. Link Utilization
Nov 8th, 2001 7h 243 Mbps
Nov 8th, 2001 10h 180 Mbps
Nov 8th, 2001 6h 262 Mbps
Nov 8th, 2001 39h 30m 26 Mbps
Sep 5th, 2001 10h 136 Mbps
Sep 5th, 2001 7h 187 Mbps
Sep 5th, 2001 16h 72 Mbps

TABLE I
SUMMARY OF OC-12 LINK TRACES

found in the backbone, (ii) it uses any �avor of �ow
de�nition to model the variation of the traf�c, and (iii)
it focuses on the variation of the traf�c, a performance
measure of particular interest for network engineering
(i.e., provisioning, SLA de�nition, anomaly detection,
etc.).

III. MEASUREMENT TESTBED

We consider data collected from OC-12 (622 Mbps)
links on the Sprint IP backbone. The monitored links
are over-provisioned so that the link utilization does
not exceed 50% in the absence of link failures. The
utilization is measured over relatively long time intervals,
for example the 5 minutes period given by SNMP. In
short, the infrastructure we use to collect packet traces
consists of passive monitoring systems that tap opti-
cal links between access routers and backbone routers
(see [15] for details on the monitoring infrastructure).
Every packet on those links is timestamped and its �rst
44 bytes are recorded to disk.

In this paper, we present data from 7 different internal
POP (Point-Of-Presence) links collected on September
5th and November 8th 2001 in three different POPs
of the backbone. Table I provides a summary of the
traces. The traces have different link utilizations (ranging
from 26 Mbps to 262 Mbps), resulting in different trace
lengths.

We divide each trace into 30 minutes intervals. We
tried various intervals and we found that 30 minutes is
a good compromise in term of (i) keeping the arrival
process stationary, and (ii) giving enough points for
the analysis of our model. We discuss later in more
details the consequence of this analysis interval on our
observations.

We apply the model to each interval and we validate its
ef�ciency in computing the traf�c. We focus on the �rst
two moments of the total data rate, namely the mean and
the variance. Considering the variance in addition to the
mean allows a better characterization of backbone traf�c.
As we will see, the variability of the traf�c on some links
of the backbone can be as high as 30% compared to the
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mean. The importance of the �rst two moments of the
traf�c in dimensioning backbone links will be illustrated
in Section IX.

For each 30 minutes interval, we measure the coef�-
cient of variation of the total rate ρR (standard deviation
divided by the mean), and we compare it to the value
given by the model. Our model only requires information
on �ows, which we derive from the traces (e.g., average
arrival rate of �ows).

In the measurements, we use two de�nitions of ��ow�:
(i) Flow de�ned by 5-tuple, which is a stream of packets
having the same source and destination IP addresses,
same source and destination port numbers, and same
protocol number.
(ii) Flow de�ned by pre�x, which is a stream of packets
having the same /24 destination address pre�x (i.e., only
the 24 most signi�cative bits of the destination IP address
are taken into account).

In both cases, the size of a �ow is measured in bytes,
while the duration is equal to the time difference between
the �rst and the last packet of the �ow. In order to
identify the end of a �ow, we use a �xed timeout of
60 seconds: if the timeout expires before recording any
additional packet, the �ow is considered completed. A
�ow made of only one packet is discarded (the duration
would be zero), and that packet is not counted for the
purpose of the mean and the variance of the measured
total rate. Flows that belong to more than one 30 minutes
interval are split over the intervals they overlap. We
found that this arti�cial splitting affects only a small
number of �ows, as shown in Figure 1. The graph on
the left-hand side shows the cumulative number of �ows
that arrive during one 30 minutes interval. We use the
second de�nition of �ow (i.e., /24 pre�x) for this graph,
since the splitting of �ows has more impact with this
de�nition than with the �rst one (durations of �ows are
longer in average with the second de�nition). The second
graph is a zoom around 0 of the �rst one. The arrival
rate remains pretty constant throughout the 30 minutes
interval, except for the �rst 0.4 seconds, where we count
only around 15,000 extra �ows that are the continuation
of �ows started in the previous interval, out of a total of
680,000 �ows. We consider therefore that the splitting
of �ows on these intervals has a nonzero, yet marginal
effect on the arrival process, and in order to keep the
model tractable, we do not correct for these effects.

As we mentioned in the Introduction, our model can
operate with any de�nition of �ow. The de�nitions we
consider in this paper are no more than two examples
of particular interest, corresponding to two different
aggregation levels.
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Fig. 1. Cumulative number of �ows during one 30 minutes interval

IV. THE MODEL

In this section, we describe the model (Poisson shot-
noise) used for data �ows arriving on a backbone link.
It is based on the following two assumptions.

Assumption 1: Flow arrivals follow a homogeneous
Poisson process of �nite rate λ.

This assumption can be relaxed to more general pro-
cesses such as MAPs (Markov Arrival Processes) [1],
or non homogeneous Poisson processes [6], but we will
keep working with it for simplicity of the analysis.
Poisson might be the right model if we consider recent
�ndings by [2], [8] about the process of �ow arrivals in
the backbone of the Internet, where a large number of
�ows are multiplexed. It is shown in [8] that the distribu-
tion of �ow inter-arrival times is very well approximated
by a Weibull with a shape parameter smaller than 1,
and that as the traf�c intensity increases, �ow inter-
arrival times become independent, whereas the Weibull
shape parameter gets close to 1. Thus, the �ow arrival
process tends to be in good agreement with a Poisson
process. This limit is explained by well known results
on the superposition of marked point processes. The
Poisson property is also known to apply to aggregates
at the session level [14], [22], [24]. Note that since our
model does not depend on a particular de�nition of �ow,
one can group packets into sessions that have Poisson
arrivals, and apply the model at the session level.

We computed the distribution and auto-correlation
of the �ow inter-arrival times on the collected traces.
Indeed, we found that they are close to those of a
homogeneous Poisson process having the same rate. We
show the results for one 30 minutes interval in Figure 2.
The other 30 minutes intervals provide similar results.
This �gure corresponds to the two de�nitions of �ow.
The graphs on the left-hand side show the quantile-
quantile plot (qq-plot) of �ow inter-arrival times, and
those on the right-hand side show their coef�cient of
auto-correlation for different lags. The low level of
correlation is clear from the graphs. The distribution
of �ow inter-arrival times still has a slightly heavier
tail than exponential, that can be well modeled by
a Weibull with shape parameter 0.96 in both �gures.
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Fig. 2. Distribution and auto-correlation of inter-arrival times
{Tn+1 − Tn}

This heavy tail is of small importance for our model
given the relatively small number of points that deviate
from the diagonal. Although it is a deviation from our
modeling assumptions, neglecting this heavy tail strongly
simpli�es the computations without impacting too much
the model accuracy.

Denote by Tn, n ∈ Z, the arrival time of the n-th �ow,
by Sn its size (e.g., in bits), and by Dn its duration (e.g.,
in seconds). A �ow is called active at time t when Tn ≤
t ≤ Tn+Dn. De�ne Xn(t−Tn) as the transmission rate
of the n-th �ow at time t (e.g., in bits/s), with Xn(t−Tn)
equal to zero for t < Tn and for t > (Tn+Dn). In other
words, Xn(t−Tn) is zero if �ow n is not active at time
t. We call Xn(·) the �ow rate function or shot. Xn(·)
depends on Sn, Dn and on the dynamics governing the
�ow rate. For example, for TCP �ows, the dynamics of
the �ow rate is a function of the dynamics of the window
size, which in turn is a function of the round-trip time
of the TCP connection, and of the features of the packet
loss process [1], [9], [12], [23]. Note that

∫ Dn

0
Xn(u)du = Sn. (1)

Our second assumption on Xn(·) is as follows.
Assumption 2: Flow rate functions are independent of

each other and identically distributed.
The assumption on the independence of �ow rate

functions is based on the following facts: (i) The link
we consider is a backbone link kept under-utilized by
engineering rules. It does not therefore experience con-
gestion, and so it does not introduce dependence among
the �ow rate functions. (ii) The �ows sharing this link
have a large number of different sources and destinations,
and use many different routes before being multiplexed
on the backbone link. The assumption of identical dis-
tribution can be relaxed by introducing multiple classes
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Fig. 3. Correlation of sequences {Sn} and {Dn}

(based on transport protocol, �ow size, or any other met-
ric). We keep however a single class in this paper, hence
{Xn(·)} are iid (independent and identically distributed).
A direct consequence of Assumption 2 is that sequences
{Sn} and {Dn} also form iid sequences, although for the
same n, Sn and Dn are obviously correlated: the larger
Sn, the larger Dn (in general). Finally, we assume that
E [Dn] is �nite.

We computed the auto-correlation of sequences {Sn}
and {Dn} on our traces. We found indeed that these
sequences exhibit little correlation. The result is illus-
trated in Figures 3, where we show the auto-correlation
coef�cients of the two sequences for one 30 minutes
interval, using our two de�nitions of �ow. The auto-
correlation drops quickly to zero after lag-0.

De�ne R(t) as the total rate of data (e.g., in bits/s) on
the modeled link at time t. It is the result of the addition
of the rates of the different �ows. We can then write

R(t) =
∑

n∈Z
Xn(t− Tn). (2)

This model is a Poisson shot-noise process [6], [13],
where the term �shot� is synonymous here of ��ow rate
function�. In the particular case where Xn(t − Tn) =
1{t∈[Tn,Tn+Dn]}, that is, where shots are rectangles of
height 1 and length Dn, the process (2) is the number
of clients found at time t in an M/G/∞ queue [19], if
clients are identi�ed with �ows. We will allow however
for �shots� with a more general shape than a rectangle
of height 1, and we will see that this is indeed essential
to characterize the total data rate on backbone links.

Next, we look for the moments of the process R(t) in
the stationary regime. We always assume that we have
reached the stationary regime, which exists for �nite λ
and E [Dn]. We state a result for the Laplace Stieltjes
Transform (LST) of R(t), that allows to compute all
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moments of R(t), as well as its �rst order distribution.
For the particular shapes of the shot presented in Fig-
ure 4, we will see that with only three parameters (λ,
E [Sn] and E

[
S2
n/Dn

]
), our model is able to compute

the average and the variation of the backbone traf�c.

V. PERFORMANCE ANALYSIS

A. LST and moments of the total rate
We state in this section the expression of the LST

of R(t), which we denote as R̃(w) = E
[
e−wR(t)

]
,

Re(w) ≥ 0. We also give the expressions of the average
and variance of R(t), which we denote as E [R(t)] and
VR, respectively.

Let N(t) be the number of active �ows at time t.
Assumptions 1 and 2 imply that the total data rate R(t)
at time t is the sum of a random number N(t) of iid
random variables which are the rates of active �ows.
This leads to the following expression of R̃(w).

Theorem 1 ([4]): For w ∈ C and Re(w) ≥ 0, the
LST of the total rate is

R̃(w) = exp
(
λE
[∫ Dn

0
e−wXn(u)du

]
− λE [Dn]

)
.

By differentiating with respect to w and then setting w
to 0, the LST in Theorem 1 can give us all the moments
of the total rate in the stationary regime. In particular,
the two �rst moments are as follows:

Corollary 1: The average of the total rate
is E [R(t)] = λE [Sn], its variance is VR =
λE
[∫ Dn

0 X2
n(u)du

]
.

The mean and variance of the total rate are two
important performance measures an ISP needs to know
in order to properly dimension the links of its network.
A backbone link has to be provisioned so as to absorb
the average of the total rate as well as its variations.
In contrast to the average, our model tells us that the
variance of the total rate is a function of the durations
of �ows and their rate functions. This requires some
assumptions (or more information) on the dynamics
of �ow rate. Next, we provide approximations of the
variance of R(t) for some particular �ow rate functions.

B. Two particular shot shapes
Before moving to more general models, let us examine

the two particular cases shown in Figure 4a and 4b.
1) Rectangular shots: First, we consider the case

where the rate of a �ow is constant and equal to Sn/Dn

(which gives the rectangular shot of length Dn and
height Sn/Dn of Figure 4a). Corollary 1 yields that the
variance of R(t) is equal to VR = λE

[
S2
n/Dn

]
.

The rectangular assumption is the simplest one; the
only generalization from an M/G/∞ model is the height
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(a) Rectangular shot (b = 0)
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(b) Triangular shot (b = 1)
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Fig. 4. Simple models for shots

of the �shot� which is now variable. With this assump-
tion, we only capture the variation of the total rate caused
by the variation of N(t) and by the variation of the ratio
Sn/Dn. It is easy to show that among all possible shot
shapes, rectangular shots achieve the lowest variance VR
of the total rate [4, Theorem 3].

2) Triangular shots: Another assumption is to con-
sider that the rate of a �ow linearly increases with
time (Figure 4b). This assumption is inspired from the
dynamics of TCP transfers that form a large majority of
the �ows in IP backbones [15]. In Section VI-B, we will
see that triangular shots are indeed representative of TCP
�ows under some conditions. For a �ow of size Sn and
of duration Dn, the rate is assumed to increase linearly
from zero to 2Sn/Dn, with a mean equal to Sn/Dn.
At a time t between Tn and Tn + Dn, we can write
Xn(t−Tn) = (2Sn/D2

n)(t−Tn). Corollary 1 yields that
the variance of R(t) is equal to VR = 4λ

3 E
[
S2
n/Dn

]
.

Again, the variance is a multiple of E
[
S2
n/Dn

]
. As

expected, the variance is larger than in the rectangular
case (by a multiplicative factor 4/3).

VI. DETERMINATION OF THE SHOT

Once we have the shot function Xn(·), it is thus easy
to compute the moments of the aggregate rate R(t). But
what shot function Xn(·) should we choose ? This key
question is addressed in this section.

There are two different approaches to compute Xn(·).
The �rst one consists in deriving it directly from mea-
surements, and is developed in Subsection VI-A. The
second one uses information from the protocol governing
the �ow dynamics, and is developed in Subsection VI-B.

A. Measurement-based derivation of shot shapes
The �rst method is based on measurements. It has

the advantage of being protocol and application �ag-
nostic�, which preserves the generality of the model.
The method consists in �tting a parametric model of
the shot Xn(·) = xθ(·), where xθ(·) is an a priori
chosen function parameterized by a parameter vector θ,
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which must satisfy the constraint (1). Vector θ is then
computed to minimize some error functional between the
experimental value of the distribution (or some moments
of R(t)), and the value computed by Theorem 1. From
now on, we restrict our attention to the variance of R(t),
and we compute xθ(·) so that

V̂R = λE
[∫ Dn

0
x2
θ(u)du

]
, (3)

where V̂R is the actual empirical variance of the mea-
sured aggregate rate.

As we have two equations (1) and (3), we need
therefore two parameters: θ = (a, b). A simple function
is a power function xθ(u) = aub, with b ≥ 0, as
illustrated in Figure 4. It includes, as particular cases,
the rectangular (b = 0) and the triangular (b = 1) shots.

Solving (1) yields that a = (b + 1)Sn/Db+1
n , and

plugging this value in (3) we get

V̂R = λ
(b+ 1)2

2b+ 1
E
[
S2
n

Dn

]
.

We deduce an estimate of b, based on the measurement
of VR (and clearly of λ and E

[
S2
n/Dn

]
). We �nd

b = κ − 1 +
√
κ2 − κ, with κ = V̂R/(λE

[
S2
n/Dn

]
)

(note that κ ≥ 1). Of course, the introduction of a
larger number of parameters allows to �t xθ(·) to more
moments than simply VR. We will use this expression of
b in Section VIII.

B. Protocol-based derivation of shot shapes
In some cases, we can make use of protocol informa-

tion to derive the shape of shots, instead of measurements
as in the previous method. The typical example is TCP,
whose dynamics shapes the �ows and can be captured by
analytical models (see [1], [18], [23] for an example of
models for long-lived TCP �ows). An advantage of this
method is that it allows the simultaneous use of different
shots for �ows having different dynamics. Its drawback
is the dif�culty to model �ows that do not have a well
de�ned dynamics (e.g., uncontrolled UDP �ows, �ows
de�ned by their address pre�xes).

We illustrate this method by modeling the shot of
a long-lived TCP �ow. Even though long-lived TCP
�ows are currently not the majority among �ows in
the Internet, they are known to carry an important part
of Internet traf�c [15]. Moreover, this type of �ows is
expected to grow considerably with the arrival of data-
greedy applications as Grid and Peer-to-Peer. We present
results for the variance of backbone traf�c VR, which is
given by Corollary 1.

We consider a �uid model for TCP inspired from [1]
� other models, such as [12], could also be used. The

transmission rate Xn(t) is governed by the Additive-
Increase Multiplicative-Decrease (AIMD) mechanism of
TCP: between congestion events (we also call them
loss events, since they are usually the times at which
a packet loss is detected by the sender), the rate of TCP
increases linearly with a slope An, which is inversely
proportional to the square of the average round-trip time
of the connection [1]. An is assumed to be time-constant,
but is a random variable depending on (Sn, Dn). When a
loss event appears, the rate of TCP is divided by two. Let
T l denote the time at which the l-th loss event occurred,
and let τl be the time elapsed between the l-th and the
(l + 1)-th loss events, τl = T l+1 − T l. As in [1], we
assume that the sequence of inter-loss times {τl} is a
stationary, ergodic renewal process, which is independent
of Dn and An.

As the duration of the nth �ow is limited to Dn,
we consider the extension of the TCP �ow to all t ∈
R, and denote Yn(t) its rate. We have thus Xn(t) =
Yn(t)1{0≤t≤Dn}, where 1{A} is the indicator that A
has occurred. To compute VR we only need Xn(t) for
0 ≤ t ≤ Dn, where it coincides with Yn(t).

We assume that the AIMD mechanism is the only one
to govern the dynamics of Yn(t), which is then stationary
because of the assumptions above [1]. It thus obeys the
following equation for all t ∈ [T l, T l+1):

Yn(t) = Yn(T l)/2 +An(t− T l), (4)

where Yn(T l) is the rate of the nth TCP �ow just before
the l-th loss event (i.e. Yn(T l) = limt→T l,t<T l Yn(t)).

Using this �uid model, we �nd an expression that
upper bounds the variance of Internet backbone traf�c in
the steady state VR, and that can be safely used instead
of the variance for network provisioning. This expression
is stated in Theorem 2, where τ̂ (k) = E

[
τkl
]
/Ek [τl]

denotes the k-th moment (k ∈ N) of the inter-loss
times, normalized by the mean time between loss events.
Theorem 2 shows that the variance VR is upper bounded
by λE

[
S2
n/Dn

]
multiplied by a coef�cient that only

depends on the second and third normalized moments of
times between loss events τ̂ (2) and τ̂ (3). The knowledge
of the transmission rate slope An (which is a function
of the round-trip time) is not needed in the result. This
upper bound on the variance VR in case of long-lived
TCP �ows has then the same expression as the one
obtained with �power-b� shaped shots in Subsection VI-
A, which con�rms the importance of power-b shots in
capturing the dynamics of backbone traf�c.

Theorem 2: Assume that the sequence of inter-loss
times is a stationary ergodic renewal process. The vari-
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ance of the aggregate traf�c satis�es

VR ≤ λ 2 + 4τ̂ (2) + τ̂ (3)

3
(
1 + 0.5τ̂ (2)

)2 E
[
S2
n

Dn

]
. (5)

Proof: Pick any time t ∈ R, and let l be the index
of the last congestion event that occurred before t: T l ≤
t < T l+1. Denote by Ed

[
Y k
n (t)

]
= E

[
Y k
n (t) Dn = d

]
the k-th moment of the transmission rate of the n-th TCP
�ow, given that Dn = d. The Palm inversion formula [1],
[3] yields that

Ed
[
Y k
n (t)

]
=
E0
d

[∫ T l+1

T l
Y k
n (u)du

]

τ (1)
, (6)

where τ (k) = E
[
τkl
]

is the (non-normalized) k-th
moment of the times elapsed between loss events, and
where the superscript 0 means that the expectation is
taken conditionally to T l ≤ t < T l+1. Inserting (4) in
the numerator of the right-hand side of (6), we �nd that,
for k = 1,

Ed [Yn(t)] =
E0
d

[
Yn(T l)

]
τ (1) + Ed [An] τ (2)

2τ (1)
. (7)

and, for k = 2,

Ed
[
Y 2
n (t)

]
=

1
4E

0
d

[
Y 2
n (T l)

]
τ (1) + 1

2E
0
d

[
Yn(T l)

]
Ed [An] τ (2) + 1

3Ed
[
A2
n

]
τ (3)

τ (1)
.

(8)

Since E0
d

[
Yn(T l+1)

]
= E0

d

[
Yn(T l)

]
= Ed

[
Yn(T l)

]
,

setting t = T l+1 in (4) and taking expectations, we �nd
that

E0
d

[
Yn(T l)

]
= 2Ed [An] τ (1). (9)

Similarly, elevating both sides of (4) to the square and
taking expectations, and using (9), we �nd that

E0
d

[
Y 2
n (T l)

]
=

4
3

(
2
(
Ed [An] τ (1)

)2
+ Ed

[
A2
n

]
τ (2)

)
.

(10)
Inserting (9) in (7), we obtain

Ed [Yn(t)] = Ed [An] τ (1)(1 + 0.5τ̂ (2)). (11)
Now, taking expectations on both sides of (1) and re-
membering that Xn(t) = Yn(t) for 0 ≤ t ≤ d, we obtain
Ed [Sn] = Ed

[∫ Dn
0 Xn(u)du

]
=
∫ d

0 Ed [Yn(u)] du =
dEd [Yn(t)], because Yn(t) is stationary. Therefore, we
can write (11) as

Ed [An] = Ed [Sn] /(dτ (1)(1 + 0.5τ̂ (2))). (12)
Likewise, inserting (10) and (9) in (8), we obtain

Ed
[
Y 2
n (t)

]
=

1
3

(
2E2

d [An]
(
τ (1)

)2
+ Ed

[
A2
n

]
τ (2)

+3E2
d [An] τ (2) + Ed

[
A2
n

]
τ (3)/τ (1)

)
. (13)

Let us now compute the upper bound on VR by
conditioning on An = a. Denoting Ead [·] the operator
of conditional expectation given An = a and Dn = d,
we obtain from (12) and (13) that

Ead
[
Y 2
n (t)

]
=

2 + 4τ̂ (2) + τ̂ (3)

3
(
1 + 0.5τ̂ (2)

)2
E2
ad [Sn]
d2

.

Consequently, Corollary 1 and the stationarity of Yn(t)
imply that

VR = λ

∫
Ead

[∫ Dn

0

X2
n(u)du

]
dPAn,Dn(a, d)

= λ

∫ (∫ d

0

Ead
[
Y 2
n (u)

]
du

)
dPAn,Dn(a, d)

= λ

∫
dEad

[
Y 2
n (u)

]
dPAn,Dn(a, d)

= λ
2 + 4τ̂ (2) + τ̂ (3)

3
(
1 + 0.5τ̂ (2)

)2
∫
E2
ad [Sn]
d

dPAn,Dn(a, d)

≤ λ
2 + 4τ̂ (2) + τ̂ (3)

3
(
1 + 0.5τ̂ (2)

)2
∫ Ead

[
S2
n

]

d
dPAn,Dn(a, d)

= λ
2 + 4τ̂ (2) + τ̂ (3)

3
(
1 + 0.5τ̂ (2)

)2 E
[
S2
n

Dn

]

where PAn,Dn is the joint probability measure of An
and Dn.

�
This theorem enables us to link the power b used

in the parametric shot model of Section VI-A with the
burstiness of the congestion events. It is interesting to
look at some particular sequences of congestion events,
to see to which value of b they correspond.
(i) When times between congestion events are equal
(τ̂ (i) = 1), the variance of backbone traf�c VR is upper
bounded by (28/27)λE

[
S2
n/Dn

]
. This is slightly larger

than what we obtain with rectangular shots.
(ii) When congestion events follow a homogenous Pois-
son process (τ̂ (i) = i!), the variance of backbone traf�c is
upper bounded by (4/3)λE

[
S2
n/Dn

]
, exactly the same

variance we obtain with triangular shots.
(iii) Burstier congestion processes result in larger values
of b.

VII. PRACTICAL USE OF THE MODEL

A. Moments of R(t) and averaging interval
In reality, the total measured rate R̂(t) at a certain time

t is computed by averaging and sampling the volume of
data (e.g., number of bytes) that cross the backbone link
during a short time interval δ around t:

R̂(t) =
1
δ

∫ (k+1)δ

kδ
R(s)ds,
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with t ∈ [kδ, (k + 1)δ), k ∈ Z. δ denotes the length
of the averaging and sampling period. The measured
rate R̂(t) appears thus as a piecewise constant function,
with segments of length δ. It amounts to convolve the
instantaneous rate R(t) by a linear �lter of impulse
response 1{0≤t<δ} before taking the samples. Except for
the �rst one, the moments of R̂(t) depend on δ: the
longer the averaging interval, the smoother the total rate
(at least for non self-similar traf�c). We can compute
that the variance of R̂(t) (the measured variance) is

V̂R =
2
δ

∫ δ

0
(1− τ/δ)CR(τ)dτ, (14)

with CR(τ) = E [R(t− τ)R(t)] − E [R2(t)
]

being the
auto-covariance function of the total rate R(t). We give
the expression of CR(τ) in Theorem 2 in [4].

Since CR(τ) ≤ VR, the above expression of V̂R is
always smaller than VR. The scaling factor between
VR and V̂R requires the knowledge of CR(τ). Clearly,
if CR(τ) does not decrease too rapidly in [0, δ], both
variances will remain close to each other. Consequently,
we do not take into account the averaging of the data rate
in the model, but we rather keep δ small so that CR(τ)
remains close to CR(0) = VR in [0, δ]. VR can then be
safely used as an approximation of V̂R, which models
the variance of the measured samples of the total rate.
Taking large values of δ amounts to smooth the traf�c
and hence to make the measured variance V̂R sensibly
smaller than VR. Note that one can always compute V̂R
by plugging the expression of CR(τ) given by Theorem 2
in [4].

Before using our model, an ISP has to choose a value
δ of the averaging interval. It can be the longest busy
period (i.e., period where the utilization of the link is
100%) allowed by the ISP. It is also the interval below
which the ISP does not care about the congestion of the
network, possibly because this short-term congestion is
absorbed by the buffers at the inputs of links. If the cho-
sen value δ is small enough so that the auto-covariance
function CR(τ) slowly decreases in [0, δ], VR can be
used by the ISP as an approximation of traf�c variability
(for network dimensioning issues), otherwise V̂R has to
be computed and used (using (14) and Theorem 2 in [4]).
In what follows, we will choose as averaging interval
the (average) round-trip time of �ows (200 ms), since
we know that most of the �ows take more than one
round-trip time to end. Our choice is also motivated
by the fact that TCP �ows update their transmission
rates approximately once per round-trip time. Recall that
the averaging interval is a parameter that can be set
by the ISP to any other value than the round-trip time,

depending on the maximum burstiness it tolerates at the
inputs of the links of its backbone.

B. Complexity of the model
Our model requires few parameters to characterize the

backbone traf�c. The �rst two moments of the traf�c can
be computed with only three parameters: λ, E [Sn], and
E
[
S2
n/Dn

]
.

In this paper, we compute the parameters of the model
off-line. We infer their values from statistics on the
processes {Sn} and {Dn}. The computation is simple
and it only requires an averaging over the different sam-
ples of the processes. An implementation of the model
would require an online computation of these parameters
with, for example, an Exponentially Weighted Moving
Algorithm, such as the one used by TCP to estimate the
average round-trip time.

We leave the problem of the online estimation of the
parameters of our model for future research. Our main
objective in this paper is to validate the model and to
show its usefulness for provisioning and managing IP
networks. Given that our model requires few parameters,
we believe that it is simpler (in term of computation
cost and implementability in an operational environment)
than a packet level model that provides the same in-
formation about the traf�c. The latter could however
provide additional, more detailed information.

VIII. EXPERIMENTAL VALIDATION

In this section we validate our model using the
traces collected on the Sprint IP backbone, and pre-
sented in Section III. We compare the real coef�-
cient of variation of the total rate ρ̂R =

√
V̂R/E [R],

with the results obtained from our model ρR =√
λE
[∫ Dn

0 X2
n(u)du

]
/(λE [Sn]), when the inputs of the

model (i.e., �ow arrival rate λ and the expectation of
S2
n/Dn) are directly derived from the traces. Samples of

the total rate are computed using averaging intervals of
200 ms. This is comparable with the average round-trip
time we measure on these links (Section VII-A).

Even if experimental data are in good agreement
with Assumptions 1 and 2, the measurement process
introduces two differences with the model of Section V.
We already addressed these two differences.
(i) The �rst difference is the averaging and sampling of
the measured rate at a periodicity of 200 ms, which will
lead to an experimental value of variance V̂R smaller than
the variance of the instantaneous rate VR, as explained in
Section VII-A. We have indeed observed on experimen-
tal data that the longer the averaging interval, the smaller
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V̂R. Therefore, we expect to �nd a few occurrences of
an empirical value V̂R smaller than the lower bound on
VR obtained with rectangular shots.
(ii) The second difference is the splitting of �ows located
on the boundaries of the 30 minutes intervals. As we
explained in Section III, the number of these �ows is
very small compared to the total number of �ows that
arrive in the intervals, and the splitting has therefore a
negligible impact.

These two sources of errors are unavoidable: the �rst
one because traf�c is packet-based and not �uid, so that
the measurements must be averaged over intervals of
some minimal length, and the second one because we
need to divide the trace into intervals short enough to
keep the arrival process stationary and to reduce the
volume of data to manipulate.

A. Results
In this section we do not present results on the �rst

moment of the total rate, since it is computed by our
model and by measurements in exactly the same way.
We only present results concerning the coef�cient of
variation of the traf�c. All �gures presented in this
section are plotted using the log-log scale.

In Figure 5 we compare the coef�cient of variation
computed via measurements (ρ̂R) with that given by our
model (ρR) with parabolic shots (b = 2). These results
refer to the �rst de�nition of �ow using the 5-tuple.
Each point in the �gure corresponds to a 30 minutes
interval. A cross indicates that the average rate during
that interval is below 50 Mbps; a triangle is used for
those intervals with an average rate between 50 and 125
Mbps; the dots are used for rates above 125 Mbps. The
x-axis shows the measured coef�cient of variation of
the total rate, while the y-axis shows the coef�cient of
variation given by the model. A point on the diagonal
crossing the �gure represents a perfect match between
the model and the measurements. The two dashed lines
identify the bounds for an error in the estimate of 20%.
We notice a good match between the model and the
measurements. Rectangular and Triangular shots (results
not included for lack of space) often under-estimate the
real coef�cient of variation since they do not capture all
the dynamics of �ow rates.

The above �gure shows three clusters of points, that
can be easily distinguished. The interpretation is simple
and is related to the fact that we are collecting traces on
many diverse links, with three main different utilization
levels (Section III). As we will explain in Section IX-
.1, backbone traf�c becomes smoother when the arrival
rate of �ows λ increases. An increase in the arrival rate
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Fig. 5. Coef�cient of variation of the total rate with parabolic shots
and �ows de�ned by the 5-tuple

of �ows is the main responsible for the increase in the
utilization among the links, since it is safe to assume
that the average �le size is the same on all links of
the backbone (Corollary 1). Links with higher utilization
(above 125 Mbps) exhibit very low variation, and, thus
contribute to the �rst cluster of points at the bottom-
left corner of the �gure. Those links with a medium
utilization (between 50 and 125 Mbps) are represented
by the cluster in the middle. Finally, the links with the
lowest utilization (below 50 Mbps) exhibit the highest
traf�c variability (around 30%), and yield the cluster of
points on the right-hand side of the �gure.

In Section VI-A, we explained how the optimal power
b can be computed from a trace so that the variance of
the total rate given by our model VR matches that given
by measurements V̂R. For the different 30 minutes traces,
we compute this optimal power and we plot its histogram
in Figure 6. The average value of b over all the traces is
equal to 1.98, which means that parabolic shots are in
average the most suited to model traf�c when �ows are
de�ned by the 5-tuple (from variation point of view).
We are currently working on the interpretation of the
difference in the value of b among the traces. A possible
reason could be the difference in �le sizes: small �les
require a large value of b due to the slow start phase of
TCP, and large �les require a small value of b due to
the slow window increase in TCP congestion avoidance
mode.

Figure 7 provides the coef�cient of variation for the
second de�nition of �ow based on destination address
pre�xes. We plot the case with rectangular shots (b = 0).
The use of rectangular shots seems to be able to capture
the variability of the traf�c aggregate at the level of
destination address pre�xes. This is probably due to the
fact that such a level of aggregation �dilutes� the impact
of speci�c transport protocol mechanisms on the total
rate. We also note that some points are above the diag-
onal, meaning the measured variance is smaller than the
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Fig. 6. Power b of �ow rate functions with �ows de�ned by the
5-tuple
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Fig. 7. Coef�cient of variation of the total rate with rectangular
shots and �ows de�ned by destination address pre�x

variance predicted by the model with rectangular shots,
in an apparent disagreement with [4, Theorem 3]. This
is due to the non-zero averaging interval, as explained
in Section VII-A.

This result shows that our model can estimate the
total rate and its variance independently of the protocol
or application characteristics. The ability of de�ning a
�ow through the destination pre�x greatly reduces the
complexity of a possible implementation. Indeed, on our
traces, the number of �ows of which a router would
need to keep track is reduced on average by one order
of magnitude when using a /24 destination pre�x. A
straightforward extension to this �ow de�nition would
be the use of �routable� pre�xes (i.e., pre�xes present in
the forwarding table of the router) to de�ne �ows. Such
an extension would result in an additional decrease of the
burden for the router given the level of �ow aggregation
(with /8 and /16 pre�xes, for example) that could be
achieved.

IX. APPLICATION OF THE MODEL TO NETWORK
DIMENSIONING AND MANAGEMENT

We discuss in this section some applications of our
model to network dimensioning and management. The
list is not exhaustive, but it is enough to highlight the
role that such a model may have in the engineering of
IP backbone networks.

Suppose that an ISP collects statistics on �ow sizes,
�ow durations, and �ow arrivals (for example with tools
such as Cisco NetFlow). With this sole information, the
ISP is able to compute the moments of the total rate. This
way, the ISP would have more detailed information than
that provided by SNMP (one of the problems of SNMP
is that it does not capture traf�c variation at short time
scales).

The information on �ows can be collected on the link
we want to monitor. It can also be collected at the edges
of the backbone. Combined with the routing information
in the edge routers, this will give information on �ows
on each link of the backbone. Our model can then be
used to compute the traf�c on the links of the backbone,
by only monitoring the edges.

The detailed information provided by our model on
the traf�c helps to dimension backbone links. Given the
characteristics of �ows composing the traf�c, the links
of the backbone network can be dimensioned so as to
avoid congestion. Note that for a highly variable traf�c,
dimensioning the links of the backbone based only on
the average utilization is not enough to avoid congestion.
Traf�c variability should be considered, which is allowed
by our model. Rate variation at short time scales are
very useful in the de�nition of the buffer size and in the
evaluation of the maximum queuing delay. In the case we
collect information on �ows at the edges, our model can
help in routing �ows in the backbone, with the objective
to optimize the utilization of the available resources.

Computing the traf�c in the backbone using informa-
tion on �ows is not the only application of our model to
network dimensioning and management. A key problem
the operator faces is the planning of the upgrades of
the backbone links, in order to maintain the absence of
congestion. What is the impact on the link utilization
caused by a change in the distribution of �ow sizes,
due for example to the arrival of a new application or
the addition of a new big cluster of servers resulting
in large transfer sizes? What is the impact on the link
utilization caused by a change in �ow durations, due
for example to an increase in the number of users in
the congested access networks, resulting in longer �ow
durations? What is the impact caused by a simultaneous
change in �ow sizes and durations, due for example to an
upgrade of the access networks, resulting in shorter �ow
durations but larger �le transfers? What is the impact on
the traf�c of a change in the shot shape Xn(·), which
may follow a change in the application or in the transport
protocol? The model presented in this paper can be used
to answer these important questions.

We illustrate this application by the following two
examples. The �rst example shows the impact of a
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change in the �ow arrival rate λ on the traf�c, and
hence on the dimensioning of the backbone. The second
example shows the impact of the sizes and the durations
of �ows.

1) Impact of the �ow arrival rate: Consider the
case when the joint distribution of �ow sizes and �ow
durations is stationary over long time intervals, and
does not depend on the �ow arrival rate2. Suppose that
the ISP sets the bandwidth of its links to E [R(t)] +
A(ε)
√
VR, where A(ε) is the ε-quantile of the centered

and normalized total rate R(t), i.e., the value such
P
{
R(t) >

(
E [R(t)] +A(ε)

√
VR
)}

= ε, 0 < ε < 1.
ε is the congestion probability. The moments of R(t)
in this expression of the bandwidth are given by our
model (Corollary 1). For a large averaging interval, VR
needs to be corrected using (14). The function A(ε)
can be computed using the Gaussian approximation3,
which gives for example A(0.05) = 1.96. When the
arrival rate of �ows increases, the bandwidth of the
backbone links has to be increased as well, since the
�rst and second moments of R(t) increase with λ.
However, while the �rst moment of R(t) increases as
λ, the standard deviation of R(t) increases as

√
λ.

This indicates that the coef�cient of variation of R(t)
decreases as 1/

√
λ. Concretely, this means that the traf�c

in the backbone becomes smoother and smoother when
more and more �ows are multiplexed. The consequence
of this smoothing is that the ISP does not need to scale
the bandwidth of its links linearly with λ. (S)He can
gain in bandwidth by accounting for the smoothing of
the traf�c.

2) Impact of �ow sizes and �ow durations: We study
in this section the impact of the sizes of �ows {Sn} and
their durations {Dn} on the �rst two moments of the
traf�c, and hence on the dimensioning of the backbone.

The average rate of the backbone traf�c depends only
on E [Sn] (Corollary 1). The study of the variance of
the traf�c is more complicated since the variance VR
depends on the shot shape, and on the joint distribution
of {Sn} and {Dn} (Corollary 1). We focus on the
�power-b� shots of the form X(u) = aub, b ≥ 0.
As shown in Section VI-A, the variance of the traf�c
in presence of such shots only depends on E

[
S2
n/Dn

]
(with a multiplicative factor function of the �ow arrival
rate λ and the power b). Section VI-B shows that this

2In the other case, a model has to be developed for the rest of
the Internet, to evaluate the impact of a change in the arrival rate of
�ows on the joint distribution of �ows sizes and �ow durations. We
will address this problem in a future research.

3Since the total rate is the resut of multiplexing of N(t) �ows
of independent rates, the Central Limit Theorem tells us that the
distribution of R(t) tends to Gaussian at high load, which is typical
of backbone links.
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Fig. 8. The coef�cient of correlation between S2
n and 1/Dn for

5-tuple (top) and /24 destination address pre�x (bottom) de�nitions
of �ow, and for each 30 minutes long trace

relationship also holds in case of long-lived TCP �ows.
For the same average �ow size and the same average
�ow duration, the backbone traf�c may have different
variation if we consider different joint distributions of
{Sn} and {Dn}. To simplify the analysis of the variance,
we consider the two extreme cases: (i) Sn and Dn are
independent, and (ii) Sn and Dn are strongly positively
correlated. These two cases provide respectively upper
and lower bounds on the variance of the backbone traf�c.
(i) When Sn and Dn are independent, the variance of the
traf�c VR is proportional to E

[
S2
n

]
E [1/Dn]. This value

can be considered as an upper bound on the variance
of the traf�c in case of negative correlation between
S2
n and 1/Dn. We will assume that such a negative

correlation holds, which seems a reasonable assumption
since the larger the size of a �ow, the longer in average
its duration. We note here that VR is proportional to the
variance of Sn. VR can be very large when the sizes
of �ows are heavy-tailed. Two sets of �ow sizes having
different variances result in different traf�c variability,
even if their averages are the same. The tail of Dn does
not have an impact on the variance, since Dn is in the
denominator, but for the very same reason, small values
of Dn can lead VR to be very large.

We check the correlation between S2
n and 1/Dn using

our traces. The above upper bound is correct if these two
random variables are always negatively correlated. For
each 30 minutes trace, and using both de�nitions of �ow
(/24 pre�x and 5-tuple), we compute the coef�cient of
correlation between S2

n and 1/Dn. The results are plotted
in Figure 8. All the traces present negative correlation
coef�cient, which validates our assumption. We notice in
the �gure the small value of the correlation coef�cient,
which is mostly due to the high level of multiplexing in
the backbone. The variance of the traf�c is then close to
that given by the above upper bound.
(ii) The second case, which provides a lower bound
on the variance of the traf�c, corresponds to a strong



12 IEEE TRANSACTIONS ON SIGNAL PROCESSING - SPECIAL ISSUE ON NETWORKING, VOL. 51, NO. 8, PP. 2111-2124, AUGUST 2003

positive correlation between Sn and Dn. We suppose
that these two variables are proportional to each other
via a positive constant r, i.e., Sn = rDn, ∀n. Note that
the correlation coef�cient of Sn and Dn is here equal to
its maximum value 1.

The quantity r can be seen as the individual through-
put of �ows. There are many scenarios in which the
throughput of a �ow can be independent of its size. This
is generally the case when the duration of the �ow is
long compared to its transient phase. In case of TCP, r
can be the throughput imposed by the receiver advertised
window. r can also be the throughput imposed by the
available bandwidth in the network (i.e., Internet access
via a slow modem line), or by the congestion control
mechanisms of TCP. We refer to [25] for a discussion
on the different possible meanings of r.

It is easy to see that a strong positive correlation
between Sn and Dn provides indeed a lower bound
on the variance of the traf�c VR. Applying Hölder's
inequality to the product of the two random variables
Sn/
√
Dn and

√
Dn, we have that

E2 [Sn] = E2

[
Sn√
Dn

√
Dn

]

≤ E

[(
Sn√
Dn

)2
]
E
[√

Dn

2
]

= E
[
S2
n

Dn

]
E [Dn] ,

from which we obtain the following lower bound on
E
[
S2
n/Dn

]
(and therefore on VR):

E
[
S2
n

Dn

]
≥ E

2 [Sn]
E [Dn]

.

The bound is reached when Sn = rDn for some r > 0
(in which case Sn and Dn have a maximal correlation),
and is equal to E

[
S2
n/Dn

]
= rE [Sn] . Contrary to the

case where Sn and Dn were independent, the variance
VR is now only sensitive to the average �ow size and
to the individual throughput of �ows r. We directly
compute that it is equal to (b + 1)2/(2b + 1)rE [R(t)]
for power-b shots. This means that when Sn = rDn,
the variance changes only if either r or the average
traf�c E [R(t)] does. For example, when r increases
(due for example to an upgrade of user access lines
or to a change in network protocols), the coef�cient of
variation of the total rate increases as √r, even though
the average utilization is the same (the traf�c in the
backbone becomes more variable). The increase in the
coef�cient of variation is less important than the increase
in r due to the statistical multiplexing of �ows in the
backbone. The ISP can then use this result to anticipate
the increase in traf�c variability, and to appropriately
upgrade the links of its backbone.

To illustrate the impact that the correlation between
Sn and Dn can have on the variance of the traf�c

VR, we consider the following example, where Sn and
Dn are generated from Pareto distributions, but with
same average values as those obtained from the traces.
Denote by S (resp. D) the average size (resp. the average
duration) of �ows obtained from measurements. Our idea
is to control the correlation between Sn and Dn, while
keeping E [Sn] = S and E [Dn] = D. This control is not
possible without the following arti�cial construction of
�ow sizes and durations.

A Pareto random variable V has a Cumulative Distri-
bution Function P {V ≤ v} = 1 − (v/a)−β [17]. a > 0
is the starting point of the variable and β > 1 its shape
parameter. The mean of a Pareto random variable is
equal to E [V ] = aβ/(β − 1). The variance of a Pareto
random variable increases when its shape parameter β
decreases, and becomes in�nite when β ≤ 2. The Pareto
random variable is said to be heavy-tailed, since its tail
decreases polynomially rather than exponentially. This
variable is often used to model the heavy-tailed nature
of the distributions of �ow sizes and �ow durations in
the Internet (see [2], [11], [24] for examples).

First, we assume that the marginal distribution of Sn
is Pareto, with shape parameter βS and of average S.
We consider two values for βS : 1.5 and 2.5. We de�ne
Dn as

Dn = w
D

S
Sn + (1− w)Vn, (15)

where Vn is a Pareto random variable, with shape pa-
rameter βD and of average D, independent of Sn, and
where w ∈ [0, 1]. We give two values to βD: 1.5 and
2.5. The coef�cient w is used to vary the correlation
between Sn and Dn; when w = 0, both variables
are independent Pareto variables; when w = 1, both
variables are maximally correlated. Note that the average
value of Dn generated according to (15) is equal to D.
If βD and βS are larger than 2, we can compute that

w =
COV [Dn, Sn]S
V AR[Sn]D

. (16)

Second, we give Sn the values we measure on our traces,
while generating Dn according to (15). Vn is still a
Pareto random variable, with shape parameter βD and
of average D, independent of Sn.

We plot the variance VR as a function of w for differ-
ent values of βS , βD, S and D. We consider rectangular
shots (b = 0), which yields VR = λE

[
S2
n/Dn

]
. The

plots are shown in Figure 9. The value of the �ow arrival
rate λ is computed from the traces. Figure 9 shows
the plots obtained when both Sn and Vn are generated
from Pareto distributions, as well as the plots obtained
when only Vn is generated from a Pareto distribution,
while Sn is given real �ow size values. We remark that



IEEE TRANSACTIONS ON SIGNAL PROCESSING - SPECIAL ISSUE ON NETWORKING, VOL. 51, NO. 8, PP. 2111-2124, AUGUST 2003 13

Fig. 9. Variance of the traf�c vs. weight w representing the
correlation between Sn and Dn. Top: 5-tuple de�nition of �ow.
Bottom: /24 pre�x de�nition of �ow

the variance VR (proportional to E
[
S2
n/Dn

]
) decreases

when Sn and Dn become correlated. For w ' 1
(strong correlation), VR is insensitive to the marginal
distributions of Sn and Dn, and only sensitive to their
averages. For w � 1 (weak correlation), VR is sensitive
to the marginal distributions of Sn and Dn. The heavier
the tail of Sn, the larger the variance of the traf�c. Our
traces indicate that on a backbone link, w is usually small
(weak correlation between Sn and Dn), given the high
level of multiplexing of �ows in the backbone. For the
traces considered in Figure 9, the coef�cient w computed
according to (16) (using the real sizes and real durations
of �ows) is equal to 0.019 and 0.034, respectively. We
also remark in Figure 9 that VR increases when βD
decreases, for the simple reason that with a small value of
βD, the realization of Dn will sometimes take very small
values. The correlation between Sn and Dn is then an
important factor impacting the variance VR. Depending
on their correlation, the marginal distributions of Sn
and Dn have thus a very different in�uence on traf�c
variability, and hence on network dimensioning.

X. CONCLUSIONS

We proposed a traf�c model for uncongested backbone
links that is simple enough to be used in network
operation and engineering. The model relies on Poisson
shot-noise. With only 3 parameters (λ, arrival rate of
�ows, E [Sn], average size of a �ow, and E

[
S2
n/Dn

]
,

average value of the ratio of the square of a �ow
size and its duration), the model is able to �nd good

approximations for the average traf�c on a backbone
link and for its variations at short timescales. The model
is designed to be general so that it can be easily used
without any constraint on the de�nition of �ows, nor on
the application or the transport protocol.

We are working on various extensions of our work.
We state in [4] a result for the auto-covariance function
of the total rate. Using this result, we are investigating
the correlation of Internet traf�c and its relation with the
�ow arrival process, the shot shape, and the distributions
of �ow sizes and �ow durations. We are also studying
the gain of introducing classes of �ows with a different
shot for each class. This will solve the problem when
the �ow rate functions do not have the same distribution.
Finally, we are evaluating the worthiness of considering
more complex �ow arrival processes than Poisson. The
challenge is to improve our evaluation of the traf�c
without much increasing the complexity of the model.
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