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Abstract— This paper addresses optimal on-line estimation of
the size of a multicast group. Three distinct approaches are used.
The first one builds on Kalman filter theory to derive the MSE-
optimal estimator in heavy-traffic regime. Under more general as-
sumptions, the second approach uses Wiener filter theory to com-
pute the MSE-optimal linear filter. The third approach develops
the best first-order linear filter from which an estimator that holds
for any on-time distribution is derived. Our estimators are tested
on real video traces and exhibit good performance. The paper also
provides guidelines on how to tune the parameters involved in the
schemes in order to achieve high quality estimation while simulta-
neously avoiding feedback implosion.

EDICS— 2-ESTM, 2-SDES, Signal Processing in Network-
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I. I NTRODUCTION

SINCE its introduction, IP multicast [8], [9] has seen slow
deployment in the Internet. As stated in [10], the service

model and architecture do not efficiently provide or address
many features required for a robust implementation of multi-
cast. However, the fact remains that IP multicast is very appeal-
ing in offering scalable point-to-multipoint delivery especially
in satellite communications. This work is motivated by the con-
viction that large-scale multicast applications will soon be de-
ployed in the Internet. We believe that membership estimates
will be an essential component of this widespread deployment
as they can be very useful for scalable multicast. Future Internet
radios and TVs will need to characterize their audience prefer-
ences and to follow the fluctuations of the audience size over
time. Dutta, Schulzrinne and Yemini proposed an architecture
for Internet radio and TV called MarconiNet [11] that relies on
RTCP [21], [22], the real-time transport control protocol in the
Internet. Even though RTCP provides an easy mechanism for
collecting statistics on the size of the audience, it does not scale
well to large multicast sessions. In such applications, sampling-
based techniques are more appropriate.

There has been a significant research effort in devising
sampling-based schemes for the estimation of the membership
in multicast sessions [5], [12], [17], [19] (see also [2, Ch.
2] where the main features of these schemes are presented).
However, none of these schemes have been shown to be op-
timal within some particular set; further, at the exception of the
scheme in [19], they do not use past information, an essential
feature in estimation theory.

In this work, we propose a novel sampling-based technique
that we now describe. Whenever a source is interested in know-
ing how many receivers are connected to the multicast session

(or are actively following some application that is being broad-
casted), it asks all connected members or participants to send an
acknowledgment (ACK) everyS seconds. However, in order to
avoid that too many ACKs are sent to the sources in the case
of a large multicast group, a phenomenon refers to asfeedback
implosion, each participant only sends an ACK everyS seconds
with probability p. Clearly, the values ofp andS will have a
direct impact on the quality of the estimator and on the number
of ACKs that are travelling to the source. Ideally,p should be
large andS should be small so that the source collects enough
correlatedobservations for its (whatever) estimation scheme to
work efficiently. But this ideal scenario would yield feedback
implosion. The challenge is therefore to design an estimation
scheme for the size of the multicast audience that is accurate
without generating too many ACKs.

Throughout the paper, we address the issue of estimating the
membership of a multicast group. We build on adaptive filter-
ing theory to derive the estimator. Three distinct approaches
are successively considered, based on Kalman filtering the-
ory, Wiener filtering theory and least square estimation, respec-
tively.

The Kalman filter provides a linear, unbiased, and minimum
error variance recursive algorithm to optimally estimate the un-
known state of a linear dynamic system from noisy data taken
at discrete real-time intervals. Furthermore, under normality
assumptions, this filter is optimal, not only among all linear
filters based on a set of observations, but among all measur-
able filters [18], [23]. Since our measurements are collected
at discrete times, Kalman filter therefore appears as an appeal-
ing approach for solving our estimation problem. In Section IV
we show that under some conditions (heavy traffic regime and
exponential on-times – the on-time is defined as the length of
time during which a user participates to a multicast session, see
Section III) the Kalman filter can indeed be used in our context.

In Section V we restrict ourselves to the class oflinear filters
with the hope of relaxing some of the assumptions made in Sec-
tion IV for Kalman filtering theory to apply. The best filter is
then a Wiener filter. We show that the Wiener filter can be com-
puted forany traffic regime(as opposed to the Kalman filter in
Section IV that is derived in heavy-traffic regime) provided that
on-times are exponentially distributed. Interestingly enough,
both filters obtained in Sections V and IV turn out to be iden-
tical. This observation thereby explains the good performance
of the Kalman filter that we have observed under moderate and
light traffic regimes (see Section VIII).
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In Section VI we determine the optimalfirst-order linear fil-
ter for an arbitrary on-time distribution. We illustrate the ap-
proach in the case where the on-time distribution is hyperexpo-
nential.

The rest of the paper is organized as follows: motivation for
this work is given in Section II and the multicast group model
is introduced in Section III. Estimators are obtained in Sections
IV-VI for fixed parametersp and S; in Section VII we give
guidelines on how to choose these parameters so as to limit the
number of ACKs travelling to the source, while in the meantime
achieving a good quality of our estimators. The robustness of
the estimators is addressed in Section VIII. Extensions of our
work are discussed in Section IX and concluding remarks fol-
low in Section X.

II. M OTIVATION

In order to best track the time-evolution of the multicast
membership, we aim at developing anunbiasedmoving aver-
age estimator that would take advantage of previous estimates
in anoptimal way. We propose a mechanism in which the re-
ceivers probabilistically send “heartbeats” to the sender (here-
after called the source) in a periodic way: everyS second each
participant sends an ACK to the source with the probability
p. Hence, the feedback implosion problem is addressed via a
convenient choice of the reply (or ACK) probabilityp and of
the “ACK time-interval”S. Note thatS should be larger than
the largest round-trip time between a receiver and the source.
Timest = nS, for n = 1, 2, . . ., will denote the end of each
polling round, andYn will denote the total number of ACKs
received at thenth observation step, i.e. in the interval of time
](n− 1)S, nS]. We denote byNn the size of the multicast pop-
ulation at timenS and byN̂n an estimator forNn.

A naive approach to the estimation problem would con-
sist in estimatingNn by the ratioYn/p, namely, by letting
N̂n = Yn/p. It has been shown in [2, Ch. 2] that this esti-
mator behaves very poorly. This is partly due to the fact that it
ignores the “history” of the membership process,

A less naive approach to filter out the noisy observations
consists of using an exponential weighted moving average
(EWMA) like the one used in [19]. A natural choice is

N̂n = αN̂n−1 + (1− α)Yn/p (1)

which yields an (asymptotically) unbiased estimator, since
E[N̂n] = E[Yn]/p = E[Nn] in steady-state.

The difficulty in using the EWMA approach lies in the choice
of the parameterα, as the performance of the estimator will in
general be highly sensitive to this choice. This sensitivity is
illustrated in Fig. 1, where the estimator has been computed
on an audio trace for three different (but fairly close) values
of α, namely,0.95, 0.99 and0.999. We can observe that the
estimators computed forα = 0.95 and α = 0.99 are much
more noisy than the estimator obtained forα = 0.999, which
appears to be very good. We are therefore left with the problem
of selecting a “good” value forα, not an easy task since this
value will typically be session dependent. Besides, there is no
guarantee that an estimator based on the EWMA algorithm will

0
30

60
90

0 40000 80000 120000

Membership vs. time and EWMA estimation: p = 0.01, S = 1s

(s)

α = 0.95
α = 0.99
α = 0.999
Audio trace

Fig. 1. Membership evolution of a short audio session and EWMA estimation

be optimal in some sense (e.g. will minimize the mean square
estimation error).

For these reasons, we will use another approach in the fol-
lowing and will rely on adaptive filter theory to construct opti-
mal (to be made more precise) estimators.

Throughout the paperp andS are held fixed. In Section VII
we will give guidelines on how to select these parameters.

III. T HE MULTICAST GROUP MODEL

In this section, we present the model for the multicast group.
We consider a multicast group where participants join and leave
at random times. LetTi andTi + Di be the join time and the
leave time, respectively, of theith participant. In the following,
Di > 0 is called the on-time of theith participant and{Di, i =
1, 2, . . .} is referred to as the on-time sequence. LetÑ(t) be the
number of participants at timet ≥ 0 or, equivalently, the size
of the multicast audience at timet. We have

Ñ(t) =
Ñ(0)∑

i=0

D
(r)
i +

∞∑

i=1

1{Ti ≤ t < Ti + Di} (2)

where{D(r)
i , i = 1, 2, . . . , Ñ(0)} are the remaining on-times

at t = 0 of participants, if any, which have joined the session
beforet = 0 and who are still connected at timet = 0 (with
D

(r)
0 = 0 by convention) and1{E} is the indicator function of

any eventE (i.e. 1{E} = 1 if the eventE occurs and1{E} = 0
otherwise).

Primarily for mathematical tractability we shall assume from
now on that the join (arrival) process is Poisson with intensity
λ := 1/E[Ti+1 − Ti] > 0 and that on-times form a renewal
sequence of random variables (RVs) with common probability
distributionΨ(x) = P (Di < x) such that0 < E[Di] < ∞,
further independent of the arrival times. In the followingD will
denote a generic RV with probability distributionΨ(x).

In the queueing terminology the process{Ñ(t), t ≥ 0} is
the occupation process (number of busy servers) in aM/G/∞
queueing system with arrival rateλ and service times{Di, i =
1, 2, . . .} [16].
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For later use, we briefly review some results on theM/G/∞
queue. Insteady-state, the numberN of busy servers is a Pois-
son RV with parameterρ := λE[D], namely,P [N = j] =
ρj exp(−ρ)/j!. In particular, both the mean and the variance of
the number of busy servers are equal toρ. The autocovariance
function of thestationary versionof the process{Ñ(t), t ≥ 0},
denoted by{N(t), t ≥ 0}, is given by [7, Equation (5.39)]

Cov(N(t), N(t + h)) = λ

∫ ∞

|h|
P (D > u) du. (3)

From now on, we will only work with the stationary process
{N(t), t ≥ 0}, still for the sake of mathematical tractability.
This is equivalent to assuming that when the tracking begins,
the system has been operating sufficiently long with respect to
session time durations (for instance, we can see on Fig. 1 that
steady-state is reached after approximately40, 000 sec.). We
have observed in our experiments (see [2, Ch. 2]) that the es-
timators we will develop in the forthcoming sections behave
well even when the multicast population is not in steady-state
at the beginning of the tracking (see Fig. 2 in Section VIII) or
when the steady-state assumption is violated during the entire
estimation process (see Fig. 3 in Section IX).

We denote by{Nn, n = 0, 1, . . .} the process{N(t), t ≥ 0}
sampled at timest = 0, S, 2S, . . ., namelyNn := N(nS).

Let CovX(·) denote the autocovariance function of any
second-order discrete-time stationary process{Xn, n =
0, 1, . . .}. In the case where the on-times{Di, i = 1, 2, . . .}
areexponentiallydistributed with meanE[D] = 1/µ, we have

CovN (k) = ρ γ|k|, k = 0,±1, . . . (4)

with γ := exp(−µS).
Throughout, we will assume that

∑

k≥0

CovN (k) < ∞ (5)

thereby ruling out the situation where the on-times are heavy-
tailed (e.g. Pareto distribution with shape parameter smaller
than2).

In the next three sections we derive three Mean-Square Error
(MSE)optimalestimators for the size of the multicast audience
at timesnS (n = 0, 1, . . .) under different sets of assumptions
(exponential on-time distribution and heavy traffic regime in
Section IV by using a Kalman filter, exponential on-time dis-
tribution in Section V by using a Wiener filter and general on-
time distribution in Section VI). In each case the optimality
is defined with respect to a different class of filters (class of
all measurable filters in Section IV, class of all linear filters in
Section V and class of all first-order linear filters in Section VI).

A word on the notation used in this paper:N(m, v) will de-
note a normal distribution with meanm and variancev and
X ∼ N(m, v) will denote a RV with distributionN(m, v);
{an}n will stand for{an, n = 0, 1, . . .}.

IV. OPTIMAL ESTIMATION USING A KALMAN FILTER

In this section, which reviews previous work published in [4],
we derive an estimator of the size of the multicast audience at

time nS by using Kalman filtering theory. This estimator will
be obtained in heavy-traffic.

The heavy-traffic regime is obtained by “speeding up” the ar-
rivals by a factorT or, equivalently, by assuming that the arrival
intensity is nowλT . We denote by{NT (t), t ≥ 0} the occu-
pation process in this new M/G/∞ queue with arrival rateλT .
We will assume that the process{NT (t), t ≥ 0} is stationary
for all T > 0. Hence,NT (t) is a Poisson RV with parameter
ρT for all T > 0, with ρ := λ/µ (see Section III).

Let us introduce the normalized process{ZT (t), t ≥ 0} de-
fined by

ZT (t) =
NT (t)− ρT√

T
, t ≥ 0. (6)

The process{ZT (t), t ≥ 0} describes the fluctuations of
{NT (t), t ≥ 0} around its limiting trajectoryρT asT → ∞.
A nice feature of the process{ZT (t), t ≥ 0} is that it con-
verges to a diffusion process asT → ∞ when the on-times
areexponentially distributedRVs. More precisely, asT → ∞
the (stationary) process{ZT (t), t ≥ 0} converges in distribu-
tion to the Ornstein-̈Uhlenbeck process{X(t), t ≥ 0} given by
[20, Theorem 6.14, page 155]

X(t) = e−µt X(0) +
√

2λ

∫ t

0

e−µ(t−u) dB(u), (7)

with X(0) ∼ N(0, ρ), where{B(t), t ≥ 0} is the standard
Brownian motion. The Ornstein-Ühlenbeck process defined in
(7) is a stationary ergodic Markov process, and its invariant dis-
tribution is a normal distribution with mean zero and variance
ρ [15, page 358].

In the remainder of this section we will assume that the on-
times{Di, i = 1, 2, . . .} are exponentially distributed RVs.

We now show that the estimation problem can be reduced to
a discrete filtering problem, to which discrete Kalman filtering
theory applies. We first show that the process{X(t), t ≥ 0},
sampled at discrete timest = nS, is governed by a linear
stochastic difference equation; then, we show that the measure-
ment equation at timenS is linear in the system stateX(nS).

A. System dynamics

From (7), we obtain, for0 ≤ s ≤ t, X(t) = e−µ(t−s) X(s)+√
2λ

∫ t

s
e−µ(t−u) dB(u), from which it follows that

ξn+1 = γ ξn + wn, n = 0, 1, . . . (8)

whereξn := X(nS), γ := e−µS and

wn :=
√

2λ

∫ (n+1)S

nS

e−µ((n+1)S−u) dB(u).

The RVs{wn}n are i.i.d. with

wn ∼ N(0, Q), n = 0, 1, . . . (9)

(see e.g. [6, page 17]) whereQ is given by

Q = 2λ E

[∫ (n+1)S

nS

e−µ((n+1)S−u) dB(u)

]2

= 2λ

∫ (n+1)S

nS

e−2µ((n+1)S−u) du = ρ (1− γ2).
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Equation (8) establishes a linear stochastic difference equa-
tion relating the state of the limiting process{X(t), t ≥ 0} at
consecutive polling instantsnS and(n + 1)S.

B. Measurement equation

Let ζi
n be the indicator function that receiveri =

1, 2, . . . , NT (nS) has sent an ACK in thenth polling round,
with ζi

n = 1 if an ACK was sent by receiveri and ζi
n = 0

otherwise. From the definition of the model it is seen that, con-
ditioned onNT (nS), ζ1

n, . . . , ζ
NT (nS)
n are i.i.d. Bernoulli RVs

with E[ζi
n] = p. The conditional expectation and variance of

the number of ACKsYn =
∑NT (nS)

i=1 ζi
n received by the source

at timenS are then given byNT (nS) p andNT (nS) p(1− p),
respectively. We define our normalized measurement equation
as

MT (nS) =
Yn − pρT√

T
, n = 0, 1, . . . . (10)

which, with the help of (6), can be rewritten as

MT (nS) = pZT (nS) + VT (nS), (11)

where

VT (nS) :=
Yn −NT (nS)p√

T
. (12)

The next step is to letT → ∞ in (11). The following proposi-
tion is proved in [4].

Proposition IV.1: There exist i.i.d. RVs{vn, n = 0, 1, . . .}
with

vn ∼ N(0, R), n = 0, 1, . . . (13)

where R := ρ p (1 − p), independent of{wn}n, such that
{vk, k = n, n + 1, . . .} is independent of{ξk, k = 0, 1, . . . , n}
for n = 0, 1, . . ., and such that(ZT (nS), VT (nS)) converges
weakly to(ξn, vn) asT →∞. ¨

We deduce from Proposition IV.1 thatMT (nS) defined in
(10) converges weakly asT →∞ to a RVmn such that

mn = pξn + vn, n = 0, 1, . . . . (14)

C. Deriving the filter parameters

Equations (8) and (14) represent the equations of a discrete
time linear filter, for which we can compute the optimal esti-
mator. Throughout we shall assume that the Gaussian initial
conditionξ0, the signal noise sequence{wn}n and the observa-
tion noise sequence{vn}n are all mutually independent.

Let ξ̂n be an estimator ofξn, and denote byεn = ξn− ξ̂n the
estimation error. The estimator that minimizes the mean square
of the estimation error is given by the following Kalman filter
(see e.g. [23, page 347]), which, in its stationary version, has
the following simple recursive structure:

P =
( (

γ2 P + Q
)−1

+ p2/R
)−1

(15)

K = Pp/R (16)

ξ̂n = γξ̂n−1 + K
(
mn − p

(
γξ̂n−1

))
(17)

for n = 1, 2, . . ., with ξ̂0 = E[ξ0] = 0 and where constantsγ,
R andQ have been defined earlier in the section.

The Ricatti equation (15) has a unique positive solutionP
given by

P = −Qp2 + R
(
1− γ2

)

2p2γ2

+

√
(Qp2 + R (1− γ2))2 + 4p2γ2RQ

2p2γ2
. (18)

P gives the (stationary) variance of the estimation error. From
(18) and (16) we find that the gainK is given by

K =
−(1− γ2) +

√
(1− γ2)(1− γ2(1− 2p)2)
2γ2p(1− p)

. (19)

Recall thatεn ∼ N(0, P ) for everyn and thatεn is independent
of the observationmn [24, page 240].

D. Membership size estimation

We now return to our original estimation problem, namely,
the derivation of an estimator (̂Nn) for the size of the multi-
cast group at timenS (i.e. NT (nS)). Recall that the process
{NT (t), t ≥ 0} describes the number of busy servers in a sta-
tionaryM/M/∞ queue with arrival rateλT and service rateµ.
Motivated by (6), we definêNn as follows:

N̂n = ξ̂n

√
T + ρT (20)

with ξ̂n given in (17). Combining (17), (10) and (20), we find
the following first-order linear equation

N̂n = γ(1−Kp)N̂n−1 + K Yn + ρT (1− γ)(1−Kp). (21)

Starting with E[ξ̂0] = 0 it is seen from (17) and (14) that
E[ξ̂n] = 0 which in turn implies from (20) thatE[N̂n] = ρT =
E[NT (nS)]. This shows that̂Nn is an unbiased estimator. On
the other hand, Var((Nn−N̂n)

√
T ) = Var(ZT (nS)− ξ̂n) from

(6) and (20); we conjecture that, asT →∞, the latter quantity
converges toP , the variance of the estimation errorεn in heavy-
traffic.

The estimation algorithm is summarized below (ρT , µ andS
are assumed to be known):

Initialization step:
N̂0 = ρT (i.e. ξ̂0 = 0), γ = exp(−µS) and set gain
K as given in (19).

nth observation step:
Yn = number of ACKs received in interval of time
](n− 1)S, nS] and computeN̂n as in (21).

Guidelines for choosing parametersp andS are given in Section
VII; a procedure for estimating parametersρT (expected num-
ber of participants) and1/µ (expected on-time) is discussed in
Section IX.

Remark IV.1:The autoregressive equation in (21) does not
exhibit the same form as the one in (1) as it further has a con-
stant termρT (1− γ)(1−Kp). In other words, if we had com-
puted the optimalα in (1) under the assumptions considered in
Section III, we would not have obtained the optimal estimator.
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V. OPTIMAL ESTIMATION USING A WIENER FILTER

In the previous section we have derived a filter that is MSE-
optimal among all measurable filters, provided that the system
evolves in heavy-traffic (i.e. very large multicast audience) and
that on-times are exponentially distributed.

In this section we will derive a (Wiener) filter that is MSE-
optimal among all linear filters, under the only assumption that
on-times are exponentially distributed.

The first step is to replace processes{Nn}n, {N̂n}n and
{Yn}n by their centered (zero mean) versions{νn}n, {ν̂n}n

and{yn}n, respectively. We already know thatE[Nn] = ρ (see
Section III). On the other hand,

E[Yn] = E[E[Yn |Nn]] = E[pNn] = pρ. (22)

Takingνn := Nn − ρ, ν̂n := N̂n − ρ andyn := Yn − pρ will
therefore ensure thatE[νn] = E[ν̂n] = E[yn] = 0.

Wiener filtering theory identifies the MSE-optimallinear fil-
ter, from which we get the following MSE-optimal estimator
[13]

νn =
∞∑

k=0

ho,kyn−k

where the so-called optimal impulse response{ho,n}n satisfies
the Wiener-Hopf equation

∞∑
m=0

ho,mCovy(k −m) = Covνy(k), k = 0, 1, . . . . (23)

In (23) Covy(k) denotes the autocorrelation of the filter in-
put (the measurements){yn}n and Covνy(k) = E[νn−k yn]
denotes the cross-correlation function of processes{νn}n and
{yn}n.

Therefore, all what we have to do is to compute Covy(k) and
Covνy(k) and then to solve (23).

We can express Covy(k) and Covνy(k) in terms of Covν(k)
as follows:

Covy(k) = p2Covν(k) + 1{k = 0}ρp(1− p) (24)

Covνy(k) = p Covν(k) (25)

where we have used the identity Covν(k) = CovN (k).
One way of solving the Wiener-Hopf equation (23) is instan-

tiated in theprewhitening approach[13, page 81] whose steps
are given below: for|z| = 1
• The power spectrum of the input signal{yn}n, Sy(z) =∑∞

k=−∞ Covy(k)z−k, is factorized as

Sy(z) = σ2G(z)G(z−1), (26)

whereσ2 is a constant andG(z) is the part ofSy(z) hav-
ing all its zeros and polesinsidethe unit circle (therefore
G(z−1) is the part ofSy(z) having all its zeros and poles
outsidethe unit circle).

• The cross-power spectrum between{νn}n and {yn}n,
Sνy(z) =

∑∞
k=−∞ Covνy(k)z−k, is then divided by

G(z−1). Expanding this ratio into fractions, then taking
the fractions with zeros and poles inside the unit circle

and dividing the resulting fractions byσ2 givesH ′
o(z) =

(1/σ2)
[
Sνy(z)/G(z−1)

]
+

.
• The transfer function of the Wiener Filter,Ho(z), is

formed by multiplyingH ′
o(z) by 1/G(z).

• Inverting the transfer function of the optimal filter,
Ho(z) = H ′

o(z)/G(z) =
∑∞

k=0 ho,kz−k, back into the
time domain yields the desired recurrence betweenν̂n and
yn and, subsequently, between the non-centered processes
N̂n andYn.

The success of the prewhitening approach rests on the abil-
ity to factorize the power spectrum of the original input signal
{yn}n as in (26). Unfortunately, we were able to perform this
canonical factorization only when the underlying model is the
M/M/∞ queue (i.e. “exponential” on-times), which is illus-
trated in Section V-A.

A. Application to theM/M/∞ model

To compute the transfer function of the filter, we need to find
expressions forSy(z) andSνy(z). Let us first determineSy(z).
By using (24) and (4) together with the property CovN (k) =
Covν(k), we find

Covy(k) =
{

p2ργ|k|, for k 6= 0
pρ, for k = 0.

Sinceγ = exp(−µS) < 1 and |z| = 1, the z-transform of
Covy(k) is

Sy(z) = pρ
γ(p− 1)z2 + (1 + γ2(1− 2p))z + γ(p− 1)

z(1− γz)(1− γz−1)
.

The second-order polynomial in the variablez in the numerator
has two positive real roots given byr < 1 and1/r > 1, with

r =
1 + γ2(1− 2p)−

√
(1− γ2)[1− γ2(1− 2p)2]

2γ(1− p)
.

HenceSy(z) = σ2 G(z) G(z−1) with σ2 := γρp(1−p)/r, and
G(z) := (1 − rz−1)/(1 − γz−1). We now computeSνy(z).
From (25) and (4) we find Covνy(k) = pργ|k| so that

Sνy(z) =
pρ(1− γ2)

(1− γz)(1− γz−1)
.

The transfer functionH ′
o(z) is given by

H ′
o(z) =

1
σ2

[
Sνy(z)
G(z−1)

]

+

=
r(1− γ2)

γ(1− p)(1− γr)(1− γz−1)

and the transfer functionHo(z) of the optimal filter takes here
the simple form

Ho(z) =
r(1− γ2)

γ(1− p)(1− γr)(1− rz−1)
=

B

1−Az−1

whereA = r and

B =
r(1− γ2)

γ(1− p)(1− γr)

=
−(1− γ2) +

√
(1− γ2)(1− γ2(1− 2p)2)
2γ2p(1− p)

. (27)
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The impulse response of this linear filter is given by thefirst-
order recurrence relation [13]̂νn = Aν̂n−1 + Byn, with ν̂n the
estimator ofνn. We now return to the original processes{N̂n}n

and{Yn}n, to finally obtain the optimal linear filter

N̂n = AN̂n−1 + BYn + ρ(1−A− pB). (28)

It is interesting to compare this filter with the Kalman filter
derived in Section IV (see (21), in which the filter gainK is
given in (19)). Looking at (27) and (19), we can see that they are
exactly the same. Developing the coefficient ofN̂n−1 in (21),
we obtainγ(1−Kp) = A. It remains to compare the constant
terms in (21) and (28). Recall thatρT in Section IV denotes
the actual average number of receivers which is simply denoted
by ρ in the present section. Developing the constant terms in
both linear filters we find(1 − γ)(1 − Kp) = 1 − A − pB.
We have therefore shown that the filters returned by both the
Kalman theory and the Wiener theory are identical.

This result is not so surprising, since both the Kalman fil-
ter and the Wiener filter are MSE- optimal among the class of
linear filters. The key point is that the Kalman filter used in
Section IV was derived under a heavy traffic assumption, while
the Wiener filter computed in the present section holds for any
value of the model parametersλ andµ. On the other hand, the
Wiener filter is only optimal among alllinear filters whereas
the Kalman filter in Section IV is optimal among all measur-
able filters.

We conclude this section by computing the mean square er-
ror εmin := E[(Nn − N̂n)2] of our estimator. It is known that
[13] εmin =

∑M
k=1 Res[F (z), zk] with F (z) := 1/z(Sν(z) −

Ho(z)Sνy(z−1)) wherez1, . . . , zM are the poles (if any) of the
functionF (z) inside the unit circle. The notation Res[F (z), zk]
stands for the residue ofF (z) at point z = zk. Specializ-
ing F (z) to the values ofSν(z), Sνy(z), Ho(z) found ear-

lier, yields F (z) =
ρ(1− γ2)((1−Bp)z −A)
(1− γz)(z − γ)(z −A)

. This func-

tion has two poles inside the unit circle which are located
at z = A and z = γ; the residues ofF (z) at these poles
are given by−ρpAB(1 − γ2)/[(1 − γA)(A − γ)] andρ[1 +
pBγ/(A− γ)], respectively. Summing up these residues gives

εmin = ρ
(
1− Bp

1−γA

)
. By using the expressions ofA andB,

we finally obtain

εmin = ρ
−(1− γ2) +

√
(1− γ2)(1− γ2(1− 2p)2)

2γ2p
. (29)

This expression forεmin can be used to tune the parametersp
andγ or equivalentlyS (see Section VII).

VI. T HE OPTIMAL FIRST-ORDER LINEAR FILTER

The theory reported in Section V applies to any on-time dis-
tribution Ψ(x) such that (5) holds. However, it is not easy to
identify the functionG(z) that appears in the canonical factor-
ization of the spectrumSy(z) (see (26)) and thereby the optimal
filter, except when the on-times are exponentially distributed
RVs. As already pointed out, we would like to develop an es-
timator under the only assumptions introduced in Section III

(namely Poisson join times and generally distributed on-times
such that (5) holds).

In this section, we will use a least square estimation method
to determine the first-order linear filter that minimizes the mean
square error. Observe that, unlike the Wiener filter, the pro-
posed approach will not return the optimal filter among all lin-
ear filters but simply the optimal linear filter among all first-
order linear filters. We will illustrate this approach at the end of
this section in the case whereΨ(x) is a hyperexponential dis-
tribution. Recall the definition of the centered stationary pro-
cesses{νn}n, {ν̂n}n and{yn}n introduced in Section V.

The methodology is simple: we want to find constantsA ∈
(0, 1) andB such thatε := E[(νn − ν̂n)2] is minimized when
the process{ν̂n}n satisfies the following first-order recurrence
relation

ν̂n = Aν̂n−1 + Byn. (30)

In steady-state we have

ν̂n = B

∞∑

k=0

Akyn−k. (31)

The mean square errorε is equal toε = E[ν2
n] − 2E[νnν̂n] +

E[ν̂2
n]. Therefore, we need to compute three terms to evaluateε.

First,E[ν2
n] = E[(Nn − ρ)2] = ρ. Second, using (31) and (25)

yieldsE[νnν̂n] = pB
∑∞

k=0 AkCovν(k) = pBg(A) where

g(z) :=
∞∑

k=0

zkCovν(k). (32)

Third, squaring both sides of (30) and then taking the expec-

tation yieldsE[ν̂2
n] =

(
B

1−A2

)
(2AE[ν̂n−1yn] + BE[y2

n]). We

know thatE[y2
n] = Covy(0) = ρp (see (24)) and from (31), (24)

and Covν(0) = ρ we haveE[ν̂n−1yn] = Bp2 (g(A) − ρ)/A.

We finally obtainE[ν̂2
n] =

(
pB2

1−A2

)
(2pg(A)+ρ(1−2p)). Hav-

ing computedE[ν2
n], E[νnν̂n] andE[ν̂2

n], we can write the mean
square error as follows

ε = ρ− 2pBg(A) +
(

pB2

1−A2

)
(2pg(A) + ρ(1− 2p)). (33)

Observe that the power seriesg(z) converges for|z| < 1 (since
k → Covν(k) is non-increasing) and is therefore differentiable
for |z| < 1. We will denote byg′(z) its derivative.

In order to minimizeε, A ∈ (0, 1) andB must be the solution
of the following system of equations:





∂ε

∂A
=

2pB

1−A2

(
AB

[
2pg(A) + ρ(1− 2p)

1−A2

]

+g′(A)(pB − (1−A2))

)
= 0

∂ε

∂B
= 2p

(
B

[
2p(g(A)− ρ) + ρ

1−A2

]
− g(A)

)
= 0.

The second equation gives

B =
g(A)(1−A2)

2p(g(A)− ρ) + ρ
. (34)



IEEE TRANSACTIONS ON SIGNAL PROCESSING - SPECIAL ISSUE ON SIGNAL PROCESSING IN NETWORKING, VOL. 51, NO. 8, PP. 2165-2176, AUGUST 2003 7

Substituting this value ofB into the first equation shows thatA
must satisfy

Ag(A)(2p(g(A)− ρ) + ρ)
−g′(A)(1−A2)(p(g(A)− ρ) + ρ(1− p)) = 0

If this equation has a unique solutionA ∈ (0, 1), then substitut-
ing this value ofA into (34) will give the optimal pair(A,B).
Proposition VI.1 shows that this is indeed the case (see [3] for
a proof).

Proposition VI.1: Definef(x) := (2p(g(x)−ρ)+ρ)xg(x)−
(p(g(x)− ρ) + ρ(1− p))(1− x2)g′(x), whereg(x) is given in
(32). If g′(x) > 0 for x ∈ [0, 1), thenf(x) has a unique zero in
[0, 1). ¨

The reader can check that the filter defined in (30) with the
optimal pair(A,B) is the same as the Wiener filter found in
Section V-A when the on-times are exponentially distributed.

A. Application to theM/HL/∞ model

We now illustrate the approach developed in this section by
considering the situation where on-times follow a hyperexpo-
nential distribution. More precisely, we assume that

Ψ(x) = 1−
L∑

l=1

ple
−µlx (35)

with 0 < pl < 1, l = 1, 2, . . . , L, and
∑L

l=1 pl = 1. In this
setting, the underlying queueing model can be seen asL inde-
pendentM/M/∞ queues in parallel. The arrival rate to queue
l is plλ and the service rate isµl. Defineγl := exp(−µlS),
ρl := plλ/µl so thatρ =

∑L
l=1 ρl. The autocovariance func-

tion of the process{νn, n = 0, 1, . . .} is equal to Covν(k) =
∑L

l=1 ρlγ
|k|
l so thatg(A) =

L∑

l=1

ρl

1−Aγl
.

Numerical example1: L = 2, p = 0.0106 andS = 2.5s.
Also

1/µ1 = 3897s, ρ1 = 19.5, γ1 = 0.999359
1/µ2 = 480061s, ρ2 = 75.1, γ2 = 0.999995
1/µ = 18316s, ρ = 94.7.

The optimal first-order filter is

N̂n = 0.99879456 N̂n−1 + 0.10720289 Yn + 0.006540864.

For comparison, the Wiener filter found in Section V-A (for
exponential on-times) for these values is

N̂n = 0.99828589 N̂n−1 + 0.14885344 Yn + 0.012900081.

VII. G UIDELINES ON CHOOSINGp AND S

A “good” pair (p, S) should(i) limit the feedback implo-
sion while at the same time(ii) achieve a good quality of the
estimator. Of course(i) and (ii) are antinomic and therefore
a trade-off must be found. This trade-off will be formalized as

1The values of the parameters come from the trace calledvideo1 investigated
in Section VIII.

follows: we want to select a pair(p, S) so that the mean number
of ACKs generated everyS seconds (see (22)) and the relative
error of the variance of the estimator (denoted asη) are bounded
from above by given constants, namely





E[Yn] = pρ ≤ α

η =
Var(Nn)− Var(N̂n)

Var(Nn)
≤ β.

(36)

WhenN̂n is optimal among all linear filters, then Var(Nn) −
Var(N̂n) = E[(Nn − N̂n)2] andη becomes the “normalized
mean square error” [14, page 202]. Optimality was shown for
theM/M/∞ queue, thereforeη = εmin/ρ with εmin given in
(29).

For given constantsα and β, it is easy to solve the con-
strained optimization problem defined in (36), provided thatη
is known. For theM/M/∞model, whereεmin is given in (29),
we find thatp = α/ρ and thatS, or equivalentlyγ, is the unique
positive solution of the equationεmin = ρβ. The problem now
is to choose constantsα andβ so that conditions(i) and(ii)
are satisfied. We have found in our experiments thatα in the
range[0.5, 1] andβ ≤ 0.15 give satisfactory results.

We conclude this section with general remarks on how to
adapt the parametersp and S to important variations in the
membership. The estimation schemes in Sections IV-C, V-A
and VI-A have been obtained under the assumption that param-
etersp andS are fixed. However, the filters therein constructed
can still be used ifp and/orS change over time, provided that
these modifications do not prevent the system to be in steady-
state most of the time. In that setting, a new filter will have to
be recomputed after each modification. Such a modification can
be carried out each time the number of ACKs received during
a given period of time significantly deviates from the current
expectation (i.e.pρ).

VIII. V ALIDATION WITH REAL VIDEO TRACES

In this section we apply the estimators developed in Sections
V-A and VI-A to four traces of real video sessions. Two types
of estimators will be used: the estimator – denoted asN̂E

n –
found in (28) when the population is modeled as anM/M/∞
queue; the estimator – denoted asN̂H2

n – derived in Section VI-
A in the case where join times are Poisson and on-times have a
2-stage hyperexponential distribution (M/H2/∞ model).

The objective is twofold: we want to investigate the quality
of both estimators when compared to real life conditions, and
we want to identify the best one. We have collected four MBone
traces – denotedvideoi, i = 1, . . . , 4 – between August 2001
and September 2001 using theMListen tool [1]. Each trace
corresponds to a long-lived video session (see duration of each
session in Table I, where the superscript “d” stands for “days”)
and records the pair(Ti, Di) for each participant in the session.
We have run both algorithms (estimators) on each trace. For
each trace, we have identified the parameters of theM/M/∞
model (parametersλ andµ, or equivalently parametersρ and
µ) and of theM/H2/∞ model (parametersρ, µ1, µ2, p1 and
p2 = 1 − p1). The values of these parameters are reported in
columns 3–8 in Table I. Parametersp andS have been chosen
by following the guidelines presented in Section VII. Values
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TABLE I
PARAMETER IDENTIFICATION

Trace Session lifetime ρ 1/µ 1/µ1 1/µ2 p1 p2 p S α β

video1 3d 13h 33m 20s 94.7 18316 3897 480061 0.97 0.03 0.011 2.5 1.0 0.15
video2 11d 1h 46m 8s 14.1 16476 1 226498 0.93 0.07 0.034 3.2 0.5 0.1
video3 50d 22h 13m 20s 8.1 66823 1 900854 0.93 0.07 0.062 20.0 0.5 0.1
video4 29d 16h 43m 13s 17.9 83390 1 473268 0.82 0.18 0.028 10.0 0.5 0.1

TABLE II
MEAN AND PERCENTILES OF RELATIVE ERROR|Nn − N̂n|/Nn

Trace Estimator Mean 25 50 75 90 95
video1 N̂E

n 6.82 1.09 2.42 5.25 11.5 19.4
N̂H2

n 6.12 1.08 2.55 6.31 13.5 20.6
video2 N̂E

n 4.19 1.41 3.08 5.43 8.66 11.9
N̂H2

n 4.12 0.98 2.14 4.41 8.78 12.6
video3 N̂E

n 4.20 1.55 3.26 5.71 8.71 11.0
N̂H2

n 3.98 1.07 2.36 4.83 9.35 12.6
video4 N̂E

n 3.79 1.23 2.57 4.51 7.50 11.0
N̂H2

n 4.06 1.02 2.21 4.39 8.98 14.7
All N̂E

n 4.44 1.33 2.88 5.22 8.60 12.0
N̂H2

n 4.34 1.02 2.26 4.73 9.61 14.2

of these parameters are listed in columns 9–10 in Table I. The
performance of estimatorŝNE

n andN̂H2
n are reported in Tables

II and III.
Table II reports several order statistics (columns 3–7) and the

sample mean of the relative error|Nn−N̂n|
Nn

(column 2), where

N̂n is eitherN̂E
n or N̂H2

n . All results are expressed in percent-
ages. The first observation is that both estimators perform rea-
sonably well. The sample mean of the relative error is always
less than6.82% and is as low as3.79%; when averaging over all
experiments, this sample mean is less than4.5% for both N̂E

n

andN̂H2
n (see last two rows). The second observation is that

no scheme is uniformly better than the other one over an en-
tire session but their sample means are very close to each other
(see column 2). For instance,̂NE

n performs better than̂NH2
n

regarding the90th and the95th percentiles whereas the result is
reversed regarding the25th percentile. It looks like the relative
error onN̂H2

n is empirically more dispersed around its mean
than is the relative error on̂NE

n , and has a longer tail.
Table III reports the sample mean and the sample variance of

the errorNn − N̂n. In the 4th column, we list the theoretical
variance. It is given byεmin for N̂E

n (see (29)) and byε for
N̂H2

n (see (33)). The expected averageE[Nn − N̂n] is zero in
both approaches. Both estimatorsN̂E

n andN̂H2
n have almost no

bias (see column 2), and their empirical variances closely match
the theoretical ones given byεmin andε, respectively. It is of
interest to point out that for the 4 traces studied,ε, the theoret-
ical mean square error provided bŷNH2

n , is smaller thanεmin,
the theoretical mean square error provided byN̂E

n (however,
this result is reversed if we consider the empirical mean square
errors). Thus,N̂H2

n is more efficient (an estimator is said to
be more efficient if it has a smaller variance) thanN̂E

n (again,

TABLE III
EMPIRICAL MEAN AND VARIANCE OF THE ERRORNn − N̂n

Trace Estimator Mean Varianceεmin, ε η

video1 N̂E
n −0.112 12.664 13.942 0.147

N̂H2
n −0.047 12.851 12.120

video2 N̂E
n 0.006 0.495 1.407 0.099

N̂H2
n 0.019 0.785 0.396

video3 N̂E
n 0.037 0.207 0.737 0.091

N̂H2
n 0.019 0.229 0.208

video4 N̂E
n 0.052 0.911 1.566 0.087

N̂H2
n 0.065 1.423 0.676

N̂E
n is empirically more efficient than̂NH2

n ). The last column
provides the relative error on Var(N̂E

n ), calledη (= εmin/ρ)
in Section VII. Notice thatη < β (β is given in column 12 in
Table I).

Fig. 2 displays the variations of membership for session
video1 (which presents the highest variations inNn) together
with the estimates returned bŷNE

n andN̂H2
n . Fig. 2(a) displays

three curves: the collected video trace, the estimation returned
by N̂E

n , labeled “Exponential”, and the estimation returned by
N̂H2

n , labeled “Hyperexponential”. It appears thatN̂E
n follows

betterNn during periods of high variations whereaŝNH2
n is

slightly closer toNn during flat periods.
Both estimatorŝNE

n andN̂H2
n have been derived under some

specific and restrictive assumptions: Poisson join times for both
of them, exponential (resp.2-stage hyperexponential) on-times
for the first (resp. second) one. It is interesting to know whether
or not these assumptions were violated in each sessionvideoi,
i = 1, . . . , 4. We have therefore carried out a statistical analysis
of each trace in order to determine the nature of their join time
process and of their on-time sequence. As shown in Table IV
and Fig. 2, parts (b) and (c), neither is the join time process
Poisson nor are on-times exponentially distributed (or hyper-
exponentially distributed), for any of the traces. The inter-join
times and the on-times appear to follow subexponential distri-
butions (Lognormal and Weibull distributions), a situation quite
different from the assumptions under which the estimators have
been obtained. Despite these significant differences, the esti-
mators behave well and therefore show a good robustness to
assumption violations.

In summary, both estimators perform very well when applied
to real traces and are robust to significant deviations from their
(theoretical) domain of validity. Estimator̂NH2

n returns the best
global performance for the relative error criterion, but does not
track high fluctuations as well aŝNE

n . Overall, we have found
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Fig. 2. Membership estimation of sessionvideo1 and corresponding probability plots

TABLE IV
DISTRIBUTIONS THAT BEST FITTED INTO THE INTER-ARRIVALS AND ON-TIMES SEQUENCES

Trace Best fit for inter-arrivals sequence Best fit for on-times sequence
video1 Lognormal withµ = 3.38, d = 1.49 Weibull with shape 0.35, scale 3700
video2 Lognormal withµ = 5.20, d = 1.68 Weibull with shape 0.26, scale 1400
video3 Weibull with shape 0.65, scale 3500 Lognormal withµ = 5.08, d = 3.32
video4 Weibull with shape 0.55, scale 2700 Weibull with shape 0.18, scale 4000

that N̂E
n is a good estimator, both in terms of its performance

and its usability since it only requires the knowledge of two
parameters:ρ andµ.

IX. ESTIMATING PARAMETERSρ AND µ

The main pending issue concerns the knowledge of param-
etersρ andµ (or equivalently any two parameters amongρ, λ
andµ, sinceρ = λ/µ in steady-state). When these parame-
ters are not known, the source should estimate them. Again,
the source could estimate any two parameters amongρ, λ and
µ and infer the third one.

One possible way of estimatingλ is to let a newly arrived re-
ceiver send a “hello” message to the source with a certain (con-
stant) probabilityq (q should be small enough to avoid over-
whelming the source with hellos). The source would then use
the arrival timetm of the mth hello to estimateλ. The max-
imum likelihood estimator iŝλ = m/(qtm). This estimator
is unbiased and consistent by the strong law of large numbers
(limm→∞ tm/m = 1/(qλ) a.s.).

In a similar way, the source can estimateµ if receivers prob-
abilistically send a “goodbye” message reporting their on-time
when they leave the session. Letτm′ be the on-time indicated in
them′th goodbye message received at the source, then the max-

imum likelihood estimator ofµ is simplyµ̂ = m′/(
∑m′

i=1 τm′).
The estimator̂µ is unbiased and consistent.

A natural estimator forρ is ρ̂ = E[N̂n]. As long as there
is no estimation of bothρ andµ, it is not possible to compute
the filter coefficientA andB. Then only a naive estimator for
Nn can be used, defined as the ratio of the number of ACKs
receivedYn over the ACK probabilityp (see Section II). Notice
thatE[Yn/p] = ρ.

We have tested the estimator̂NE
n when λ and ρ are esti-

mated. We have chosen an ACK probabilityp = 0.021, yield-
ing E[Yn] = 1.99, and a hello probabilityq = 0.1, which means
that, on average, one hello message is sent to the source for ev-
ery 10 arrivals. The performance of the estimator can visually
be observed in Fig. 3 in which five curves are plotted:(i) the



10 IEEE TRANSACTIONS ON SIGNAL PROCESSING - SPECIAL ISSUE ON SIGNAL PROCESSING IN NETWORKING, VOL. 51, NO. 8, PP. 2165-2176, AUGUST 2003

 0
 6

0
 1

20
 1

80

12:00 13:00 14:00 15:00 16:00

Subset of data covering five hours of the session

EWMA,
α = 0.999

EWMA, α = 0.99
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Parameters are known

Video trace

Video trace
Parameters are known
λ and ρ are estimated, q = 0.1
EWMA, α = 0.99
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Fig. 3. Membership estimation of sessionvideo1 (ρ = 94.7, p =
0.021, S = 2.5s) when (i) parameters are known beforehand,(ii) estima-
tors λ̂ = m/(qtm) andρ̂ = E[Yn]/p are used (q = 0.1) and(iii) EWMA
estimators are used (α = 0.99, 0.999)

TABLE V
MEAN AND PERCENTILES OF THE RELATIVE ERROR(IN %)

Estimator Mean 25 50 75 90 95
ρ, λ known 6.0 1.2 2.6 5.0 8.8 14.5
ρ, λ estimated 5.2 1.5 3.2 5.9 10.5 16.4
EWMA α = 0.99 4.6 1.6 3.4 6.0 9.2 11.4
EWMA α = 0.999 6.7 1.3 3.3 7.4 14.5 21.2

TABLE VI
EMPIRICAL MEAN AND VARIANCE OF THE ESTIMATION ERROR

Estimator Mean Variance
ρ, λ known −0.0871 26.5487
ρ, λ estimated 0.2402 37.6369
EWMA α = 0.99 0.0006 23.1149
EWMA α = 0.999 0.2570 79.6634

original video trace,(ii) the membership estimation for the case
where the parameters are known beforehand,(iii) the member-
ship estimation for the case where estimatorsλ̂ = m/(qtm)
andρ̂ = E[Yn]/p are used,(iv) the estimation returned by the
EWMA algorithm (see (1)) forα = 0.99 and(v) the estimation
returned by the EWMA algorithm forα = 0.999. Observe that
whenρ andλ are estimated, the filter coefficients are computed
at each observation step, whereas they are computed once for
all in the other cases. As expected, whenρ andµ are unknown,
the estimator̂NE

n does not behave as well as when these param-
eters are known beforehand. Still, its performance is reasonably
fair as can be seen in Tables V and VI.

Table V reports the sample mean and some order statistics of
the relative error returned by our scheme and by the EWMA al-
gorithm proposed in (1), and Table VI reports the sample mean
and the sample variance of the error between the true member-
ship and its estimation. Observe that, when the parameters are
estimated, the relative error on̂NE

n is 95% of the time within
16.4% of the true membership which is a good result (see row 3
column 7 in Table V). As for the EWMA estimator, we observe

both in Fig. 3 and Tables V and VI (row 4) that the perfor-
mance is very good whenα = 0.99, which is not the case when
α = 0.999 as the corresponding EWMA estimator achieves the
worst performance (see row 5 in Tables V and VI). Notice how
high is the variance of the EWMA estimator whenα = 0.999
(see row 5 column 3 in Table VI).

Remark IX.1:For the tracevideo1, the EWMA estimator
with α = 0.99 behaves very well in contrast to the EWMA
estimator withα = 0.999. This is exactly the inverse of what
we have observed when applying both EWMA estimators on
the audio trace shown in Fig. 1. There, the EWMA estima-
tor with α = 0.99 did not perform well, whereas the EWMA
estimator withα = 0.999 returned excellent results. In other
words, given a trace, one can always find a value ofα for which
the EWMA estimator behaves well, but this value will be exclu-
sive to the trace and one can not know in advance what value
assign toα.

To conclude this discussion, we believe that using the esti-
matorN̂E

n and estimatingλ andρ on-line is appealing in the
sense that, even though its performance is not the best one ever,
one is sure of having a fair result for a relatively small amount
of ACKs. This is not the case of the EWMA estimator as not
only the user will not know in advance what value assign toα,
but also a “good” value for one trace is most probably not good
for another.

X. CONCLUSION

The major contribution of this work is the design of novel es-
timators for evaluating the membership in multicast sessions.
We have first modeled the multicast group as anM/M/∞
queue and established our results under the assumption that this
queue is in heavy-traffic. In this regime the backlog process of
theM/M/∞ queue is “close” to a diffusion process that can be
used to cast our estimation problem into the appealing frame-
work of Kalman filter theory. Using this theory we have derived
an estimator that minimizes the variance of the error. Aiming
at generalizing the multicast model, we relied on Wiener filter
theory to compute the optimal linear estimator for session mem-
bership when the underlying model is anM/M/∞ queue (the
heavy traffic assumption is no longer needed). The optimality
refers to the unbiasedness of the estimator and to the fact that
the mean square error is minimized. The latter estimator turned
out to be identical to the one designed using the Kalman filter
theory. We have also developed the optimal first-order linear
filter in the case where the on-time distribution is arbitrary and
have derived the associated estimator in the case where the on-
times have a two-stage hyperexponential distribution. The esti-
mators have been validated on real video traces. Their perfor-
mance have been shown to be excellent, one of them showing a
good ability to adapt to highly dynamic multicast sessions. It is
worthy to point out that it is the first time that a membership es-
timator is tested on real traces, exhibiting human behavior and
correlations between the different processes at hand.
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