
IMPROVING TCP/IP OVER GEOSTATIONARY SATELLITE LINKS

Chadi Barakat, Nesrine Chaher, Walid Dabbous and Eitan Altman
INRIA

2004, route des Lucioles, 06902 Sophia Antipolis, France

Abstract

We focus in this paper on the undesirable phenomenon
of early buffer overflow during Slow Start (SS) when
TCP operates in large Bandwidth-Delay Product net-
works such as those including Geostationary satellite
links. This phenomenon, already identified in [1, 6], is
caused by the bursty type of TCP traffic during SS.
It results in an underestimation of the available band-
width and a degradation in TCP throughput. Given the
high cost and the scarcity of satellite links, it is of im-
portance to find solutions to this problem. We propose
two simple modifications to TCP algorithms and illus-
trate their effectiveness via mathematical analysis and
simulations. First, we reduce the SS threshold in order
to get in Congestion Avoidance before buffer overflow.
Second, we space the transmission of packets during SS.

Introduction

TCP [4, 10] uses two algorithms Slow Start (SS) and
Congestion Avoidance (CA) to control the flow of pack-
ets in the Internet. With SS, the Congestion Window
(W ) is set to one segment and it is incremented by
one segment for every non-duplicate ACK received. If
we suppose that the window advertised by the receiver
doesn’t limit the source throughput, this process con-
tinues until the SS threshold (Wth) is reached or losses
occur. In the first case, the source moves to CA where
W is increased slower by one segment for every win-
dow’s worth of ACKs. In the second case, W and Wth

are reduced and a recovery phase is called. TCP sup-
poses that the new Wth is a more accurate estimate of
the network capacity.

In this paper, we investigate a problem that occurs
when TCP operates in a network having small buffers
compared to its Bandwidth-Delay Product (BDP ). It
is the problem of early buffer overflow and packet losses
during SS before fully utilizing the available bandwidth.
These losses are due to the high rate at which TCP
sends packets during SS (every ACK triggers the trans-
mission of a burst of two packets). If the network
buffers are not large enough to absorb this high rate,

they will overflow early. The window size when this
overflow is detected is a wrong estimation of the net-
work capacity. But TCP considers it as the maximum
reachable window and reduces its Wth which results
in a throughput degradation. This problem has been
studied in [1, 6]. In these works, the authors show that
when the Tahoe version of TCP [4] is used in a net-
work with small buffers, two consecutive SS phases are
required to get in CA. A second SS is called when the
buffer overflow in the first SS is detected.

Due to their high BDP and the limitations on buffer
size on satellite board, this problem is very likely to
appear in Geostationary satellite links. Given the high
cost and the scarcity of these links, a solution to early
losses during SS is required. We propose in this paper
two possible changes to TCP in order to solve this prob-
lem. The impact of these changes on TCP performance
is mathematically analyzed. The results are then val-
idated by a set of simulations using ns, the Network
Simulator [7].

Our first proposition consists in reducing the SS thresh-
old Wth so that to get in CA before the overflow of
buffers. A similar idea is proposed in [3] to set Wth

to the BDP of the path crossed by the connection. In
our analysis, we find the explicit expression for the re-
quired Wth to get rid of these early losses. A study of
the throughput as a function of Wth is also performed.

Second, we propose to reduce the rate at which TCP
transmits packets during SS. Instead of sending imme-
diately a burst of two packets in response to an ACK,
the source inserts a certain delay before the transmis-
sion of the second packet. This proposal is similar to
the one proposed in [9] for spacing the ACKs on the
return path. The solution in [9] requires intelligence
in routers whereas our solution requires only change at
the sender. Similar propositions can be found in [8, 11].
The difference from our work is that these works aim
to accelerate the SS phase. They propose to bypass
SS by transmitting directly at a large window which
may overload the network. In our work, we keep the SS
phase but we space the packets transmitted in a burst.



λ

Source Buffer

B µ

GEO Satellite

Destination

DSr

T

Figure 1: The Network Model

We present an analysis of the required spacing to avoid
losses during SS.

The Network Model

We model the network as a single bottleneck node (N)
of bandwidth µ (packets/s) and of Drop Tail buffer B
of size B packets (Figure 1). TCP packets cross a GEO
satellite link to the destination (D) where they are ac-
knowledged. ACKs return to the source (Sr) via a non
congested path. Let τ denote the two-way propagation
delay. We suppose that Sr has always packets to send
and that D acknowledges every packet. This gives us
the burstiest case where Sr transmits at twice the bot-
tleneck bandwidth. As in [1], we suppose that TCP
shares the bottleneck with an uncontrolled exogenous
traffic of rate λ (ρ = λ/µ < 1 for stability require-
ments).

To better understand the effect of losses during SS on
TCP performance, we consider the Tahoe version of
TCP where SS is called upon every loss detection [4].
The other versions of TCP (Reno, New-Reno, SACK)
try to avoid SS while recovering from losses [10]. How-
ever, they still resort to SS at the beginning of the con-
nection, after a Timeout and after a long idle period.
With slight modifications, our mathematical analysis
can be applied to these versions as well. Even if our
mathematical analysis focuses on the Tahoe version,
the solutions proposed solve the problem of early losses
during SS whenever this algorithm is called and inde-
pendently of the version type.

Starting at a window W of one segment, the source
increases W by one segment for every ACK until it
reaches Wth. Here, it switches to CA which yields a
slower increase in W by one segment every RTT. If we
don’t consider the transmission errors on the satellite
link (i.e. by adding enough FEC), CA continues until
we reach the maximum reachable window Wmax. This
is the maximum number of TCP packets that can be
fit in the network. Here, a loss occurs due to buffer
overflow. Wth is set to half Wmax, W is set to one
segment and a new SS is called. Wmax is given by [1]:

Wmax = B(µ− λ)/µ + τ(µ− λ) + 1. (1)

We note here that the exogenous traffic reduces the
share of TCP in the buffer and in the bandwidth.

This new value of Wth is a correct estimate of the net-
work capacity. Network buffers must be large enough
so that SS reaches this threshold without losses. What
happens in the case of small buffers is that a loss oc-
curs due to a buffer overflow before reaching Wth. Wth

is then divided by two and a new SS is called. The
source gets in CA at a small window and takes long
time to reach Wmax. This leads to a degradation in
TCP performance.

According to [1, 6], a SS phase can be divided into mini-
cycles of duration τ . At the beginning of mini-cycle n, a
burst of 2n−1 ACKs arrives at the source at rate µ−λ/2
and another burst of 2n TCP packets leaves it at rate
2µ− λ. Thus, the queue at the bottleneck builds up at
rate µ. The buffer overflows when we reach a certain
window WB and we are still in SS. WB is given by [1]:

WB = B(2µ− λ)/µ. (2)

The condition to avoid losses during SS is WB > Wth.
If we define β as the normalized buffer capacity, we get
the following condition found in [1]:

β =
B

τ(µ− λ) + 1
>

1
3− λ/µ

. (3)

When the loss occurs at WB , it isn’t immediately de-
tected. We must wait a complete RTT till the Dupli-
cate ACKs arrive. During this time, the window grows
from WB to a value WD which depends on the position
of Wth with respect to WB and 2WB . The maximum
value of WD is 2WB but it can be equal to Wth if we get
in CA between the overflow and its detection. Thus, we
have WD = min(Wth, 2WB).

The second SS is called with a threshold W ′
th = WD/2.

Because this new threshold is less than WB , we get in
congestion avoidance at the end of this phase. As in
the previous case, CA lasts until W = Wmax.

It is clear that to avoid the losses during SS, we must
maintain WB > Wth. This can be accomplished by ei-
ther increasing WB or decreasing Wth. Our two propo-
sitions treat theses two possibilities.

First proposition: Decreasing the SS threshold

The idea is to decrease Wth to bring it below WB . This
makes the source enter CA with one SS without buffer
overflow. Because Wmax is imposed by network param-
eters, the only possible way is to change the reduction
factor one half used by TCP in the calculation of Wth.
When a loss is detected, we take Wth = γWmax with



maxγ WB4

maxγ WB

2γ maxγmax

WB

γ0
1/2W

 a
t t

he
 b

eg
in

ni
ng

 o
f 

C
on

ge
st

io
n 

A
vo

id
an

ce

Figure 2: Model: The window at the beginning of CA

0 < γ ≤ 1/2. A γ greater than 1/2 violates the conges-
tion control principle of TCP.

The condition to avoid losses during SS remains WB >
Wth = γWmax. If we replace WB and Wmax by their
values given in equations (1) and (2), we find that γ
must be chosen so that

γ <
β(2− ρ)

β(1− ρ) + 1
=

WB

Wmax
= γmax. (4)

Even if it solves the problem of losses, this solution
doesn’t lead always to an improvement in the perfor-
mance. To show this, we use the window size at the
beginning of CA as a means to compare TCP perfor-
mance for two different γ. In Figure 2, we show how the
window at the beginning of CA varies as a function of
γ. Any throughput improvement requires an increase
in this window.

For a γ > γmax, losses still exist and CA starts at W ′
th,

the threshold of the second SS phase. Moreover, the de-
crease in γ decreases Wth and then W ′

th which deterio-
rates the performance instead of keeping it unchanged.

To study the effect of a γ < γmax, we consider two
cases. Such γ solves the problem of losses during SS
and makes CA start at a window γWmax.

• γmax > 1/4: The comparison must be done be-
tween W ′

th = Wmax/4 for standard TCP and
γWmax after our modification.

• γmax ≤ 1/4: In this case, we must compare W ′
th =

WB for standard TCP to γWmax after our mod-
ification. Note that WB is greater than Wmax/4
using equation (4).

These two cases show that if the chosen factor γ is less
than 1/4, the throughput deteriorates even if losses
during SS disappear. In contrast, if in the first case
(γmax > 1/4) we choose a factor γ between 1/4 and
γmax, we get an improvement in TCP performance.

600

800

1000

1200

1400

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

A
ve

ra
ge

 T
C

P
 T

hr
ou

gh
pu

t (
K

bp
s)

The Reduction Factor Gamma

Beta=0.5
Beta=0.25

Beta=0.125

Figure 3: Simulation: TCP throughput vs. γ

This is how the reduction factor must be chosen so that
our proposition works properly.

In Figure 3, we show how TCP throughput varies as a
function of γ for three values of β, thus for three values
of γmax. The results are obtained using ns. The simu-
lation scenario is described at the end of the paper. For
β = 0.5, we see always a performance degradation be-
cause the problem doesn’t exist (γmax > 1/2). For the
two other β, we notice an upward jump in the through-
put for a certain γ, theoretically equal to γmax. This in-
crease is interesting for β = 0.25 given that γmax > 1/4.
However, for the smallest β, the fact that γmax is less
than 1/4 makes impossible to find a γ that gives a bet-
ter throughput than that of standard TCP (γ = 0.5).

The implementation of such solution requires changes
at the source. No changes are needed at the destination.
Some functions must be added at the source to esti-
mate, on runtime, the network parameters, then the ap-
propriate γ using equation (4). Estimation techniques
as Packet-Pair [5] for bandwidth and RTT tracking [2]
for buffer capacity can be adopted.

Second proposition: Packet Spacing

The idea is to keep Wth unchanged and to increase WB

so that to get in CA before buffer overflow. CA starts
then at Wmax/2 instead of WD/2 yielding an improve-
ment in TCP throughput. WB is inversely proportional
to the queue building rate. To increase it, we slow the
rate at which TCP sends bursts during SS. Let R (pack-
ets/s) denote this new transmission rate. R must be
taken slower than 2µ − λ, the maximum sending rate
during SS. Also, R must not be less than µ − λ, the
available bandwidth at the bottleneck. An R slower
than µ−λ makes the source the bottleneck and changes
the behavior of TCP during CA which must be avoided.

To find the needed rate, we repeat the analysis in [1]



600

800

1000

1200

1400

1600 1800 2000 2200 2400 2600 2800 3000 3200

A
ve

ra
ge

 T
C

P
 T

hr
ou

gh
pu

t (
K

bp
s)

The Transmission Rate R (Kbps)

Beta=0.5
Beta=0.25

Beta=0.125

Figure 4: Simulation: TCP throughput vs. R

but now with a constant transmission rate R. Note
that our proposition doesn’t change the window evolu-
tion as a function of time during SS since the source is
still sending a burst of two packets in response to ev-
ery ACK. The difference is that a certain delay (1/R)
is introduced between the packets even if the output
interface of the source lets it send at higher rates.

During SS, the total input rate at the bottleneck is
R+λ. Thus, the queue builds up in B at rate R+λ−µ
and TCP must keep sending packets at rate R for a
time B/(R+λ−µ) in order to fill the buffer. As in [1],
the number of packets sent during this time is taken as
an approximation of the overflow window WB . Hence,

WB = BR/(R + λ− µ). (5)

We notice here that this new WB increases when R
decreases (λ < µ). It moves to infinity when R tends to
µ−λ which makes losses during SS a rare phenomenon.
If the problem of losses during SS exists, we can find
some R between µ−λ and 2µ−λ below which we have
always WB > Wth. This R is given by:

R < (µ− λ)
1 + β(1− ρ)
1− β(1 + ρ)

= Rmax. (6)

The window growth isn’t affected by the delay intro-
duced. Thus, any R satisfying (6) results in the same
performance given that the window at the beginning
and at the end of CA doesn’t change. This is illustrated
in Figure 4 where we show the throughput for β =0.5,
0.25 and 0.125. The simulation scenario is described
in the next section. Unlike the first proposition where
a solution to the problem cannot be found for all the
values of β, sending packets at a rate R close to µ− λ
(1500Kbps in the figure) solves always the problem.

The implementation of this solution is easier than the
first one since we don’t need to follow exactly equa-
tion (6). It is enough to transmit at the available band-

0

20

40

60

80

100

120

140

160

180

0 50 100 150 200 250 300

T
C

P
 C

on
ge

st
io

n 
W

in
do

w
 (

se
gm

en
ts

)

Time (s)

Figure 5: Simulation: Losses during SS

width estimate. A solution could be to transmit one
TCP packet for every ACK received in a mini-cycle,
then to send the remaining packets at an average rate
calculated from the incoming ACKs. The advantage
of this proposition compared to the ACK spacing pro-
posed in [9] is that it does not require any intelligence
in routers. It requires only minor changes at the source.

Simulations

We conduct a set of simulations using ns [7]. The net-
work studied is that of Figure 1. A TCP-Tahoe connec-
tion, having an unlimited data to send and packets of
total length 512bytes, is established between Sr and D.
The satellite link of capacity 1.5Mbps (T1 link) and of
one-way delay 250ms is crossed by a background traf-
fic of average rate 100packets/s. TCP and background
traffic packets have the same length. The TCP source
is connected to the satellite link via a high speed link of
rate 10Mbps and of delay 30ms. B is set to 40packets.

A simple substitution of these parameters in equa-
tion (3) shows that the problem of losses during SS
exists. This is illustrated in Figure 5. TCP throughput
in this case is equal to 161packets/s which represents
60.5% of the available bandwidth.

To get rid of this problem, we first reduce the factor one
half according to our first proposition. Equation (4)
indicates that a γ less than 0.38 must be used. Be-
cause γmax = 0.38 > 1/4, a throughput improvement
is possible in this scenario. Taking γ = 0.34, Figure 6
shows well the disappearance of losses. The through-
put increases to 172packets/s, thus we get 4% more
bandwidth utilization. In Figure 7, we divide Wmax by
more than four (γ < 1/4). Although losses disappear,
the throughput decreases to 153packets/s. In this case,
it is better to keep the problem unsolved.

Now, we keep the reduction factor 1/2 unchanged and
we slow the transmission. Equation (6) indicates that



0

20

40

60

80

100

120

140

160

180

0 50 100 150 200 250 300

T
C

P
 C

on
ge

st
io

n 
W

in
do

w
 (

se
gm

en
ts

)

Time (s)

Figure 6: Simulation: 1/4 < γ < γmax

0

20

40

60

80

100

120

140

160

180

0 50 100 150 200 250 300

T
C

P
 C

on
ge

st
io

n 
W

in
do

w
 (

se
gm

en
ts

)

Time (s)

Figure 7: Simulation: γ < 1/4

we must transmit at slower than 480packets/s to solve
the problem. We conducted two simulations with R =
440packets/s and R = 300packets/s. Figures 8 and 9
show the corresponding results. We remark that these
two rates solve the problem and give the same window
at the beginning of CA (we must not count the first
transitory TCP cycle). The throughputs are the same
and are equal to 195packets/s. This gives better per-
formance than the first proposition even for γ ' γmax.
Indeed, instead of starting at γWmax, CA starts at a
large window Wmax/2 after the spacing of packets.

Conclusions

In this paper, we studied the problem of early buffer
overflow during Slow Start and its impact on TCP per-
formance. Two solutions have been proposed. The first
one consists in getting out Slow Start before the over-
flow. The second one reduces the burstiness of Slow
Start by spacing the packets. The results show that
the second solution is a promising one since it doesn’t
require a lot of information at the source and it is able
to solve the problem in all the cases.
References

[1] E. Altman, J. Bolot, P. Nain, D. Elouadghiri- M. Erram-

0

20

40

60

80

100

120

140

160

180

0 50 100 150 200 250 300

T
C

P
 C

on
ge

st
io

n 
W

in
do

w
 (

se
gm

en
ts

)

Time (s)

Figure 8: Simulation: R = 440packets/s

0

20

40

60

80

100

120

140

160

180

0 50 100 150 200 250 300

T
C

P
 C

on
ge

st
io

n 
W

in
do

w
 (

se
gm

en
ts

)

Time (s)

Figure 9: Simulation: R = 300packets/s

dani, P. Brown, and D. Collange, “Performance Modeling of
TCP/IP in a Wide-Area Network”, 34th IEEE Conference
on Decision and Control, Dec. 1995.

[2] L. Brakmo and L. Peterson, “TCP Vegas: End-to-End Con-
gestion Avoidance on a Global Internet”, IEEE Journal on
Selected Areas in Communications, Oct. 1995.

[3] J. Hoe, “Improving the Start-up Behavior of a Congestion
Control Scheme for TCP”, ACM Sigcomm, Aug. 1996.

[4] V. Jacobson, “Congestion avoidance and control”, ACM Sig-
comm, Aug. 1988.

[5] S. Keshav, “A control-theoretic approach to flow control,
ACM Sigcomm, Sept. 1991.

[6] T.V. Lakshman and U. Madhow, “The performance of
TCP/IP for networks with high bandwidth-delay products
and random loss”, IEEE/ACM Transactions on Network-
ing, Jun. 1997.

[7] The LBNL Network Simulator, ns, http://www-
nrg.ee.lbl.gov/ns.

[8] M. Aron and P. Druschel, “TCP: Improving Start-up
Dynamics by Adaptive Timers and Congestion Control”,
TR98-318, Rice University, 1998.

[9] C. Partridge, “ACK Spacing for High Delay-Bandwidth
Paths with insufficient Buffering”, Internet Draft, Sep. 1998,
Work in Progress.

[10] W. Stevens, “TCP Slow-Start, Congestion Avoidance, Fast
Retransmit, and Fast Recovery Algorithms”, RFC 2001,
Jan. 1997.



[11] V. Visweswaraiah and J. Heidemann, “Improving Restart of
Idle TCP Connections”, Technical Report 97-661, Univer-
sity of Southern California, Nov. 1997.


