
'\QDPLF�5HVRXUFH�$OORFDWLRQ�LQ�&RUH�5RXWHUV�RI�D
'LIIVHUY�1HWZRUN

Rares Serban, Chadi Barakat, Walid Dabbous

PLANETE Project, INRIA Sophia Antipolis, France
{Rares.Serban,Chadi.Barakat,Walid.Dabbous}@sophia.inria.fr

http://www-sop.inria.fr/planete/index.html

$EVWUDFW� The Differentiated Services (DiffServ) architecture is receiving wide
attention as a framework for providing different levels of service according to a
Service Level Agreement (SLA) profile. The edge routers in a DiffServ network
mark/shape/police flows based on their SLAs, and the core routers offer packets
different treatments using the marks they carry. Core routers handle aggregates
of flows instead of individual flows, which is known to considerably reduce the
complexity of DiffServ. Tuning core routers is clearly an important issue to sat-
isfy the needs of traffic marked at the edges. This tuning is actually character-
ized by extensive manual work, based on a trial-and-error process, which is of-
ten ineffective, time-consuming and costly to network managers. In this paper,
we propose a dynamic, self-tuning mechanism for allocating resources in core
routers among Diffserv services. Our mechanism is easy to implement, and does
not require any particular signaling. It ensures that SLAs are respected, and al-
lows at the same time an efficient utilization of network resources. We validate
the performance of our mechanism by a campaign of experiments on a real net-
work testbed.

����,QWURGXFWLRQ
Network customers need guaranteed level of service from their Internet Service

Providers (ISPs) to achieve their business objectives. Service Level Agreements
(SLAs) between providers and customers define service level specifications [1] with
traffic conditioning specification [2], monitoring service capabilities [3], service
availability and the fees corresponding to each level. The traffic conditioning specifi-
cation (TCS) defines service level parameters (bandwidth, packet loss, peak rate, etc.),
offered traffic profiles and policies for excess traffic. Given the SLA of a stream of
packets, the network has to allocate enough resources so that the service required by
this stream is guaranteed. The allocation can be done in different ways, depending on
the total amount of resources available in the network and the number of customers
asking for a guaranteed service. One simple allocation is the one that uses the peak
rate of traffic. This is the type of allocation supported by PSTNs (Public Switched
Telephone Network). Another possible allocation is the one that uses the notion of
effective bandwidth [4]. The effective bandwidth for traffic is the minimum bandwidth
to be allocated in the network so that the probabilistic needs of the traffic (e.g., packet
loss rate, tail of packet delay) are satisfied. In the effective bandwidth framework, the

statistical multiplexing of the different streams of packets is used to minimize the total
amount of resources to be allocated. Note that for any resource allocation scheme,
there is always a maximum limit on the number of customers the network can support.
When the number of customers approaches this limit, the resources start to be rare and
the Quality of Service (QoS) required by customers cannot by realized. Thus, some
kind of Call Admission Control (CAC) [5] has to be implemented by the network, to
protect already accepted customers from newly arriving ones.

Differentiated Services (Diffserv) is an IETF framework for classifying network
traffic into classes, with different service level for classes [6]. The edge routers in a
DiffServ network mark/shape/police flows based on their SLAs, and the core routers
offer packets belonging to these flows different treatments using the marks they carry.
A flow is a stream of packets belonging to the same SLA. Core routers handle aggre-
gates of flows instead of individual flows, which is known to considerably reduce the
complexity of DiffServ, compared to its counterpart IntServ [7], where core routers
allocate resources on a per-flow basis. The treatment a core router gives to packets
from one service class is called PHB (Per Hop Behavior). The PHB classes (or service
classes) defined in DiffServ are: Best Effort (BE), Assured Forwarding (AF) [8][9]
and Expedited Forwarding (EF) [10][11]. The EF class is designed to support real
time flows with hard delay and jitter constraints. The AF class is designed for flows
only asking for bandwidth, mainly TCP flows. The AF has four (sub)classes, each one
with three drop precedence [6]. At the onset of congestion, core routers start drop AF
packets with the highest drop precedence, then those with the medium drop prece-
dence, and finally if congestion persists, packets with the lowest drop precedence are
dropped. Packets within a AF class are served in core routers in order. The different
AF classes may differ in the applications and transport mechanisms they support. For
example, TCP traffic can be protected from non-responsive UDP traffic by separating
both types of traffic in two different AF classes. How to distribute traffic on the differ-
ent service classes of DiffServ is out of the scope of this paper.

The performance of a DiffServ network is strongly dependent on how well edge
and core routers work. Edge routers are responsible of marking/shaping/policing traf-
fic. Core routers give packets different treatments based on the marks they carry. For
example, EF packets are queued in a separate buffer and are served before packets of
the other classes. Packets of the different AF classes are queued in separate buffers
and are served using the CBQ mechanism [12]. We focus in this work on the tuning of
core routers for AF traffic. This operation reflects the tuning of the weights of the
CBQ buffer. The weights of CBQ control the way with which the available bandwidth
at the output interface of the core router is distributed among the AF classes and the
BE class. The weights do not have any control on the EF class, since EF packets are
usually served with a strict priority over the other types of packets (AF and BE). The
tuning has to be done so that each class of traffic realizes its needs, and the resources
of the network are efficiently utilized. In particular, the tuning has to ensure that the
BE traffic is not penalized by the AF traffic, and at the same time, that the BE traffic
does not consume more than its fair share of the available bandwidth.

The tuning of core routers is actually characterized by extensive manual work,
based on a trial-and-error process, which is often ineffective, time-consuming and
costly to network managers. As we will explain later, a static tuning of core routers

may result in an inefficient utilization of network resources, and a bias against one or
more DiffServ classes. We believe that the tuning of core routers has to be dynamic,
so that the available bandwidth is efficiently utilized and fairly shared among the dif-
ferent DiffServ classes (more details in Section 4). Moreover, the tuning has to be
automatic, self-configurable, easy to deploy and to manage, without any additional
signaling. In this paper, we motivate the dynamic tuning of core routers and we pres-
ent a mechanism that respects the above rules. We implement our mechanism in Linux
and we validate its performance by a campaign of experiments on a real network test-
bed.

While presenting our mechanism, we will make the assumption that the network is
over-provisioned, i.e., there are enough resources in the core of the network to support
the high priority traffic marked at the edge. On the other hand, the resources of the
network may not be enough to support the total amount of traffic coming from the
edge, i.e., the high priority plus the low priority traffic. The decision on whether to
accept a new SLA is done at the edge of the network, and core routers dynamically
tune their parameters so as to absorb the marked traffic and to utilize efficiently the
network resources. Our mechanism can be easily extended to the under-provisioning
case, by making some default assumption on the distribution of the bandwidth among
the DiffServ classes. For example, a core router may give the highest priority to EF
packets, and set equally the weights of the CBQ buffer for AF classes, with zero or a
minimum amount of bandwidth to the BE class. We believe that the under-
provisioning case is undesirable for the ISP and the customers and has to be avoided,
which can be done by implementing CAC at the edge, or by renegotiating the SLAs of
active customers.

We consider the allocation of bandwidth based on the average rate of high priority
traffic of each DiffServ class. For simplicity of the analysis, we omit the EF service
and we focus on AF and BE. EF is usually handled by a priority queue, without any
special tuning to be done by the core router. Without loss of generality, we focus on a
AF service with two drop precedence per-class. This latter service has been first intro-
duced in [11]. At the edge, compliant packets of a AF class are marked with high
priority (called IN packets), and non-compliant packets are injected into the network
with low priority (called OUT packets). IN and OUT packets are buffered in the same
queue in core routers, but are dropped differently at the onset of congestion. The idea
is to start dropping OUT packets while protecting IN packets. When all OUT packets
are dropped and the congestion persists, IN packets start to be discarded. The mecha-
nism proposed in [11] to support such a preferential dropping is called RIO (RED
IN/OUT).

In summary, our mechanism measures the rate of IN packets, and sets the parame-
ters of the CBQ buffer so as to absorb all IN packets and to distribute fairly the rest of
the bandwidth (called excess) among OUT and BE packets. As a case study, we con-
sider a max-min fairness for the allocation of the excess bandwidth [13][14].

The remainder of this paper is organized as follows. The problem of tuning core
routers is explained in Section 2. Section 3 presents our mechanism, which dynami-
cally tunes core routers to allocate efficiently the available resources among DiffServ
classes. Section 4 illustrates on some examples the drawback of static tuning, and
motivates the dynamic tuning of core routers. Section 5 explains our experimental

evaluation environment. Section 6 validates our mechanism with our experimental
environment. Finally, Section 7 concludes the paper and gives some perspective on
our future research activities in this direction.

����3UREOHP�'HVFULSWLRQ
The tuning of core routers in a Diffserv network is actually done in a static way by

manual work based on a trial-and-error process. A static tuning is time-consuming and
costly for network managers. Moreover, as we will see in Section 4, a static tuning
may lead to an inefficient utilization of network resources and to an unfairness among
the DiffServ classes. A dynamic tuning of core routers, or equivalently a dynamic
allocation of resources in the core of the network, is needed to satisfy as much as
possible all reservations of customers, and to fairly distribute the excess of bandwidth
among them.

Consider a DiffServ network proposing to customers two AF services (AF1 and
AF2), in addition to the classical BE service. This will be the type of networks we will
consider throughout the paper. Our results hold in the case when more than two AF
service classes are proposed. They also hold in the case when the network operator
proposes the EF service to its customers.

A customer asks the network for some bandwidth of some class (AF1 or AF2). It
may also ask the network for a simple BE service, with no bandwidth guarantee. As
mentioned in Section 1, the difference between the two AF classes can be in the trans-
port protocol used (TCP vs. UDP), in the number of customers authorized to join each
class, in the policy applied to non-compliant packets, etc. The bandwidth allocated to
a user of a AF class represents the maximum rate of IN packets the customer is al-
lowed to inject into the network. All packets non compliant with the contract signed
between the customer and the operator are marked as OUT at the edge. Some routers
at the edge may choose to drop OUT packets instead of injecting them into the net-
work. This is what we call shaping of flows.

Let RAF1.1 (resp. RAF2.1) denote the rate of data carried by IN packets of class AF1
(resp. AF2), which arrive at a core router and are destined to the same output inter-
face. Let C be the total bandwidth available at the output interface of the core router.
We are working in an over-provisioning case, which means that there is enough re-
sources to absorb the high priority IN traffic. This can be written as,

RAF1.1+RAF2.1 d C . (�)

Now, denote by RAF1 (resp. RAF2) the total rate of data carried by AF1 packets (resp.
AF2 data) (IN + OUT). Denote by RBE the data rate of the BE traffic arriving at the
same core router and destined to the same output interface as the AF1 and AF2 traffic.
Dynamic tuning is only interesting in the case when the core router is congested. Core
routers being work-conserving, the tuning of parameters does not impact the QoS
perceived by customers in a non-congestion case. Our assumption is then,

RAF1 + RAF2 + RBE t C. (�)

We consider that a customer is satisfied if its IN packets get through the network
without being dropped. We also consider that it is in the interest of customers and
operator that the excess of bandwidth in the network is fairly distributed among the
three classes: AF1, AF2, and BE. The excess of bandwidth is equal to C-RAF1.1-RAF2.1.
Given the variability of the traffic and the change in SLAs, it is very likely that a static
tuning of core routers does not realize the above objectives. The problems that can be
caused by a static tuning of weights at the output interface of a core router, can be
summarized as:
- Unfairness in the distribution of the excess bandwidth;
- Bias against the IN packets of one or more AF classes.

We will study these problems of static tuning in Section 4 on some real scenarios.
We will show the gain that a dynamic tuning of weights can bring. The comparison
will be made between a stating tuning scheme, and our mechanism that dynamically
adapts the weights at the output interface of routers, based on the incoming IN traffic.
Our mechanism is designed with the main objective to realize the above objectives,
that is, to accept the high priority IN traffic of the two AF classes, and to distribute the
excess bandwidth fairly among the three classes we are considering: AF1, AF2, and
BE. We start by explaining our mechanism in the next Section. In Section 4, we com-
pare it to a static tuning scheme, and in Section 6 we validate its performance using
our experimental network testbed (explained in Section 5).

����'\QDPLF�5HVRXUFH�$OORFDWLRQ�$OJRULWKP
Our algorithm has three parts: monitoring, excess bandwidth distribution rule and

CBQ scheduler programming.
In the monitoring part, we measure the average data rate carried by IN packets for

each one of the two classes AF1 and AF2. The interval over which the data rate is
averaged is an important parameter of our mechanism. It must not be too small, since
the system may become unstable, especially when we have a transport protocol like
TCP, which adapts its rate as a function of the reaction of the network. A small aver-
aging interval also results in high computational overhead. The averaging interval
must not be very large too, since this slows the reaction of the mechanism to changes
in traffic and SLAs. We will come later to the impact of this averaging interval on the
efficiency of our mechanism with some experimental results.

The excess bandwidth distribution rule part forms the core of the algorithm. With
no loss of generality, we use the following rule: the excess bandwidth is split into
three parts and equally distributed among the three classes. We call this rule IDLU�GLYL�
VLRQ. Other rules are also possible. For example, one can distribute the excess band-
width among classes using non equal weights. The objective might be to give AF
service classes bandwidth advantages over BE, or the opposite.

After the distribution of excess bandwidth, the algorithm computes the desired rates
for CBQ classes (the optimal weights for each class), and programs the CBQ mecha-
nism with these rates. The algorithm has the following description:

 while(){
- Measure the throughput of IN-profile packets for

both classes AF1 and AF2, and for each outgoing
network interface: RAF1.1, RAF2.1;

- Compute the amount of excess bandwidth using
measured values: Bw = C - (RAF1.1 + RAF2.1);

- Distribute the excess bandwidth following some
rule. Ex: w = Bw/3;

- Program the CBQ scheduler using the computed op-
timal rates: RAF1 = RAF1.1 + w, RAF2 = RAF2.1 + w,
RBE = w;

- Wait x seconds;
}

Let us illustrate the operation of our algorithm with the following example, taken
from Section 4.2.2. We have a scenario where the AF1 service is used by a UDP traf-
fic sending data at a constant rate 4Mbps, and the AF2 and BE services are used by
TCP traffic. The TCP traffic is generated by means of long-lived TCP connections.
For both service classes AF1 and AF2, the rate of IN-profile data is set to:
RAF1.1=2.5Mbps and RAF2.1=2.5Mbps. The available bandwidth at the output interface
of the core router is set to C=6Mbps. We start from a case where the bandwidth C is
equally divided among the three service classes: RAF1= RAF2= RBE=2Mbps. After the
first iteration, our mechanism sets: RAF1= 3Mbps, RAF2= 2.5Mbps and RBE= 0.5Mbps.
The next iteration measures RAF1.1= 2.5Mbps and RAF2.1= 2.5Mbps. The algorithm
stabilizes then with the following rates for the CBQ buffer: RAF1= 2.8Mbps, RAF2=
2.8Mbps and RBE=0.3Mbps. The convergence is achieved in two steps. Clearly, this
allocation of bandwidth C satisfies the two objectives of our mechanism. Indeed,
RAF1.1 and RAF2.1 are satisfied, and the excess bandwidth (C-RAF1.1-RAF2.1)=1Mbps is
fairly divided among the three service classes.

��� 6LPSOH� VFHQDULRV� WR� FRPSDUH� VWDWLF� DQG� G\QDPLF� EDQGZLGWK
DOORFDWLRQ�VFKHPHV

The goal of this section is to compare static and dynamic bandwidth allocation
schemes using simple scenarios. We show how a static scheme results very likely in an
efficient utilization of network resources, and a bias against one or more service
classes. As a dynamic scheme, we use our mechanism, that we described in Section 3.

������8QIDLUQHVV�LQ�WKH�GLVWULEXWLRQ�RI�WKH�H[FHVV�EDQGZLGWK
Consider the case when we guarantee 2Mbps for the AF1 service, RAF1.1 = 2Mbps,

and nothing for the AF2 service, RAF2.1 = 0. The CBQ scheduler in the core router
statically limits each service class to 2Mbps. The link capacity is set to C=6Mbps. The
traffic from one class cannot exceed 2Mbps, even if it is reserving much more band-
width than the traffic in the other classes.

Suppose that the class AF1 wants to send more traffic than is guaranteed (RAF1 =
4Mbps), then this class will not obtain any share from the excess bandwidth, since the
core router is limiting its maximum rate to 2Mbps. The other classes, which do not
reserve any bandwidth, monopolize the excess bandwidth, which is completely unfair
to class AF1. The weights of CBQ are clearly not adapted to this situation.

CR1CR2

HG1

HG2

HG3

HR1

HR2

AF1=4Mbps

AF2=2Mbps

BE=2Mbps

C=6Mbps

Alg.

)LJ����Unfairness in the distribution of the excess bandwidth case. HG - host generators and
HR - host receivers. CR - core routers

Our mechanism solves this problem and allows a fair sharing of the excess band-
width, which improves the AF1 service in this scenario. The rates allocated by our
algorithm are shown in Fig.1. These rates are obtained with a fair division rule, which
divides the excess bandwidth equally among the three service classes. Using this rule,
we increase the AF1 bandwidth from 2Mbps to RAF1=3.33Mbps, and we penalize the
other services that do not ask for any guaranteed bandwidth, RAF2=RBE=1.33Mbps
instead of 2Mbps in the static case.

������%LDV�DJDLQVW�WKH�,1�SDFNHWV�RI�RQH�RU�PRUH�$)�FODVVHV
A customer is satisfied when the IN-profile packets it injects into the network succeed
to get through. We recall that we are considering an over-provisioning case, otherwise
this condition on satisfaction is not feasible. A static tuning of core routers may violate
this condition, by penalizing a class sending only IN-profile packets, while accepting
OUT-profile packets from another class, or accepting packets from the BE class. We
illustrate this misbehavior with the following two scenarios. Our mechanism ensures a
complete protection of IN-profile packets in an over-provisioning case. It does this by
adapting the rates of CBQ to the rates of IN packets.

��������2QH�5HVHUYDWLRQ�LV�1RW�6DWLVILHG�DQG�2QH�LV�6DWLVILHG
Consider the scenario where the AF1 class generates a total data rate of 4Mbps, and

the AF2 class generates a total data rate of 0.5Mps: RAF1=4Mbps and RAF2=0.5Mbps.
All packets of the AF2 class are marked as IN, RAF2.1 = 0.5Mbps. The rate of data
carried by IN packets of class AF1 is equal to RAF1.1 = 3Mbps. In the static tuning

case, the CBQ buffer is supposed to distribute the bandwidth C=6Mbps equally
among the three classes. The BE traffic rate is set to 3Mbps.

In this scenario, class AF2 is satisfied since all its IN packets get through the net-
work. However, class AF1 is not satisfied, since the CBQ buffer limits its rate to
2Mbps, whereas it is sending IN packets at a higher rate of 3Mbps. We are in a sce-
nario where IN packets are dropped, and OUT/BE packets are served instead. The
total rate of IN packets generated by the two classes is less than C, therefore it is pos-
sible to find another tuning that allows all IN packets to get through, and corrects the
bias against class AF1. When running our mechanism, the rate allocated to AF1 in-
creases to more than RAF1.1, and the rate allocated to AF2 is kept larger than RAF2.1

(Fig.2).

CR1CR2

HG1

HG2

HG3

HR1

HR2

AF1=4Mbps

AF2=0.5Mbps

BE=3Mbps

C=6Mbps

Alg.

)LJ��� One reservation is satisfied from HG2. HG - Host Generator, HR - Host Receiver, CR -
Core Router

Concerning the excess bandwidth (equal to 2.5Mbps in this scenario), our mecha-
nism divides it equally among the three classes. So, the new distribution of the CBQ
rates is: RAF1= 3.8Mbps, RAF2= 1.33Mbps and RBE= 0.8Mbps.

��������$OO�5HVHUYDWLRQV�DUH�1RW�6DWLVILHG
The last case we consider is when all reservations are not satisfied, due to an ap-

propriate static tuning of CBQ weights. Suppose AF1 has a IN-profile traffic
RAF1.1=2.5Mbps and AF2 a IN-profile traffic RAF2.1=2.5Mbps. If the CBQ limits the
maximum rate of each class to 2Mbps, both classes AF1 and AF2 will not be satisfied
since some of their IN packets will be dropped. On contrary, clients of the BE class
are favored, since they obtain more than their fair share of the excess bandwidth
(2Mbps instead of 0.33Mbps).

We apply our algorithm and we measure each class throughput at the output inter-
face of the core router. The rule to divide the excess bandwidth is the same as that in
the above sections. After a while, the rates allocated in the CBQ buffer to the different
classes change: AF1 and AF2 receive RAF1=RAF2=2.8Mbps, and BE receives
RBE=0.3Mbps. This is exactly the desired allocation, that satisfies customers who ask
for bandwidth, and distributes the excess bandwidth equally among the three classes.

CR1CR2

HG1

HG2

HG3

HR1

HR2

AF1=3Mbps

AF2=3Mbps

BE=3Mbps

C=6Mbps

Alg.

)LJ��� All reservations are not satisfied. HG - Host Generator, HR - Host Receiver, CR - Core
Router

���(YDOXDWLRQ�(QYLURQPHQW
The evaluation environment includes monitoring tools, traffic generator tools, traf-

fic control tools and link emulator tools. The experimental results are based on cases
presented in Section 4.

To validate our work, we use a test-bed network (Fig.4) with Linux Redhat 7.2 op-
erating system. All the PC's are PIII with different clocks’ speed processors and dif-
ferent network cards.

Our mechanism is implemented in the core router named Kisscool. Looking to
Fig.4, each host at the right-hand side (Galak, Mnm, Raider) generates TCP or UDP
traffic flows [15] to hosts at the left-hand side. The traffic is generated with the Iperf
tool, and is marked at the output interfaces of the source hosts. The network band-
width is 10Mbps. Using the NIST Net tool [16], we emulate a link with bandwidth
6Mbps between Kisscool and Kitkat routers.

The monitoring tool used is TCPSTAT [17]. It collects the throughput of each AF
class at the incoming interfaces of the core router. To be effective, TCPSTAT works
in Eth3, Eth2, Eth4 from Kisscool router.

We use the tc (traffic control) module implemented in the Linux Diffserv [18][19].
Traffic control can decide if packets are queued or if they are dropped (e.g., if the
queue has reached some length limit or if the traffic exceeds some rate limit). It can
decide in which order packets are sent (e.g. to give priority to certain flows). It can
delay the sending of packets (e.g. to limit the rate of outbound traffic), etc. The traffic
control code is implemented in Linux kernel and is configured with a command inter-
face tc. The main components of Linux traffic control are filters, classes and queuing
disciplines (e.g., qdisc).

Kisscool

Mnm

Raider

Lion

Kitkat

Toblerone

Eth2

Eth6

Eth3Eth1

Galak

Eth5

Eth4

)LJ���� Our test bed network. The core router is Kisscool host. Flow generators are instaled on
Galak, Mnm and Raider.

tc
in

de
x

AF2

AF1

BE

dsmark (1:0)

tcindex

mask 0xfc mask 0xf0

�)LJ���� Interior of core routers using dsmark, tcindex, CBQ, GRED and RED.

Packets are selected by the filters in classes (u32, fw, route, tcindex). Each class
uses one of queuing disciplines (tbf, pfifo, red, gred). Schedulers used by tc are: CBQ
(Class Based Queuing), PRIO (Priority queuing), HTB (Hierarchical Token Bucket).
There are hierarchies of classes and filters.

Fig.5 shows the configuration of traffic control inside core router Kisscool. The
queuing disciplines and classes reflect the usual Linux notation of displaying tree-
based traffic control framework.

In order to use the DSCP to classify packets into the correct queue and class [20],
we use two levels from a hierarchy of filters. The first level of filters is for parent
dsmark(1:0) and the filter obtains DSCP from each packet. The filter is of type tcindex
and it masks the TOS field with 0xfc to extract the DS filed and shift two bits to the
right to get the DSCP. The second level of filters is for CBQ(2:0) (Class Based
Queueing) scheduler and extracts the second digit from the classid of the packets.
After masking with 0xf0 and shifting 4 bits to the right, the handle now corresponds to
the correct class under the CBQ scheduler.

Finally, the last level is internal in the GRED (Generalized RED) implementation
as it masks the packets with 0xf to extract the third digit of the classid and put them
into their correct virtual queues under GRED [21].

The available bandwidth C at the output interface of the core router is divided by
CBQ, which uses three classes with id: 2:1, 2:2 and 2:5. To avoid borrowing band-
width from the ancestors and to block the bandwidth sharing of the same parent, we

set the following parameters: isolated and bounded [16]. We need to set this parame-
ters to control the sharing bandwidth with our policy sharing rules. Buffers associated
to AF1 and AF2 in the core router implement the GRED mechanism with two drop
precedence class (AF1.1 and AF1.2 for AF1, AF2.1 and AF2.2 for AF2).

����([SHULPHQWDO�5HVXOWV
The proposed services are AF1 and AF2 with a positive guaranteed bandwidth and

BE with a zero guaranteed bandwidth. We focus on the over-provisioning case. The
link bandwidth between Kisscool and Kitkat is set to C = 6Mbps. In this section, we
validate the scenarios studied in Section 4, where our mechanism is compared to a
static bandwidth allocation scheme. We suppose that three customers located in the
hosts at the right-hand side in Fig.4 ask the network for some guaranteed bandwidth.
Table 1 gives an example on how much bandwidth each customer may reserve. In this
example, the maximum rate at which IN packets will be injected into the network is
equal to 2Mbps per AF class. We consider that before the activation of our mecha-
nism, the rates in the CBQ buffer are set to 2Mbps (C/3).

7DEOH��� Guaranteed bandwidth

3&�1DPH $)��� $)���
Galak 650Kbit/s 550Kbit/s
Mnm 450Kbit/s 700Kbit/s

Raider 900Kbit/s 750Kbit/s
Total bw: 2000Kbit/s 2000Kbit/s

To simplify the experiment, we suppose that the traffic of each one of the three
classes is generated by the same machine, e.g., Galak generates AF1 traffic, Mnm
generates AF2 traffic, and Raider generates BE traffic. Then, if the traffic of a AF
class is less than the guaranteed bandwidth, all packets of that class will be marked as
IN-profile. The traffic of a AF class contains OUT-profile packets when its rate ex-
ceeds the guaranteed bandwidth for that class.

Figure 6 shows how our algorithm reacts to the unfairness in the distribution of the
excess bandwidth (Section 4.1). We use UDP to generate the AF1 traffic (4Mbps) and
multiple long-lived TCP flows to generate the AF2 and BE traffic. The AF2 traffic has
only OUT-profile packets, which is realized by setting the guaranteed bandwidth of
the AF2 class to 0.

The guaranteed profile for AF1 is RAF1.1= 2Mbps, but the router receives more than
this amount (it receives 4Mbps). After one iteration we observe that AF1 has
RAF1=3.33Mbps, AF2 has RAF2=1.33Mbps and BE has RBE= 1.33Mbps. AF1 realizes
its guaranteed bandwidth RAF1.1= 2Mbps, and is then satisfied. The AF2 class is pe-
nalized because it does not ask for any bandwidth in this scenario, so it gets approxi-
mately the same throughput as BE.

0

0.5

1

1.5

2

2.5

3

3.5

0 10 20 30 40 50 60 70

Ba
nd

wi
dt

h
[M

bi
t/s

ec
.]

Time [sec.]

AF1.x
AF2.x
AF1.1
AF2.1

BE

)LJ���� Unfairness in the distribution of excess bandwidth (static case)

7DEOH��� Delay in AF1.1 service in the distribution of excess bandwidth case

0LQ��>PV@ $YJ��>PV@ 0D[�>PV@
Without alg. 2.108 23.799 68.891

With alg. 2.023 18.345 56.675

Table 2 shows the impact of our mechanism on the delay perceived by packets of
class AF1. Our mechanism improves the quality perceived by this class by giving it a
fair share of the excess bandwidth. This additional bandwidth is translated into a
smaller end-to-end delay for packets of this class.

Figure 7 shows another case where one of the services (AF2) has low traffic, less
than the guaranteed bandwidth, and another service (AF1) has more traffic than is
guaranteed (Section 4.2.1). In this case, AF1 has UDP flows and AF2 and BE have
long-lived TCP flows. The bandwidth guaranteed by the network to AF1 is set to
3Mbps, instead of 2Mbps as before (this follows a change in the contract according to
a new agreement between customer and ISP). As expected, after two iterations AF1
gets RAF1= 3.8Mbps, AF2 gets RAF2= 1.33 and BE gets RBE= 0.8Mbps. The priority
traffic from each AF service class gets through the network. The two AF classes real-
ize their desired rates. The BE service gets the smallest amount of bandwidth, since it
has zero guarantee. In this case, the delay measured for AF2 has the same value
with/without our algorithm (min.=1.772ms / avg.=19.708ms / max.=57.876ms).

The case when all service reservations are not satisfied is presented in Fig.8. We
use for AF1 class UDP flows, and for AF2 and BE classes long-lived TCP flows. AF1
and AF2 classes ask the network for 2.5Mbps each (Section 4.2.2). In this case, we
observe that our algorithm stabilizes the rates of the CBQ buffer after 20s.

0.5

1

1.5

2

2.5

3

3.5

4

0 10 20 30 40 50 60 70

Ba
nd

wi
dt

h
[M

bi
t/s

ec
.]

Time [sec.]

AF1.x
AF2.x
AF1.1
AF2.1

BE

�)LJ���� One service reservation is not satisfied, one is satisfied (static case).

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25 30 35 40 45 50

Ba
nd

wi
dt

h
[M

bi
t/s

ec
.]

Time [sec.]

AF1.1
AF1.2
AF1.x
AF2.x

BE

)LJ���� All service reservations are not satisfied (static case).

Fig.9 shows how fast our algorithm should run. The speed of the algorithm is deter-
mined by the averaging interval. Every averaging interval, our algorithm passes once
by the loop while described in Section 3. If it runs faster than 5 seconds, the system
oscillates. We found the optimum value of the averaging interval to be 10 seconds, as
shown in Fig.10. For this experiment, we use long-lived TCP flows for all the serv-
ices. The dynamics of TCP congestion control is the reason for these oscillations of
the system, when the averaging interval is small. One should expect that the instability
of the system for small averaging interval does not exist in case of constant rate non-
reactive UDP flows.

����&RQFOXVLRQV�DQG�)XWXUH�:RUN
Our mechanism is easy to implement and does not require any particular signaling.

The bandwidth allocation is taken according to local decision rules. It ensures that
SLAs are respected and allows at the same time an efficient utilization of network
resources. It is flexible because it can use other division rules for excess bandwidth.

Each ISP can define his own rules. The future work will be to test and to compare
multiple excess bandwidth sharing rules. Another future work will be to test our
mechanism with real applications like FTP, RealPlayer, and Web generators. In this
paper, we only focused on constant rate UDP traffic and long-lived TCP flows.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 10 20 30 40 50 60 70 80 90 100

Ba
nd

wi
dt

h
[M

bi
t/s

ec
]

time [sec.]

AF1.x
AF2.x
AF1.1
AF2.1

BE

)LJ�� �� The algorithm runs with a period of 5 seconds. In this case the TCP flows from AF
services have no time to adapt their windows. So, this creates oscillations.

0

0.5

1

1.5

2

2.5

3

3.5

4

0 10 20 30 40 50 60 70 80 90

Ba
nd

wi
dt

h
[M

bi
t/s

ec
]

time [sec.]

AF1.x
AF2.x
AF1.1
AF2.1

BE

)LJ����� The algorithm runs with a period of 10 seconds. In this case the TCP flows from AF
services have time to adapt their windows. So, there are no oscillations.

5HIHUHQFHV
1. R.J.Gibbens, S.K.Sargood, F.P.Kelly: An Approach to Service Level Agreements for IP

networks with Differentiated Services, article submitted to Royal Engineering Society,
January (2000)

2. D. Grossman: New Terminology and Clarifications for Diffserv, RFC 3260, April (2002)
3. A. Asgari, P. Trimintzios: A Monitoring and Measurement Architecture for Traffic Engi-

neered IP Networks, IEEE/IFIP/IEE IST2001, Teheran, Iran, September (2001)

4. Jean Warland, G. Kesielis: Effective bandwidth for multiclass Markov fluids and other ATM
sources, IEEE/ACM Tran. Networking, Vol.1, (1993) 424-428

5. H.G. Perros, K.M.Elsayed: Call Admission Control Schemes: A Review, IEEE Communica-
tions Mag., Vol. 34, No. 11, November (1996), 82-91.

6. S. Blake, D. Black, M. Carlson: An Architecture for Differentiated Services, RFC 2475,
December (1998)

7. J. Wroclawski: The use of RSVP with IETF Integrated Services, RFC 2210, September
(1997)

8. J. Heinanen, F. Baker, W. Weiss, J. Wroclawski: An Assured Forwarding PHB Group, RFC
2597, June (1999)

9. K. Nichols, V. Jacobson, L. Zhang: A Two-bit Differentiated Services Architecture for the
Internet, April (1999)

10.V. Jacobson, K. Nichols, K. Poduri: An Expedited Forwarding PHB, RFC 2598, June
(1999)

11.David D. Clark, Wenjia Fang: Explicit Allocation of Best-Effort Packet Delivery Servicc,
IEEE/ACM Transactions on Networking, Vol. 6. No. 4, August (1998) 415–438

12.S. Floyd V. Jacobson: Link-sharing and Resource Management Models for Packet Net-
works, IEEE/ACM Transactions on Networking, Vol.3, No.4 August (1995)

13.L. Massoulie, J. Roberts: Bandwidth sharing: objectives and algorithms, IEEE Infocom’99,
New York, March (1999)

14.Veselin Rakocevic, John M. Griffiths: Physical Separation of Bandwidth Resources for
Differentiated TCP/IP Traffic, IEEE Infocom’99, New York, March (1999)

15.Ajay Tirumala, Feng Qin, Jon Dugan, Jim Ferguson: Iperf - a tool to measure maximum
TCP bandwidth, allowing the tuning of various parameters and UDP characteristics,
http://dast.nlanr.net/Projects/Iperf/

16.National Institute of Standards and Technology: NIST Net emulator,
http://www.antd.nist.gov/nistnet

17.Paul Herman: tcpstat-Network Interface Statistics,
http://www.frenchfries.net/paul/projects.html

18.Bert Hubert, Gregory Maxwell, Linux Advanced Routing & Traffic Control HOWTO,
v0.9.0, January 10, (2002)

19.Bert Hubert, Gregory Maxwell, Stef Coene: Linux Advanced Routing&Traffic Control,
http://lartc.org

20.Rui Pedro de Magalhaes Claro Prior: Qualidade de Servico em Redes des Comutacao de
Pacotes, Faculdade de Engeharia Da Universidade Do Porto, March (2001)

21.W. Almesberger: Linux Traffic Control – Implemetation Overview, EPFL ICA Swiss, Feb-
ruary (2001)

22.Randal L. Schwartz: Learning Perl, O’Reilly&Associates Inc. (1994)
23.Jerry Peek, Tim O’Reilly, Mike Loukides: Unix Power Tools, O’Reilly&Associates Inc.

(1994)

