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Abstract— This paper addresses optimal on-line estimation of (or are actively following some application that is being broad-
the size of a multicast group. Three distinct approaches are used. casted), it asks all connected members or participants to send an
The first one builds on Kalman filter theory to derive the MSE- acknowledgment (ACK) everg seconds. However, in order to

optimal estimator in heavy-traffic regime. Under more general as- . .
sumptions, the second approach uses Wiener filter theory to com- avoid that too many ACKs are sent to the sources in the case

pute the MSE-optimal linear filter. The third approach develops Of @ large multicast group, a phenomenon refers tieadback

the best first-order linear filter from which an estimator that holds ~ implosion each participant only sends an ACK evérgeconds

for any on-time distribution is derived. Our estimators are tested with probability p. Clearly, the values of and S will have a

on real video traces and exhibit good performance. The paper also yirect impact on the quality of the estimator and on the number

provides guidelines on how to tune the parameters involved in the f ACKs that t ling to th d hould b

schemes in order to achieve high quality estimation while simulta- 0 s that are travelling to the source. Ideallyshou e

neously avoiding feedback implosion. large andS should be small so that the source collects enough

. _ correlatedobservations for its (whatever) estimation scheme to

. EDICS—2-ESTM, 2-SDES, Signal Processing in Networkg ork efficiently. But this ideal scenario would yield feedback

Ing implosion. The challenge is therefore to design an estimation
scheme for the size of the multicast audience that is accurate

I. INTRODUCTION : .
opucTio without generating too many ACKs.

NCE its introduction, IP multicast [8], [9] has seen slow . L
; , . Throughout the paper, we address the issue of estimating the
eployment in the Internet. As stated in [10], the service . . . .
. i : membership of a multicast group. We build on adaptive filter-
model and architecture do not efficiently provide or address . X -~
. ) . ing theory to derive the estimator. Three distinct approaches
many features required for a robust implementation of multi- . ) e
. . ! are successively considered, based on Kalman filtering the-
cast. However, the fact remains that IP multicast is very appeal-" - . o L
S . . - . - -ory, Wiener filtering theory and least square estimation, respec-
ing in offering scalable point-to-multipoint delivery espeuall;@
. . o : : . ively.
in satellite communications. This work is motivated by the con- i . i ) .
viction that large-scale multicast applications will soon be de- The Kalman filter provides a linear, unbiased, and minimum
ployed in the Internet. We believe that membership estimat@<0r variance recursive algorithm to optimally estimate the un-
will be an essential component of this widespread deployméfftown state of a linear dynamic system from noisy data taken
as they can be very useful for scalable multicast. Future Inter@étdiscrete real-time intervals. Furthermore, under normality
radios and TVs will need to characterize their audience pref@sSumptions, this filter is optimal, not only among all linear
ences and to follow the fluctuations of the audience size oJafers based on a set of observations, but among all measur-
time. Dutta, Schulzrinne and Yemini proposed an architect/?@'€ filters [18], [23]. Since our measurements are collected
for Internet radio and TV called MarconiNet [11] that relies oftt discrete times, Kalman filter therefore appears as an appeal-
RTCP [21], [22], the real-time transport control protocol in théd @pproach for solving our estimation problem. In Section IV
Internet. Even though RTCP provides an easy mechanism Y§# Show that under some conditions (heavy traffic regime and
collecting statistics on the size of the audience, it does not scglgonential on-times — the on-time is defined as the length of
well to large multicast sessions. In such applications, samplirgl‘e_du””gl which a user participates to a multicast session, see
based techniques are more appropriate. ection IIl) the Kalman filter can indeed be used in our context.
There has been a significant research effort in devisingln Section V we restrict ourselves to the clas$iéar filters
sampling-based schemes for the estimation of the membershith the hope of relaxing some of the assumptions made in Sec-
in multicast sessions [5], [12], [17], [19] (see also [2, Chion IV for Kalman filtering theory to apply. The best filter is
2] where the main features of these schemes are presentdw)n a Wiener filter. We show that the Wiener filter can be com-
However, none of these schemes have been shown to be pyted forany traffic regimgas opposed to the Kalman filter in
timal within some patrticular set; further, at the exception of thgection IV that is derived in heavy-traffic regime) provided that
scheme in [19], they do not use past information, an essentil-times are exponentially distributed. Interestingly enough,
feature in estimation theory. both filters obtained in Sections V and IV turn out to be iden-
In this work, we propose a novel sampling-based techniqtieal. This observation thereby explains the good performance
that we now describe. Whenever a source is interested in knafithe Kalman filter that we have observed under moderate and

ing how many receivers are connected to the multicast sessligit traffic regimes (see Section VIII).
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In Section VI we determine the optimfast-order linear fil- Membership vs. time and EWMA estimation: p = 0.01, S=1s
ter for anarbitrary on-time distribution. We illustrate the ap- — i i
proach in the case where the on-time distribution is hyperexpo-
nential. N —

The rest of the paper is organized as follows: motivation for
this work is given in Section Il and the multicast group model
is introduced in Section Ill. Estimators are obtained in Sections
IV-VI for fixed parameteryp and S; in Section VIl we give © |
guidelines on how to choose these parameters so as to limit the
number of ACKs travelling to the source, while in the meantime
achieving a good quality of our estimators. The robustness®f
the estimators is addressed in Section VIII. Extensions of our
work are discussed in Section 1X and concluding remarks fol-
low in Section X.
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II. MOTIVATION Fig. 1. Membership evolution of a short audio session and EWMA estimation

In order to best track the time-evolution of the multicast
membership, we aim at developing anbiasedmoving aver- be optimal in some sense (e.g. will minimize the mean square
age estimator that would take advantage of previous estima@gg§mation error).
in anoptimalway. We propose a mechanism in which the re- For these reasons, we will use another approach in the fol-
ceivers probabilistically send “heartbeats” to the sender (hetewing and will rely on adaptive filter theory to construct opti-
after called the source) in a periodic way: evérgecond each mal (to be made more precise) estimators.
participant sends an ACK to the source with the probability Throughout the paperandsS are held fixed. In Section VI
p. Hence, the feedback implosion problem is addressed viave will give guidelines on how to select these parameters.
convenient choice of the reply (or ACK) probabilityand of
the “ACK time-interval” S. Note thatS should be larger than
the largest round-trip time between a receiver and the source.
Timest = nS, forn = 1,2,..., will denote the end of each |n this section, we present the model for the multicast group.
polling round, andy;, will denote the total number of ACKs We consider a multicast group where participants join and leave
received at theith observation step, i.e. in the interval of timeat random times. LeT; and7; + D; be the join time and the
](n —1)S,nS]. We denote byV,, the size of the multicast pop- leave time, respectively, of théh participant. In the following,
ulation at timen.S and by, an estimator fotV,,. D, > 0is called the on-time of théh participant and D;, i =

A naive approach to the estimation problem would cor 2, ...} is referred to as the on-time sequence. Nét) be the
sist in estimatingV,, by the ratioY,,/p, namely, by letting number of participants at time> 0 or, equivalently, the size
N,, = Y,/p. It has been shown in [2, Ch. 2] that this estiof the multicast audience at timeWe have
mator behaves very poorly. This is partly due to the fact that it i
ignores the “history” of the membership process, ~ N(O)

A less naive approach to filter out the noisy observations NOEDY D + UL <t<T,+Di} (2
consists of using an exponential weighted moving average i=0 i=1
(EWMA) like the one used in [19]. A natural choice is

I1l. THE MULTICAST GROUP MODEL

o0

Where{DgT), 1=1,2,... ,]\7(0)} are the remaining on-times
N, =aN,_1+(1—a)Y,/p (1) att = 0 of participants, if any, which have joined the session
beforet = 0 and who are still connected at tinhie= 0 (with
which yields an (asymptotically) unbiased estimator, sinoB((f) = 0 by convention) and{ E'} is the indicator function of
E[N,] = E[Y.]/p = E[N,] in steady-state. any event? (i.e. 1{ E} = 1ifthe eventE occursand{E} = 0
The difficulty in using the EWMA approach lies in the choicetherwise).
of the parameted, as the performance of the estimator will in  Primarily for mathematical tractability we shall assume from
general be highly sensitive to this choice. This sensitivity isow on that the join (arrival) process is Poisson with intensity
illustrated in Fig. 1, where the estimator has been computad:= 1/E[T;,; — T;] > 0 and that on-times form a renewal
on an audio trace for three different (but fairly close) valuesequence of random variables (RVs) with common probability
of o, namely,0.95, 0.99 and 0.999. We can observe that thedistribution ¥ (z) = P(D; < =) such that) < E[D;] < oo,
estimators computed far = 0.95 anda = 0.99 are much further independent of the arrival times. In the followibgwill
more noisy than the estimator obtained for= 0.999, which denote a generic RV with probability distributidn(z).
appears to be very good. We are therefore left with the problemin the queueing terminology the proce¥ (t),t > 0} is
of selecting a “good” value for, not an easy task since thisthe occupation process (number of busy servers)lf/&' /oo
value will typically be session dependent. Besides, there is §aeueing system with arrival rateand service time$D;, i =
guarantee that an estimator based on the EWMA algorithm will2, .. .} [16].
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For later use, we briefly review some results onitigG /oo time nS by using Kalman filtering theory. This estimator will
queue. Irsteady-statethe numbetV of busy servers is a Pois- be obtained in heavy-traffic.
son RV with parametep := A E[D], namely,P[N = j] = The heavy-traffic regime is obtained by “speeding up” the ar-
o’ exp(—p)/4!. In particular, both the mean and the variance aivals by a factofl’ or, equivalently, by assuming that the arrival
the number of busy servers are equaptdlhe autocovariance intensity is nowAT'. We denote by{ N(t), ¢ > 0} the occu-
function of thestationary versiorof the proces$]\7(t),t >0}, pation process in this new M/G¢ queue with arrival rate\7T".
denoted by{ N (¢),t > 0}, is given by [7, Equation (5.39)] We will assume that the proce$dir(¢), ¢ > 0} is stationary
forall T > 0. Hence,Np(t) is a Poisson RV with parameter

CoV(N(t), N(t + h)) = A / P(D > u)du. @) T forall 7' > 0, with p := )\/,u.(see Section IlI).
Ih| Let us introduce the normalized procgssr(t),t > 0} de-
fined b
From now on, we will only work with the stationary process y Np(t) — pT
{N(t),t > 0}, still for the sake of mathematical tractability. Zp(t) = — 7 t>0. (6)

This is equivalent to assuming that when the tracking begins, _ )
the system has been operating sufficiently long with respect-IEBe process{ Zz(t), t 2 Q}_ (_Jlescnt_)es the fluctuations of
session time durations (for instance, we can see on Fig. 1 tha{r (t),t = 0} around its limiting trajectoryl” asT’ — oo.
steady-state is reached after approximately000 sec.). We A hice feature of the procesgZr (1), ¢ > 0} is that it con-
have observed in our experiments (see [2, Ch. 2]) that the ¥Er9€s to a diffusion process &5 — oo when the on-times
timators we will develop in the forthcoming sections beha /& €€xponentially distribute®Rvs. More precisely, a8’ — oo
well even when the multicast population is not in steady-stafa (Stationary) processZz(¢), ¢ > 0} converges in distribu-
at the beginning of the tracking (see Fig. 2 in Section VIII) ojjon to the OmsteinJhlenbeck procesgX (t), t > 0} given by
when the steady-state assumption is violated during the ent#d: Theorem 6.14, page 155]
estimation process (see Fig. 3 in Section IX). t

We denote by{N,,,n = 0,1,...} the proces§ N (t),t > 0} X(t) = e X(0) + V2X / e " dB(u),  (7)
sampled at times= 0, S, 25, ..., namelyN,, := N (nS). 0

Let Covx(-) denote the autocovariance function of anwith X(0) ~ N(0,p), where{B(t), t > 0} is the standard
second-order discrete-time stationary process,,n = Brownian motion. The Ornsteibthlenbeck process defined in
0,1,...}. In the case where the on-tim¢®;,i = 1,2,...} (7)isastationary ergodic Markov process, and its invariant dis-
areexponentiallydistributed with mearZ[D] = 1/u, we have tribution is a normal distribution with mean zero and variance

p [15, page 358].

Covy (k) = p'y““‘, k=0,+1,... 4) In the remainder of this section we will assume that the on-
) times{D;,: =1,2,...} are exponentially distributed RVs.
with ~ := eXP(—MS)-_ We now show that the estimation problem can be reduced to
Throughout, we will assume that a discrete filtering problem, to which discrete Kalman filtering
theory applies. We first show that the procé¢ss(¢),¢ > 0},
;COVN(}C) < 00 () sampled at discrete timgs = nS, is governed by a linear
:>0

stochastic difference equation; then, we show that the measure-

thereby ruling out the situation where the on-times are heaJj}€Nt équation at timeS'is linear in the system sta€(n.5).
tailed (e.g. Pareto distribution with shape parameter smaller )
than2). A. System dynamics

In the next three sections we derive three Mean-Square ErroFrom (7), we obtain, fob < s < ¢, X () = e #(=%) X (s)+
(MSE) optimalestimators for the size of the multicast audience/2.\ f; e~#(t=%) d B(u), from which it follows that
attimesnS (n = 0,1,...) under different sets of assumptions
(exponential on-time distribution and heavy traffic regime in Sn1 =&+ wn, n=0,1,... (8)
Section IV by using a Kalman filter, exponential on-time disyhere¢,, := X (nS), v := e S and
tribution in Section V by using a Wiener filter and general on-
_time QistribuFion in Section VI). In each case Fhe optimality — VaN (n+1)$ o n((nt1)S—u) dB(u).
is defined with respect to a different class of filters (class of " nS
all measurable filters in Section 1V, class of all linear filters ir‘i’h RV i d. with
Section V and class of all first-order linear filters in Section VI). € RVS{wn}n areiid. wit

A word on the _not.atio.n use.d in this papéV:(m,.v) will de- wy, ~ N(0,Q), n=0,1,... 9)
note a normal distribution with meam and variancev and o
X ~ N(m,v) will denote a RV with distributionN (m,v); (see e.g. [6, page 17]) whefgis given by
{an}, will stand for{a,,, n =10,1,...}.

IV. OPTIMAL ESTIMATION USING A KALMAN FILTER S

In this section, which reviews previous work published in [4], o) /("“)S
n

(n+1)S
Q = 2)\E/ e FDS=W) B (y)

—2u((n+1)S—u) _ A2
we derive an estimator of the size of the multicast audience at g ¢ du=p(1-77).
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Equation (8) establishes a linear stochastic difference equaThe Ricatti equation (15) has a unique positive solution
tion relating the state of the limiting proce§X (¢), t > 0} at given by
consecutive polling instantsS and(n + 1)S.

Qp* + R(1-°)

P =

B. Measurement equation 2p?y?
Let ¢! be the indicator function that receiver = V(@Qp? + R(1—792))2 +4p>y2RQ 18
1,2,...,Nr(nS) has sent an ACK in theth polling round, + 2p2~2 - (18)

with ¢! = 1 if an ACK was sent by receiverand ¢’ = 0
otherwise. From the definition of the model it is seen that, col gives the (stationary) variance of the estimation error. From
ditioned onNr(nS), ¢}, ..., Nr(mS) are i.i.d. Bernoulli RVs (18) and (16) we find that the gaii is given by

with E[¢}] = p. The conditional expectation and variance of

the number of ACKY,, = N1 ¢i received by the source - _ —(1 =7°) ++v/(1 =*)(1 —7*(1 - 2p)*) (19)

attimenS are then given bWz (nS) p and Nz (nS) p(1 — p), 292p(1 — p)
respectively. We define our normalized measurement equation
as Recall that,, ~ N (0, P) for everyn and thak,, is independent
Y, — ppT i
Mr(nS) = 1o \/;p R (10) of the observatiom:,, [24, page 240].

which, with the help of (6), can be rewritten as D. Membership size estimation

Mr(nS) = p Zr(nS) + Vr(nS), (11)  We now return to our original estimation problem, namely,
where the derivation of an estimator\{,) for the size of the multi-
Y, — Nr(nS)p cast group at timewS (i.e. Np(nS)). Recall that the process
Vr(nS) = v (12)  {Nz(t), t > 0} describes the number of busy servers in a sta-

tionary M /M /oo queue with arrival rateaT" and service ratg.

The next step is to lef’ — oo in (11). The following proposi- \stivated by (6), we defindV,, as follows:

tion is proved in [4].

WitIZI;roposition IV.1: There exist i.i.d. RVqv,, n = 0,1,...} Ny, = ENT + pT (20)
vn ~N(O,R), n=0,1,... (13) with &, given in (17). Combining (17), (10) and (20), we find
where R := pp(1 — p), independent offw,},, such that the following first-order linear equation

{vk, k =n,n+1,...}isindependent of;, k =0,1,...,n} R .
forn = 0,1,..., and such thatZr(nS), Vr(nS)) converges Nn =v(1 = Kp)Ny—1 + K'Y, +pT'(1 —7)(1 = Kp). (21)

weakly to(&,, v,) asT — oo. ¢ )
We deduce from Proposition V.1 that’r(nS) defined in Starting withE[{] = 0 it is seen from (17) and (14) that
(10) converges weakly 88 — oo to a RVm,, such that E[¢,] = 0 which in turn implies from (20) thaE[Nn] =pT =
E[N7(nS)]. This shows thafV,, is an unbiased estimator. On
Mn =p&n +vn, n=01,.... (14) " the other hand, VA(N,, — N, )VT) = Var(Zy(nS)—¢,) from
(6) and (20); we conjecture that, &s— oo, the latter quantity
C. Deriving the filter parameters converges td, the variance of the estimation eregrin heavy-

Equations (8) and (14) represent the equations of a discrégsfic.
time linear filter, for which we can compute the optimal esti- The estimation algorithm is summarized belg#¥'(  and.S
mator. Throughout we shall assume that the Gaussian initéaie assumed to be known):
conditionép, the signal noise sequenge, },, and the observa-  |nitialization step:

tion nqise sequenci, },, are all mutually independen}. Ny = pT (i.e. éo = 0), v = exp(—uS) and set gain
Let&, be an estimator of,,, and denote by,, = &, — &, the K as given in (19).
estimation error. The estimator that minimizes the mean squaresith observation step:
of the estimation error is given by the following Kalman filter Y,, = number of ACKs received in interval of time
(see e.g. [23, page 347]), which, in its stationary version, has ](n — 1)S,n.S] and computeV,, as in (21).
the following simple recursive structure: Guidelines for choosing parameterands are given in Section
. 1 VII; a procedure for estimating parametefg (expected num-
P = ( (V¥P+Q)  +p*/ R) (15) ber of participants) andl/;. (expected on-time) is discussed in
K = Pp/R (16) Section IX. . o
R R R Remark IV.1: The autoregressive equation in (21) does not
&n = Y1t K(mn - p('anfl)) (17)  exhibit the same form as the one in (1) as it further has a con-

A stant termpT'(1 — v)(1 — Kp). In other words, if we had com-
forn =1,2,..., with§ = E[§] = 0 and where constants puted the optimadv in (1) under the assumptions considered in
R and@ have been defined earlier in the section. Section Ill, we would not have obtained the optimal estimator.
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V. OPTIMAL ESTIMATION USING A WIENER FILTER and dividing the resulting fractions by gives H. (z) =

In the previous section we have derived a filter that is MSE- (1/0%) [Svy(z)/G(Zil)} + _ _ .
optimal among all measurable filters, provided that the systeme The transfer function of the Wiener Filtetl,(2), is
evolves in heavy-traffic (i.e. very large multicast audience) and ~ formed by multiplyingH,(z) by 1/G(z).
that on-times are exponentially distributed. « Inverting the transfer function of the optimal filter,

In this section we will derive a (Wiener) filter that is MSE-  Ho(2) = H((2)/G(2) = Y72 hoxz™", back into the
optimal among all linear filters, under the only assumption that time domain yields the desired recurrence betwegand
on-times are exponentially distributed. yn and, subsequently, between the non-centered processes

The first step is to replace processgs,},, {N,}. and Ny andY;,.

{Y,,},, by their centered (zero mean) versions, },., {¥n}n The success of the prewhitening approach rests on the abil-
and{y, },, respectively. We already know tHB{N,,| = p (see ity to factorize the power spectrum of the original input signal

Section IIl). On the other hand, {yn}n asin (26). Unfortunately, we were able to perform this
canonical factorization only when the underlying model is the
E[Y,] = E[E[Y, | Nv]] = E[p Nu] = pp. (22) M/M/x queue (i.e. “exponential” on-times), which is illus-

A trated in Section V-A.
Takingv,, :== N,, — p, U, := N,, — p andy,, :=Y,, — pp will
therefore ensure thét[v, | = E[i,] = E[y,] = 0. A. Application to theV/ /M /oo model

Wiener filtering theory identifies the MSE-optimatiear fil- To compute the transfer function of the filter, we need to find

ter, from which we get the following MSE-optimal estlmatorexpressions 08, (=) andS,., (z). Let us first determing, (z).

[13] o By using (24) and (4) together with the property Ga¥) =
v, = Z R kYn—k Cov, (k), we find
k=0 2 oy lEl
_J pipy"™, fork #0
where the so-called optimal impulse respofisg,, },, satisfies Cov, (k) = { Pp, fork = 0.

the Wiener-Hopf equation
Sincey = exp(—upS) < 1 and|z| = 1, the z-transform of

= Cov, (k) is
> homCovy(k —m) = Cov,y(k), k=0,1,.... (23) (k)
=0 o Ap =12+ (191 =2p))z+(p - 1)
. o, =P 2(1—72)1— 721 '
In (23) Coy,(k) denotes the autocorrelation of the filter in- v v

put (the measurements),, }, and Coy, (k) = E[vn—kyn] The second-order polynomial in the variabli the numerator
denotes the cross-correlation function of procegseg, and has two positive real roots given by< 1 and1 /r > 1, with

{yn}n-

Therefore, all what we have to do is to compute @y and Lo L 72 (1= 2p) — /(1 = ?)[1 —72(1 — 2p)?]
Cov,, (k) and then to solve (23). N 2v(1 —p) '

We can express Cqyk) and Covy,, (k) in terms of Coy (k
as follows: P 9¢k) v(F) (k) HenceS,(z) = 0% G(z) G(2~') with 6% := ypp(1—p)/r, and

G(z) == (1 —rz"h/(1 —~vz~1). We now computes,,(z).
Cov, (k) = p>Cov, (k) + 1{k = 0}pp(1 —p)  (24) From (25) and (4) we find Coy (k) = ppy/*! so that

Cov,, (k) = pCov, (k) (25) Ss(2) pp(1 —~2)
wyl(2) = .
where we have used the identity Ggk) = Covy (k). ’ (1 =72)(1 —7271)
One way of solving the Wiener-Hopf equation (23) is instanfhe transfer functiori{/ () is given by
tiated in theprewhitening approaciil3, page 81] whose steps
are given below: fofz| = 1 H(2) = 1 {Suy(z) } _ r(l—7%)
’ GizY], (1=-p)(L—r)(1—7y271)

« The power spectrum of the input sign@j, }», Sy (z) = T o2
oo —k .
k=00 GOV ()277, Is factorized as and the transfer functiofl, (z) of the optimal filter takes here
S,(2) = 02G(2)G (=Y, (26) the simple form

r(l—9?) _ B
y1=p)A —4r)(1 —rz1) 1-— Az"1

wherecs? is a constant an@(z) is the part ofS,,(z) hav- Ho(z) =
ing all its zeros and polessidethe unit circle (therefore

G(=71) is the part ofS, () having all its zeros and poleswhere4 = r and
outsidethe unit circle).

A2
« The cross-power spectrum betweén, },, and {y, }, B = =)
Suy(z) = Yo . Cov,(k)z~", is then divided by 1A =p)(L—=97)
G(z~1). Expanding this ratio into fractions, then taking —(1—=~%)+ \/(1 —72)(1 —~2(1 — 2p)?)

the fractions with zeros and poles inside the unit circle - 2v2p(1 — p) - @n
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The impulse response of this linear filter is given by finst-
orderrecurrence relation [13}, = AD,_1 + By, with 7, the
estimator of/,,. We now return to the original process{e@n}n
and{Y,, }., to finally obtain the optimal linear filter
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(namely Poisson join times and generally distributed on-times
such that (5) holds).

In this section, we will use a least square estimation method
to determine the first-order linear filter that minimizes the mean

square error. Observe that, unlike the Wiener filter, the pro-
posed approach will not return the optimal filter among all lin-
ear filters but simply the optimal linear filter among all first-
It is interesting to compare this filter with the Kalman filteforder linear filters. We will illustrate this approach at the end of
derived in Section IV (see (21), in which the filter galifiis  this section in the case whetig(z) is a hyperexponential dis-
givenin (19)). Looking at (27) and (19), we can see that they afighution. Recall the definition of the centered stationary pro-
exactly the same. Developing the coefficient’gf_; in (21), cesseq vy bn, {¥n }n and{y, },, introduced in Section V.
we obtainy(1 — Kp) = A. It remains to compare the constant The methodology is simple: we want to find constants
terms in (21) and (28). Recall thaf" in Section IV denotes (¢, 1) and B such that := E[(v,, — ©,,)?] is minimized when
the actual average number of receivers which is simply denotg@ procesgz,, },, satisfies the following first-order recurrence
by p in the present section. Developing the constant terms fdglation

N, = AN,_1 + BY,, + p(1 — A —pB). (28)

both linear filters we find1 — v)(1 — Kp) = 1 — A — pB. Dy = ADn_1 + Byy,. (30)
We have therefore shown that the filters returned by both the
Kalman theory and the Wiener theory are identical. In steady-state we have

This result is not so surprising, since both the Kalman fil- )
ter and the Wiener filter are MSE- optimal among the class of Up =B Z AFy . (31)
linear filters. The key point is that the Kalman filter used in k=0

Section IV was derived under a heavy traffic assumption, whik?1 , ) .

the Wiener filter computed in the present section holds for aHE—)fAe? mean square erreris equal toe = E[v,] — 2E[v, ] +
value of the model parameteksand.. On the other hand, the =1/ nl- Thzerefore, we neeg to compute three_terms to evaluate
Wiener filter is only optimal among alinear filters whereas /'St Elv;] = E[(Nn — Q ] =P Second, using (31) and (25)
the Kalman filter in Section IV is optimal among all measurY/€/dSE[Fnin] = pB > _;—y A*Cov, (k) = pBg(A) where
able filters.

We conclude this section by computing the mean square er-
ror €in == E[(N,, — N,L)Q] of our estimator. It is known that
[13] €min = Yoo, ReSF(2), zi,] with F(z) == 1/2(S,(2) —
H,(2)S,y(271)) wherezy, ..., zp are the poles (if any) of the
function F'(z) inside the unit circle. The notation Ré¥ z), zi]
stands for the residue df(z) at point z zi. Specializ-

ing F(z) to the values ofS,(z), S,y(z), H,(z) found ear-
2 . . ~ 2
p(1 —~*)((1 — Bp)z — A) We finally obtainE[?] 1’:BA2) (2pg(A)+p(1—2p)). Hav-

lier, yields F(z) = a T 1 A)

—vz) (2 —7)(z — ; 2 IS ~2 ;
tion has two poles inside the unit circle which are Iocate?gu;?éngrl:iis[ﬂﬂl’lEVLZ;”V"] andE[Z;], we can write the mean
atz = A andz = ~; the residues off'(z) at these poles q
are given by—ppAB(1 —~?)/[(1 — vA)(A — )] andp[1 + B
pB~/(A — ~)], respectively. Summing up these residues gives = » — 2pBg(A) + (1 —
€Emin = p 1 — fi’A . By using the expressions df and B,
we finally obtain

—(1=")+ /0 =)0 220 -
2v%p

g(z) := Z 2FCov, (k). (32)

k=0
Third, squaring both sides of (30) and then taking the expec-
tation yieldsE[72] B ) (2AE[Dy_1yn] + BE[y2]). We

e
know thatE[y2] = Cov, (0) = pp (see (24)) and from (31), (24)
and Coy,(0) = p we haveE[p,_1y,] = Bp? (g(A) — p)/A.

This func-

2

)<2pg<A>4p<12p>» (33)

Observe that the power serig&:) converges fotz| < 1 (since
k — Cov, (k) is non-increasing) and is therefore differentiable
for |z| < 1. We will denote byy'(2) its derivative.

In order to minimize:, A € (0, 1) andB must be the solution
of the following system of equations:

20)*)

(29)

€min = P

This expression fog,,;, can be used to tune the parameters

and~ or equivalentlysS (see Section VII). Oe _ 2B (5 [2pg(A) +p(1 —2p)
0A 1— A2 1— A2
VI. THE OPTIMAL FIRST-ORDER LINEAR FILTER +¢'(A)(pB - (1-A%) | =0
The theory reported in Section V applies to any on-time dis-
tribution ¥(z) such that (5) holds. However, it is not easy to % - 2 <B {229(9(?) 745) + p} - g(A)) —0.

identify the functionG(z) that appears in the canonical factor-
ization of the spectrun, (=) (see (26)) and thereby the optimahne second equation gives
filter, except when the on-times are exponentially distributed
RVs. As already pointed out, we would like to develop an es-
timator under the only assumptions introduced in Section Il

g(A)(1 - A?)

B = ) —p) o

(34)
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Substituting this value aB into the first equation shows thdt follows: we want to select a palip, S) so that the mean number

must satisfy of ACKs generated ever§ seconds (see (22)) and the relative
error of the variance of the estimator (denoteg)eare bounded
Ag(A)(2p(g(A) — p) + p) from above by given constants, namely
—g'(A)(1 — A? A)—p)+p(l—p)=0
(A )(p(9(A) = p) + p(1 —p)) ElYa] = pp <o
If this equation has a unique solutiehe (0, 1), then substitut- _ Var(Nyn) — Var(N,) _ 3 (36)
ing this value ofA into (34) will give the optimal pai( A, B). = Var(N,,) -
Proposition VI.1 shows that this is indeed the case (see [3] for .
a proof). When N,, is optimal among all linear filters, then \@v,,) —

Proposition VI.1: Definef(z) := (2p(g(z)—p)+p)zg(z)— Var(N,) = E[(N, — N,,)?] andn becomes the “normalized
(p(g(z) — p) + p(1 —p))(1 —22)g'(x), whereg(x) is given in mean square error” [14, page 202]. Optimality was shown for
(32). If ¢'(x) > 0forx € [0,1), thenf(z) has a unique zero in the M /M /oo queue, thereforg = €, /p With €., given in
[0,1). ¢ (29).

The reader can check that the filter defined in (30) with the For given constants and 3, it is easy to solve the con-
optimal pair(A, B) is the same as the Wiener filter found irstrained optimization problem defined in (36), provided that

Section V-A when the on-times are exponentially distributed.is known. For theV/ /M /oo model, where,;,, is givenin (29),
we find thatp = «/p and thatS, or equivalentlyy, is the unique
A. Apblication to thell/H model posmve solution of the equatiaf,;,, = pfS. The problem now
PP ) [H /o0 ) ] . is to choose constants and 3 so that conditiong:) and (1)
We now illustrate the approach developed in this section g sarisfied. We have found in our experiments that the
considering the situation where on-times follow a hyperexppénge[oﬁ’ 1] andg < 0.15 give satisfactory results.

nential distribution. More precisely, we assume that We conclude this section with general remarks on how to
L adapt the parametegs and S to important variations in the
U(r)=1-— Z pre”HE (35) membership. The estim_ation schemes in Sectipns IV-C, V-A
= and VI-A have been obtained under the assumption that param-

etersp and.S are fixed. However, the filters therein constructed
witho < p;, < 1,1 =1,2,...,L, andzlelpl = 1. In this can still be used ip and/orS change over time, provided that
setting, the underlying queueing model can be seehiasle- these modifications do not prevent the system to be in steady-

pendentM /M /oo queues in parallel. The arrival rate to queustate most of the time. In that setting, a new filter will have to
I is p;\ and the service rate jg;. Definey, := exp(—;S), berecomputed after each modification. Such a modification can

p1 = A/ So thatp = Zl{l pi. The autocovariance func-be carried out each time the number of ACKs received during
tion of the procesgv,,,n = 6’ 1,...}is equal to Coy(k) = @& given period of time significantly deviates from the current
L

L |k| ol expectation (i.epp).
> o1 Py, sothatg(A) = ZZ; ey
Numerical examplé: L = 2, p = 0.0106 andS = 2.5s.

VIII. V ALIDATION WITH REAL VIDEO TRACES
In this section we apply the estimators developed in Sections

Also V-A and VI-A to four traces of real video sessions. Two types
1/ = 3897s, p1 = 19.5, v = 0.999359  of estimators will be used: the estimator — denotedVds —
1/ua = 480061s, py = 75.1, v = 0.999995 found in (28) when the populatign is modeled asMpM /oo
1/p = 18316s, p = 94.7. queue; the estimator — denoted’é§2 — derived in Section VI-
A in the case where join times are Poisson and on-times have a
The optimal first-order filter is 2-stage hyperexponential distributiah/( 5 /oo model).

N N The objective is twofold: we want to investigate the quality
Ny, = 0.99879456 Ny,—1 +0.10720289 Y;, + 0.006540864. of both estimators when compared to real life conditions, and
For comparison, the Wiener filter found in Section V-A (fo?Ne wantto identify the b-estone. We have collected four MBone
exponential on-times) for these values is traces — denotedideo;, i = 1,... ,_4 — between August 2001

and September 2001 using tMListentool [1]. Each trace
N, = 0.99828589 N,,_; + 0.14885344 Y, + 0.012900081. corrgqunds to a long-lived video ses;ion (see duration of each
session in Table |, where the superscrigt Stands for “days”)
and records the paiff;, D;) for each participant in the session.
VIl. GUIDELINES ON CHOOSINGp AND § We have run both algorithms (estimators) on each trace. For
A “good” pair (p,S) should (i) limit the feedback implo- each trace, we have identified the parameters ofithié/ /oo
sion while at the same timgi) achieve a good quality of the model (parameters and ., or equivalently parameteysand
estimator. Of coursgi) and (ii) are antinomic and therefore ;) and of theM /H, /oo model (parameters, i1, 112, p1 and
a trade-off must be found. This trade-off will be formalized ag, =1-— pl)- The values of these parameters are reported in
I The values of the parameters come from the trace calléeb; investigated columns 3-8 in Table |. Parametgrand S have been chosen
in Section VIII. by following the guidelines presented in Section VII. Values
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TABLE |
PARAMETER IDENTIFICATION
Trace Session lifetime P 1/p 1/m1 1/ po D1 D2 D S o B
videoy 3913733 20° 94.7 18316 3897 480061 0.97 0.03 0.011 2.5 1.0 0.15
videos 119 1h46™ 8¢ 141 16476 1 226498 0.93 0.07 0.034 3.2 0.5 0.1
videos 507 22" 13™ 20° 8.1 66823 1 900854 0.93 0.07 0.062 20.0 0.5 0.1
videoy  29°16"43™13°  17.9 83390 1 473268 082 018 0028 100 05 0.1
TABLE Il TABLE 11l
MEAN AND PERCENTILES OF RELATIVE ERRORN,, — Nn|/Nn EMPIRICAL MEAN AND VARIANCE OF THE ERRORN,, — N,

Trace Estimator Mean 25 50 75 90 95  Trace Estimator  Mean Variancee,,,, € n
video, NE 682 1.09 242 525 115 19.4 wvideoy NP —0.112  12.664 13.942 0.147
NP> 612 1.08 255 6.31 135 20.6 NP> 0047  12.851 12.120
video, NE 419 141 3.08 543 866 11.9 videoo NF 0.006 0.495  1.407 0.099
NH: 412 098 214 441 878 126 N[ 0.019 0.785  0.396
videos NP 420 155 326 571 871 110 wvideos NF 0.037 0.207 0.737 0.091
N> 398 1.07 236 4.83 9.35 12.6 N2 0.019 0.229  0.208
video, NE 379 123 257 451 750 11.0 videos NF 0.052 0.911 1566 0.087
NH:2 406 1.02 221 439 898 147 N2 0.065 1.423  0.676

Al NF 444 133 288 522 860 120

N2 434 102 226 473 961 14.2

NE is empirically more efficient tbaﬁf,{{?). The last column
provides the relative error on V@ ?), calledn (= €min/p)

of these parameters are listed in columns 9-10 in Table I. T. eSectlon VII. Notice thay < § (8 is given in column 12 in

performance of estimators” and N> are reported in Tables ab!e - . - . .
Il and Il Fig. 2 displays the variations of membership for session

Table Il reports several order statistics (columns 3-7) and tﬁze?eol (Wh'.Ch presents the hA'%heSt \{a,?fatlo.nsm) together
) N with the estimates returned Wn andN, 2. Fig. 2_(a) qllsplays

s:’;tmple mean of th? relative e”g}[T (column 2), where hree curves: the collected video trace, the estimation returned
N, is eitherNE or N2, All results are expressed in percentby N7, labeled “Exponential’, and the estimation returned by
ages. The first observation is that both estimators perform re‘?ﬁ,{b, labeled “Hyperexponential”. It appears thﬁf follows
sonably well. The sample mean of the relative error is alwapetter N,, during periods of high variations whereag”> is
less thar6.82% and is as low a8.79%; when averaging over all slightly closer toN,, during flat periods.
experiments, this sample mean is less thai¥ for both N Both estimatorsV,? and N> have been derived under some
and N2 (see last two rows). The second observation is thgpecific and restrictive assumptions: Poisson join times for both
no scheme is uniformly better than the other one over an esfthem, exponential (resp-stage hyperexponential) on-times
tire session but their sample means are very close to each otbethe first (resp. second) one. Itis interesting to know whether
(see column 2). For instanca&” performs better thatV’>  or not these assumptions were violated in each sessitim;,
regarding th&0th and thed5th percentiles whereas the resultis = 1, ..., 4. We have therefore carried out a statistical analysis
reversed regarding ti&th percentile. It looks like the relative of each trace in order to determine the nature of their join time
error on N2 is empirically more dispersed around its meaprocess and of their on-time sequence. As shown in Table IV
than is the relative error o, and has a longer tail. and Fig. 2, parts (b) and (c), neither is the join time process

Table Il reports the sample mean and the sample varianceRafisson nor are on-times exponentially distributed (or hyper-
the errorN,, — N,,. In the 4th column, we list the theoreticalexponentially distributed), for any of the traces. The inter-join
variance. It is given by,.;, for N7 (see (29)) and by for times and the on-times appear to follow subexponential distri-
NH: (see (33)). The expected averagfeV,, — N,,] is zero in butions (Lognormal and Weibull distributions), a situation quite
both approaches. Both es'[imat<z)3’§j and]\?,fi’2 have almost no different from the assumptions under which the estimators have
bias (see column 2), and their empirical variances closely mateten obtained. Despite these significant differences, the esti-
the theoretical ones given ley,;,, ande, respectively. It is of mators behave well and therefore show a good robustness to
interest to point out that for the 4 traces studigdhe theoret- assumption violations.
ical mean square error provided DXEQ, is smaller tharg,,;.,, In summary, both estimators perform very well when applied
the theoretical mean square error providedﬁﬁg (however, to real traces and are robust to significant deviations from their
this result is reversed if we consider the empirical mean squdtieeoretical) domain of validity. Estimatdfv’,{i’2 returns the best
errors). Thus,Z(ff{2 is more efficient (an estimator is said toglobal performance for the relative error criterion, but does not
be more efficient if it has a smaller variance) twﬁﬁ (again, track high fluctuations as well d%’f. Overall, we have found
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Fig. 2. Membership estimation of sessiefleo; and corresponding probability plots
TABLE IV
DISTRIBUTIONS THAT BEST FITTED INTO THE INTERARRIVALS AND ON-TIMES SEQUENCES

Trace Best fit for inter-arrivals sequence Best fit for on-times sequence
videoy Lognormal withy = 3.38, d = 1.49 Weibull with shape 0.35, scale 3700
videos Lognormal withy = 5.20, d = 1.68 Weibull with shape 0.26, scale 1400
videos Weibull with shape 0.65, scale 3500 Lognormal with= 5.08, d = 3.32
videoy Weibull with shape 0.55, scale 2700 Weibull with shape 0.18, scale 4000

that Nf is a good estimator, both in terms of its performance In a similar way, the source can estimaté receivers prob-

and its usability since it only requires the knowledge of twabilistically send a “goodbye” message reporting their on-time

parametersp and . when they leave the session. kgl be the on-time indicated in
them/th goodbye message received at the source, then the max-

IX. ESTIMATING PARAMETERS p AND 1 imum likelihood estimator of: is simply i = m’ /(37| Tour).
The main pending issue concerns the knowledge of paralhe estimatoy: is unbiased and consistent.
etersp andy (or equivalently any two parameters amang\ -

and, sincep = A/u in steady-state). When these parame- A natural estimator fop is 5 = E[N,]. As long as there
. IS no estimation of botl andy, it is not possible to compute
ters are not known, the source should estimate them. Ag

the source could estimate anv two parameters amoncand atIHé filter coefficientd and B. Then only a naive estimator for
. : y P PORG N,, can be used, defined as the ratio of the number of ACKs
w and infer the third one. vedy the ACK probabilit Section I, Noti
One possible way of estimatingis to let a newly arrived re- receivedr, overtne probability, (see Section ). Notice

ceiver send a “hello” message to the source with a certain (cdRatEYn /7] = p-

stant) probabilityg (¢ should be small enough to avoid over- We have tested the estimatfiif,‘fJ when A and p are esti-
whelming the source with hellos). The source would then useated. We have chosen an ACK probability= 0.021, yield-

the arrival timet,,, of the mth hello to estimate\. The max- ingE[Y,,] = 1.99, and a hello probability = 0.1, which means
imum likelihood estimator is\ = m/(qt,,). This estimator that, on average, one hello message is sent to the source for ev-
is unbiased and consistent by the strong law of large numbery 10 arrivals. The performance of the estimator can visually
(limyy— o0 tm/m = 1/(gA) a.8.). be observed in Fig. 3 in which five curves are plottéqg:the
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Subset of data covering five hours of the session both in Fig. 3 and Tables V and VI (row 4) that the perfor-
. . . mance is very good whem = 0.99, which is not the case when

a = 0.999 as the corresponding EWMA estimator achieves the
worst performance (see row 5 in Tables V and VI). Notice how
high is the variance of the EWMA estimator whan= 0.999
(see row 5 column 3 in Table VI).

Remark IX.1:For the tracevideo;, the EWMA estimator
with o« = 0.99 behaves very well in contrast to the EWMA
estimator witha = 0.999. This is exactly the inverse of what
A and p are estimated, g = 0.1 we have observed when applying both EWMA estimators on
4 the audio trace shown in Fig. 1. There, the EWMA estima-

180
T

120
T

Parameters are known

60

Video trace
tor with & = 0.99 did not perform well, whereas the EWMA
EWMA. o = 0.99 estimator witha = 0.999 returned excellent results. In other
° . EWMA, 0 =0.999 . words, given a trace, one can always find a value fufr which
12:00 13:00 14:00 15:00 16:00 the EWMA estimator behaves well, but this value will be exclu-

Fig. 3. Membership estimation of sessioideo; (p = 94.7,p — sivg to the trace and one can not know in advance what value
0.021, S = 2.5s) when (i) parameters are known beforehariéi) estima- assign tox.

torsA = m/(qtm) andp = E[Y,]/p are usedd = 0.1) and (¢ii) EWMA To conclude this discussion, we believe that using the esti-
estimators are used:(= 0.99,0.999) mator N and estimating\ and p on-line is appealing in the
sense that, even though its performance is not the best one ever,
one is sure of having a fair result for a relatively small amount
of ACKs. This is not the case of the EWMA estimator as not

TABLE V
MEAN AND PERCENTILES OF THE RELATIVE ERROKIN %)

Estimator Mean 25 50 75 90 95 only the user will not know in advance what value assignto
p, A known 60 1.2 26 50 8.8 14.5 butalsoa“good”value forone trace is most probably not good
p, A estimated 52 15 32 59 105 16.4 foranother.
EWMAa=099 46 16 34 6.0 92 114
EWMA«=0999 6.7 13 33 74 145 21.2 X. CONCLUSION
TABLE VI The major contribution of this work is the design of novel es-
EMPIRICAL MEAN AND VARIANCE OF THE ESTIMATION ERROR timators for evaluating the membership in multicast sessions.
We have first modeled the multicast group as MM /oo
Estimator Mean Variance queue and established our results under the assumption that this
p, A known —0.0871 26.5487 queue is in heavy-traffic. In this regime the backlog process of
p, A estimated 0.2402 37.6369 the M /M /oo queue is “close” to a diffusion process that can be
EWMA a = 0.99 0.0006 23.1149 used to cast our estimation problem into the appealing frame-
EWMA o = 0.999 0.2570 79.6634 work of Kalman filter theory. Using this theory we have derived

an estimator that minimizes the variance of the error. Aiming
at generalizing the multicast model, we relied on Wiener filter

original video trace(i:) the membership estimation for the cas%‘eory to compute the optimal linear estimator for session mem-

where the parameters are known beforehé&iid), the member- ership when the und.erly.mg model is afyM/co queue (t.he ,
. L A heavy traffic assumption is no longer needed). The optimality
ship estimation for the case where estimatdrs= m/(gt.,) : .
. : S refers to the unbiasedness of the estimator and to the fact that
andp = E[Y,,]/p are used(iv) the estimation returned by the

EWMA algorithm (see (1)) forr = 0.99 and(v) the estimation the mean square error is minimized. The latter estimator turned

returned by the EWMA algorithm for — 0.999. Observe that out to be identical to the one designed using the Kalman_ﬂlter
. : o theory. We have also developed the optimal first-order linear
whenp and ) are estimated, the filter coefficients are comput . : L .
. iiter in the case where the on-time distribution is arbitrary and
at each observation step, whereas they are computed once_for . . . .
) ave derived the associated estimator in the case where the on-
all in the other cases. As expected, whxegnd are unknown, . T .
. p times have a two-stage hyperexponential distribution. The esti-
the estimatorV;” does not behave as well as when these param- ; . .
A . ators have been validated on real video traces. Their perfor-
eters are known beforehand. Still, its performance is reasona .
. . mance have been shown to be excellent, one of them showing a
fair as can be seen in Tables V and VI.

... _good ability to adapt to highly dynamic multicast sessions. Itis
Table V reports the sample mean and some order statistic P y P ghty oy

, rthy to point out that it is the first time that a membership es-
the relative error returned by our scheme and by the EWMA Fimator is tested on real traces, exhibiting human behavior and

gorithm proposed in (1), and Table VI reports the sample ME/Brrelations between the different processes at hand.
and the sample variance of the error between the true member-

ship and its estimation. Observe that, when the parameters are

estimated, the relative error ai” is 95% of the time within ACKNOWLEDGEMENTS

16.4% of the true membership which is a good result (see row 3 The authors wish to thank Profs. P. Thiran and O. Zeitouni
column 7 in Table V). As for the EWMA estimator, we observéor helpful suggestions.
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