TFMC: a TCP-Friendly Multiplexing Control
Scheme for VoIP Flow Transmission

Abdelbasset Trad
INRIA
2004 Route des Lucioles, BP-93
06902 Sophia-Antipolis, France
Email: Abdelbasset.Trad @sophia.inria.fr
Telephone: (+33) 4 92 38 50 22
Fax: (+33) 4 92 38 79 78

Abstract— We investigate the performance limitations in
the case of a large number of long distance voice over IP
calls originating from different sources and transported
through a best-effort IP network. We focus on the potentially
negative effects of protocol header overhead, which is twice
the voice payload generated by the high-compression audio
codecs. These negative effects range from the inefficient use
of bandwidth to the network congestion caused by the large
number of short voice packets flowing into the IP network,
which degrades the real-time transmission performance and
creates a fairness problem because of TCP traffic being
suppressed. The approach developed in this paper is to adapt
the transport protocol and the way in which it interacts with
the network in order to support voice flows competing with
TCP traffic in the Internet environment. We propose a new
multiplexing scheme of RTP voice streams called TFMC
(TCP-Friendly Multiplexing Control) that uses TCP-friendly
equation-based congestion control for unresponsive flows.
TFMC sender adapts the throughput generated by protocol
header in response to congestion while maintaining a steady
voice data throughput in order to achieve requirements of
voice over IP applications where a smooth sending rate is
of importance. We discuss through analytical and simulation
results the TFMC scheme performance. Simulations show
that the proposed equation for adjusting the number of
multiplexed packets achieves efficient voice flow transmission
and improves packet delay while being fair to TCP.

Keywords— VoIP, header overhead, RTP flow multiplexing,
TCP friendliness.

I. INTRODUCTION AND MOTIVATION

The flexibility of the Internet architecture has expe-
dited the convergence of data communications (packet
switched), and voice-based communications (traditionally
circuit switched) into a single IP-based core architecture.
The integration of voice data transmissions over the Internet
offers an opportunity for large savings in communication
cost. From the user’s viewpoint, making long-distance tele-
phone calls via the Internet results in substantial cost reduc-
tion since international charge imposed by telecommunica-
tion companies are bypassed [1]. For the network operator,
IP telephony have two advantages. First, audio codecs based
on advanced voice-compression techniques, can be used to
generate low bit data rates (less than 10 kbps). The second

Hossam Afifi
INT-INRIA
9 rue Charles Fourier
91011 Evry, France
Email: Hossam.Afifi @int-evry.fr
Telephone: (+33) 1 60 76 47 08
Fax: (+33) 1 60 76 42 91

advantage is due to efficiency achieved by connectionless
mode where bandwidth is consumed only when voice pack-
ets are delivered. Although IP telephony systems originally
came into the spotlight as networks that could enable cheap
long-distance and international telephone calls, attention is
now being focused on IP telephony systems as networks that
will replace the telephone network and become the base for
the next generation of multimedia communications [2]. A
single converged network for transport of voice and data
will be used. The quality of current Internet real-time voice
transmission is not satisfactory because of the Internet’s
delivery and scheduling mechanisms, originally designed to
support elastic data applications. Latency sensitive traffic,
such as voice and audio have unacceptable performance if
long delays are incurred. A bounded delay on the voice
delivery can be achieved either by restricting the offered
load (e.g., by blocking voice calls) or by adding QoS
mechanisms to the Internet, i.e., service differentiation and
traffic engineering which are not yet widely deployed due to
their complexity and scalability problems. In this paper, we
consider that a major performance limitation for voice trans-
mission over the Internet is the inefficient use of network re-
sources, such as buffers and bandwidth due to packet header
overhead and hence propose improvements. We develop a
new approach where the network participates in controlling
its own resource utilization, in order to ensure acceptable
performance for both real-time and elastic traffic sharing
network resources. The proposed solution adapts both the
transport protocol, by supporting RTP flow multiplexing,
and the way in which it interacts with the network state,
by regulating the number of RTP streams multiplexed in one
UDP packet. We introduce a new adaptive congestion control
scheme for RTP voice traffic called TFMC (TCP-Friendly
Multiplexing Control). TFMC is applied at network edges;
it adjusts the number of UDP voice packets transmitted
between two peer gateways to the congestion level of the
network. That is, based on the feedback information from
the destination gateway, the sender gateway would reduce
the number of multiplexed RTP packets during normal load
situations and increase it otherwise. With TFMC scheme,

no QoS guarantees can be made, but the user-perceived
quality is improved because delay is reduced. The paper
is organized as follows. Section 2 describes the process of
voice transmission through IP networks. Section 3 states the
problem. In Section 4 we discuss related work. Section 5
presents the TFMC scheme and shows its performance, and
Section 6 concludes the paper.

II. VOICE TRANSMISSION THROUGH IP NETWORKS

In order to reduce bandwidth usage, low-bit-rate voice
codecs are used in IP telephony systems (Table I). The
commonly used are G.723.1 [3], G.729A [4] and GSM [5].
When silence suppression scheme is employed, the codecs

TABLE I
LOW BIT RATES GENERATED BY THREE STANDARD IP TELEPHONY
SPEECH CODECS

| Codec | G7231 [G729A [GSM |

Bit rate (kbps) 5.3/6.3 8 13.2

Frame interval (ms) 30 10 20
Lookahead delay (ms) 7.5 5 0
Total encoding delay (ms) 37.5 15 20
Decoding delay (ms) 18.75 7.5 20
IPv4/UDP/RTP header (bytes) 40 40 40
Payload (bytes) 20/24 20 33

IP bandwidth (kbps) 15.96/16.96 24 29.2

then operate in two states: a silent state at zero bit-rate
and an active state at the compressed bit-rate. Regardless
of the state, the frame period and frame size are still fixed
[1]. For voice, samples representing 20 ms are considered
the maximum duration for the payload. This duration is a
compromise between bandwidth requirements and quality.
Smaller payloads demand higher bandwidth per channel
band, because the header length remains at 40 bytes. How-
ever, if payloads are increased, the overall delay of the
transmission will increase, and the system will be more
susceptible to the loss of individual packets by the network.
If an 8 kbps algorithm such as G.729A is used, the total
bandwidth required to transmit each voice channel would
be 24 kbps (as shown in Table I). After the digitization
and compression operations, the voice frames are transmitted
through the IP network. Since VoIP applications care more
about time of delivery than reliability, they typically use
the UDP transport protocol. UDP does not provide the
underlying support for quality of service, it gives more
flexibility in addressing application-specific requirements.
Most of the current real-time applications over the Internet
are based on UDP and the Real-time Transport Protocol
(RTP/RTCP) [6][7] which is rather an application layer
protocol. Although RTP does not contain any mechanism
that guarantees the timely delivery of data, it provides a
mechanism to time-stamp packets so that random delays
resulting from other network traffic can be compensated by
the use of buffers at the destination. RTP is currently widely
used for multimedia communication and particularly for IP
telephony in the Internet.

III. PROBLEM STATEMENT

We consider that a major performance limitation for
voice transmission over the Internet is the inefficient use
of network resources, such as buffers and bandwidth due
to packet header overhead, especially when a large number
of voice communications are transmitted between two edge
gateways of an IP backbone network.

A. Studied Architecture

We focus on the case of a large number of voice sources
at an access network, sharing a common path and destined
to different users in remote networks. IP backbone networks
represent an important part of the end-to-end path for long
distance VoIP calls, including calls that are serviced by a
combination of a switched telephone network in the local
area and the Internet for the long haul (Figure 1). In

Wireless Access
Network

Fig. 1. Heterogeneous mix of data and real-time services transmitted on
the same IP infrastructure

the considered architecture, we suppose the existence of a
gateway between the communicating entities. Nevertheless,
research into IP telephony is going toward an end-to-end
voice communication without going through a telephony
gateway [8]. In addition to phone-to-phone communication,
PSTN/Internet gateways can be used to provide RTP sup-
ported phone-to-PC and PC-to-phone communications since
RTP is integrated into the H.323 [9] and SIP [10] protocol
stack. Call signaling protocols can be used in conjunction
with data transport protocols to build a complete multime-
dia architecture. Typically, these architectures will include
protocols such as the RTP for transporting real-time data
and providing QoS feedback, the Media Gateway Control
Protocol (MEGACO) [11] for controlling gateways, and
the Session Description Protocol (SDP) [12] for describing
multimedia sessions. In this paper, we deal with the transport
mechanism of RTP voice flows when a large number of
active calls occur between a pair of gateways.

B. Performance Limitations

High-compression voice codecs used in IP telephony sys-
tems improve bandwidth efficiency enormously. However,
the payloads are relatively small compared to the additional
overhead imposed by the network to pass the audio data
between the sender and the receiver. This overhead results
in a decreased usable band. For instance, a typical IP
voice packet consists of a header of 40 bytes. Compared
with the typical payload size of only 10-33 bytes for each

audio frame, the header overhead is clearly very substantial.
Current VoIP applications tackle this problem by embedding
multiple audio frames into a single packet at the source to
increase the ratio of payload to header size. This approach
has the benefit of reducing the overall data rate of a call. But,
since an audio frame is generated only after raw audio sig-
nals in a frame period are captured and encoded, packing an
additional audio frame will add another frame period to the
assembly delay. Together with the existing network delay,
the resultant end-to-end delays may become unacceptable
[1]. In local area networks where bandwidth is abundant,
VoIP applications can send each audio frame in a separate
RTP packet to minimize packetization delay. However, in
case of Internet telephony gateways with multiple RTP
streams, the bandwidth that the header occupies must be
taken into consideration. Especially on backbone facilities
where costs are high (e.g., some global cross-sections). For
example, carrying Voice over IP headers for the entire voice
load of a large network with 300 million or more calls
per day could consume on the order of 20-40 gigabits per
second on the backbone network for headers alone [13].
From another view point, UDP traffic is unresponsive to
congestion and therefore can completely monopolize the
available bandwidth. Thus, Internet load increases because
of large numbers of short voice UDP packets, with 100 pack-
ets flowing every second in both directions for each call into
the IP network, eventually resulting in large delay, jitter and
packet loss [2]. Performance problems will be experienced,
in this case, by all voice calls and also by other traffic (i.e.,
TCP traffic) sharing the best-effort IP network.

IV. SUMMARY OF RELATED WORK

In this section, we briefly describe the related contribu-
tions: the IP/UDP/RTP header compression standard, the
multiplexing schemes of RTP voice flows and the TCP-
friendly congestion control mechanism for unresponsive
flows. We have coupled the two latter mechanisms to de-
velop our multiplexing scheme.

A. IP/UDP/RTP Header Compression

An IP/UDP/RTP header compression scheme for low
speed serial links was proposed by Casner and Jacobson
[14]. Their scheme reduces the IP/UDP/RTP header size
from 40 bytes to a minimum of 2 bytes on a link-by-link
basis. Casner’s algorithm takes advantages of two properties
in RTP streams. First, most of the fields in the IP, UDP and
RTP headers do not change over the lifetime of an RTP
session. These constant-value fields can be represented by
fewer bits with a session context during transmission. Sec-
ond, RTP header fields like sequence number and timestamp
are increased by a constant amount for successive packets
in a stream. Hence, differential coding can be applied to
compress these fields into few bits. Recently, a multiplexing
scheme for RTP streams was proposed in [15], it combined
the IP/UDP/RTP compression with a point-to-point protocol

(PPP) multiplexing scheme [16] to form a method for end-
to-end tunneling of multiplexed RTP packets. However, this
proposal operates in the link layer and can only be used over
PPP links.

B. RTP Multiplexing Schemes for Voice Flows

Multiplexing aims at the reduction of the overhead as-
sociated with Internet protocol layers and traffic load (i.e.,
number of packets) on routers. The basic assumption for
the multiplexing is that, at any time, there is more than one
user communicating with the same remote location. Various
approaches for multiplexing VoIP streams between peer
gateways have been proposed [1][8][17][18][19]. The basic
idea is to multiplex voice calls between two gateways into
a single packet, instead of using a separate connection and
thus separate packets for each. In [8], the authors propose
to multiplex RTP streams sharing the same destination
gateway into one UDP packet at a multiplexing interval
period. This solution is simple and there is no additional
header for multiplexing; it is effective for both header
overhead and number of packet reduction. In typical case,
40% of the bandwidth is saved for 8 multiplexed G.723.1
encoded voice streams by header overhead reduction and
number of voice packets also decreases 1 by 8. In [18], the
proposed scheme consists in merging several audio payloads
coming from different users into a single packet. Only one
IP/UDP/RTP header and a new RTP mini-header is added
to the packet. The mini-header is required to delineate the
multiplexed packets. The protocol adds 16 bits of overhead
per multiplexed user. Although this scheme allows a big
reduction of the header, it adds some protocol complexity
and requires modifications of the RTP packet format defined
in [6]. In [19], a light-weight data driven multiplexing
approach is introduced. The basic idea is to replace the
IP/UDP/RTP header of each packet with a mini-header at the
edge router. The mini-header is a two-byte tag that replaces
the original header at the ingress router, and will be used to
reconstruct the original header at the egress router using a
mapping table kept at each of the access routers. A control
signaling protocol is also proposed to exchange simple
control signals between peer entities. The main drawback
of these schemes is the added delay. Two types of delay
are incurred. Multiplexing processing delay occurs in the
gateway given that the generation of a multiplexed packet
is triggered by the expiration of the multiplexing period or
by the arrivals of enough audio packets to fit into the MTU.
The multiplexing period is decided by the implementor of an
IP gateway. If the chosen multiplexing period is small, the
additional delay becomes small but the number of users in
a multiplexed channel also becomes small [8]. It is possible
to adjust the multiplexing period according to the number
of existing connections so that the system can support all
the voice calls with the smallest possible delay to attain
the best-possible conversation quality. Multiplexing is likely
to reduce losses on the Internet. First, because improved
efficiency results in a reduced overall bit rate for the voice

stream and thus the necessary bandwidth. Secondly, many
routers drop packets not because of link congestion and
buffer overflow, but because of processing overload. A burst
of small packets can overwhelm the processors on a typical
router, causing loss.

C. TCP-Friendly Rate Control for Unresponsive Flows

Unresponsive flows are flows that do not use end-to-end
congestion control and, in particular, that do not reduce
their load on the network when subjected to packet drops.
This behavior can result in both unfairness and congestion
collapse for the Internet. TCP-friendly equation-based rate
control for unresponsive flows inside best-effort networks
was introduced [20] to ensure proper congestion avoidance
for multimedia applications using unresponsive transport
protocols, i.e., UDP and RTP, while coping with the real-
time needs of these applications. That is, in contrast with
the behavior of TCP, to smoothly find available bandwidth,
increase the sending rate slowly in response to a decrease
in the loss event rate and to do not halve the sending
rate in response to a single loss. The basic decision in
designing equation-based congestion control is to choose the
underlying control equation. In [21], a TCP-friendly flow is
characterized by an upper bound of its arrival rate. This
bound is given by the maximum overall sending rate for
a TCP connection with a given packet drop rate, packet
size, and round trip time. Given a packet drop rate of p,
the maximum sending rate of a TCP connection, in absence
of timeouts, for packets of S bytes with a fairly constant
round-trip time, including queueing delays, of R seconds is
given by (1):

B
T(Bps) < cx* R b (1)

15*\/5
c=1. -
3

Based on the TCP-friendly rate control mechanism, many
schemes have been developed in order to provide appropriate
congestion control for real-time applications in the Internet
environment. In [22], the authors propose a receiver-based
multicast congestion control scheme where the receivers
compute round-trip times, estimate the packet loss rate p,
and use (1) to compute the rate at which they should
receive data. In [23], the authors propose an end-to-end
rate adaptation scheme suitable for unicast applications, that
adjusts the transmission rate of multimedia applications to
the congestion level of the network. That is, based on the
estimation of the loss rate and the round-trip times obtained
from the regular information of RTCP reports [6], the sender
increases the transmission rate during network underload
periods and reduces this rate during congestion periods,
while avoiding an aggressive adaptation behavior.

with

V. PROPOSED TCP-FRIENDLY MULTIPLEXING CONTROL
SCHEME FOR RTP VOICE FLOWS

The common principle for the TCP-friendly rate control
schemes proposed in [21][22][23] is that they incorporate
congestion control mechanism at the application level of one
user, i.e., they instruct the applications at the end systems to
adapt the bandwidth share they are utilizing to the network
congestion state. In contrast with these schemes, our TFMC
(TCP-Friendly Multiplexing Control) scheme is applied at
the transport level on a flow formed by multiplexed RTP
voice flows originating from different sources between two
edge IP gateways.

A. TFMC Scheme Overview

TFMC scheme is based on the idea of multiplexing an
adjustable number of voice packets, this number is adapted
to the current network congestion state. Since voice over IP
applications use standard voice codecs which are unrespon-
sive to congestion indication, TFMC adapts the control traf-
fic (i.e., packet headers) of unresponsive voice flows to the
network congestion state using TCP-friendly equation-based
rate control mechanism. TFMC uses a simple multiplexing
scheme described in [8], where header overhead is reduced
through multiplexing several RTP streams destined to the
same gateway into one UDP packet. Multiplexed packets
are generated from different sources and occur at the same
instant into the sending gateway. We assume that at any time
there exist enough voice packets to fit into the multiplexed
packet (i.e., there are enough simultaneous calls sending
voice data). The multiplex is formed by linking a series of
RTP streams and an IP-UDP header (Figure 2).

Source 1 UDP v(ce | \ Aggregate buffer

Source2 IP UDP] Voice2 O ‘ lP‘LDP‘Vncl ‘ Voice z‘ ‘ Voice n‘

Fig. 2. Packets from different RTP flows multiplexed into one UDP packet

Multiplexed packets are sent using one of the UDP ports
designated for the multiplexed streams. At fixed time in-
tervals, the receiver computes the loss rate observed during
the previous interval. The sender, based on the receiver’s
feedback information, updates its sending rate by adjusting
the number of packets to multiplex (Figure 3). We assume

Sender Gateway

Receiver Gateway

TCP-Friendly Receiver parameters

: ' :
: ' :
: : :
equation (S, p, RTT) <7 estimation (p, RTT)
, i
| i |
"'n"" packets multiplex !
PN L ' receiver feedback 3
[H [] :
0 - -
! / : multiplexed packets i
i

:
! Adjustable aggregate buffer :
:

Receiver buffer

.
Best—Effort IP Network Lo
(delay, loss)

Fig. 3. Adjusting the multiplexing buffer size in response to traffic
fluctuations using the TCP-friendly congestion control mechanism

that the delay and the packet loss rate are affected by the
packet size.

1) Sender Gateway Functionality: Basically, the sender
estimates the values for the round-trip time R, the retransmit
timeout value tgro and the mean payload size of voice
flows. The sender and receiver use sequence numbers of
a multiplexed RTP flow to estimate the round trip time
in the network. Every time the receiver gateway sends a
feedback message, it echoes back to the sender the sequence
number of one RTP flow received in most recent multiplexed
packet, and the time since that packet was received. The
retransmit timeout value, tg7To, can be estimated from R.
In practice the simple empirical heuristic of tgpro = 4R
works reasonably well to provide fairness with TCP [26].
The payload size of voice frames varies depending on the
speech codec used by one source. Typical payload size is
10-33 bytes for each voice frame (Table I). To take into
account this variation, TFMC sender estimates the mean
RTP payload based on the payload size of coded voice
frames that occur at the sender gateway in the time interval
between two receiver feedbacks. TFMC sender uses the TCP
throughput equation (2) developed in [24] as the sending
rate approximation. Equation (2) roughly describes TCP’s
sending rate as a function of the loss event rate, round-trip
time and packet size. This equation reflects TCP’s retransmit
timeout behavior, as this dominates TCP throughput at
higher loss rates [25].

s
R\/22 + trro(34/32)p(1 + 32p?)

Initially the number of packets to multiplex, m, is set to 1
and the sending rate is determined by the rate of existing
voice flows coming at the sender gateway. When a feedback
message is received, the sender changes the number of
packets to multiplex based on the information obtained from
the receiver gateway. Assuming that at a given instant the
gateway is sending a flow of m; multiplexed voice packets
having a packet size of S(m) and a total throughput rate
of T7 bytes/sec, then after receiving the feedback message
from the receiver gateway the sender measures the round-
trip time estimate, updates the retransmission timeout value.
The loss rate obtained from the receiver gateway, p;, and
the measured round-trip time, R;, are then fed into the
throughput equation (2), to give the new acceptable sending
rate T». The sender gateway then adjusts the number of
multiplexed RTP packets to match the calculated rate T5
while conserving the rate of RTP packets transmitted in the
previous time interval using the equation (3) that we have
introduced: T, T

Stm) " S(ma)

where S(m) is the size in bytes of a multiplexed packet
formed by m RTP voice packets and one IP-UDP header,
given by the formula below.

T(Bps) =

(@)

3)

miq.

S(m) = hip + huap + m * (hyip + Payload) — (4)

The proposed equation (3) determines the number of packets
to multiplex according to the network congestion state. The
sender will increase the number of multiplexed RTP packets,
ma, if there was a high traffic load during the previous
time interval indicated by a calculated sending rate T less
than the actual sending rate 77. Otherwise, the sender will
decrease the number of multiplexed packets during normal
load periods. Actually, TFMC sender adapts the throughput
generated by protocol header in response to congestion
while maintaining a steady voice data throughput in order
to achieve requirements of voice over IP applications where
a smooth sending rate is of importance. TFMC responds
to changes of network congestion by adjusting the number
of multiplexed packets, and hence adjusting the number of
transmitted packet headers.

2) Receiver Gateway Functionality: The receiver gate-
way periodically sends a feedback message reporting the
loss event rate p to the sender. Every time the receiver
sends a feedback message, it echoes back to the sender
the sequence number of one RTP flow received in most
recent multiplexed packet, and the time since that packet
was received. The receiver keeps a packet history in order
to detect loss of multiplexed packets. Packet loss is detected
using RTP sequence numbers related to one multiplexed
flow. The estimated loss rate measure the loss event rate
rather than the packet loss rate. A loss event can consist
of several packets lost within a round-trip time, as it is
discussed in [26]. In the studied case the sender gateway is
transmitting at a high rate (many packets per RTT), but the
receiver sends one feedback message per several multiplexed
flows. This avoids bursts of control packets and improves the
scalability of TFMC scheme.

3) Discussion of the Variable Size of TFMC Packets:
Originally, TCP-friendly rate control mechanism was de-
signed for applications that use fixed packet size, and vary
their sending rate in packets per second in response to
congestion. TCP-friendly rate control mechanism should not
be used for applications that vary their packet size instead of
their packet rate in response to congestion [25]. Varying the
packet size during the time interval between two estimations
of the sending rate distorts packet-based measurement of the
loss event. TEMC adapts its sending rate by adjusting the
number of multiplexed packets, consequently the packet size
is varied. However, TFMC varies the packet size only after
the estimation of the sending rate using the TCP-friendly
throughput equation and keeps this size fixed until the next
feedback message. Therefore, TFMC sending rate estimation
is quite accurate.

4) Saving Bandwidth by TFMC Scheme: Without multi-
plexing, the bandwidth required for the transmission of n
RTP voice packets is given by:

B, =n * (hip + hyap + hrep + Payload) 5)

With our multiplexing scheme, the bandwidth required for
the transmission of the same amount of voice data by
multiplexing m RTP voice packets into one UDP packet

(assuming that n is a multiple of m) is given by:
n
Bym = e (hip + hudp + m * (hptp + Payload)) (6)

The bandwidth saved by multiplexing m RTP voice
packets can be then calculated from (7):

B — Bn—Ba,m — (]- - %) * (hip + hudp)
" Bn hip + hudp + hrtp + Payload
Figure 4 illustrates the percentage of bandwidth saving vs.

number of multiplexed packets for a typical payload size of
20 bytes.

)

T T
Bandwidth saved

Bandwidth saving (%)

oLl PR L PR L PR L PR
0 2 4 6 8 10 12 14 16 18 20 22 24
Number of multiplexed packets

Fig. 4. Bandwidth saving as the number of multiplexed packets increases

We notice that the bandwidth saved increases quite sig-
nificantly when the number of multiplexed packets is varied
from 1 to 10 packets. With 10 multiplexed packets having
a payload of 20 bytes, a significant bandwidth saving of
42% is achieved. Note that the multiplexed-packet length is
bounded by the MTU.

5) Comparison of TFMC Scheme with Header Reduction
Schemes: The IP/UDP/RTP header compression scheme
proposed in [14] reduces header size from 40 bytes to
a minimum of 2 bytes in the best case (one condition
is that UDP checksum from the source is disabled). The
IP/UDP/RTP header compression method also relies on the
the link layer for exchanging control messages in order to
preserve a lossless compression: the IP header checksum
is elided assuming that the link layer is providing good
error detection (e.g., PPP’s CRC). The total length field
(in the IP header) is eliminated since it is considered as
redundant with the length provided by the link layer. While
this method offers a full restoration of the IP/UDP/RTP
header, it is link-by-link based as opposed to our transport
layer scheme that provides a simple header reduction method
(concatenating voice packets from different RTP streams
into a single UDP packet). TFMC scheme is not supported
by the link layer, it is applied at the transport layer in which
packets may traverse several links. Thus, TFMC is more
suitable for latency sensitive voice traffic. Compared to the
multiplexing schemes proposed in [1][8][17][18][19], our
multiplexing scheme is characterized by the variability of the
number of multiplexed packets. This variability is controlled
by the proposed equation (3) that uses TCP-friendly rate
control mechanism for unresponsive flows. By varying the

number of multiplexed packets using equation (3), TFMC
sender adapts the throughput generated by protocol header in
response to congestion while maintaining a steady voice data
throughput. The number of multiplexed packets represent a
compromise between the additional multiplexing delay and
the number of users in a multiplexed channel (as explained
in Section IV.B). By using TCP-friendly rate control, TFMC
responds to changes of network congestion by adjusting
the number of multiplexed packets. Hence, the smallest
possible delay will be obtained. Moreover, being TCP-
friendly reduces the network congestion and consequently
reduces loss of voice packets. This will help to attain the
best-possible conversation quality.

B. Simulation Based Evaluation of the TFMC Scheme

We investigate, through simulations performed in network
simulator (ns-2), the performance of TFMC scheme in terms
of bandwidth utilization and delay of voice packets as well
as the behavior of TCP flow sharing a bottleneck link with
voice flows. This link have a capacity of 10 Mbps and
a propagation delay of 10 ms. The routers use drop-tail
queuing. Voice sources are connected between two nodes
representing the TFMC sender and the TFMC receiver
(Figure 5). Packet voice streams are generated using a
constant bit rate (CBR) source of 24 kbps (which represents
the throughput generated by voice packets using G.729A
codec considering the headers). A TCP Reno connection

TCP destination

Fig. 5. TFMC voice flow competing with TCP cross traffic

with a packet size of 1000 bytes is initiated at the time
0 seconds for the duration of the hole simulation. At the
time 20 seconds, 200 audio sources connected to the TFMC
sender start the generation of CBR flows destined to the
receiving nodes connected to the TFMC receiver. Figure 6
represents the throughput of the TCP flow and the total
throughput of non-multiplexed voice flows measured on the
bottleneck link. One observation is that TCP throughput
was dramatically decreased when the audio sources have
started transmission. Unresponsive UDP traffic monopolizes
the available bandwidth and cause starvation for TCP traffic
competing in the same congested drop-tail queue. TCP
then reduces its sending window in response to congestion.
However, when TFMC is used, we notice that voice flows
get less bandwidth than TCP flow (Figure 7). TCP flow
maintained a steady sending rate (more than 5 Mbits/s)
after the audio sources have started the transmission. This
can be explained by the decrease in the number of voice

Voice Flows —x—
TCP Flow —+—

Throughput (Mbits/s)

Fig. 6. Throughput of non-multiplexed voice flows competing with TCP
traffic

TFMC Voice Flow —x—
TCP Flow —+—

Throughput (Mbits/s)

0 20 40 60 80 100 120 140 160
Time (s)

Fig. 7. Throughput of TFMC voice flow coexisting with TCP traffic

packets through multiplexing achieved by TFMC in order to
have a TCP-friendly behavior. TFMC flow is smoother than
non-multiplexed voice flows and it requires less network
bandwidth, this is because of header overhead reduction.

0.07

delay of nor‘rmultiplex‘ed packet§

0.065

0.06

0.055

0.05

Delay (s)

0.045

0.04

0.035 1

0.03 L L L L L
0 20000 40000 60000 80000 100000 120000

Sequence number

Fig. 8. Delay of voice packets when TFMC mechanism is not used

Figure 8 illustrates the measured delay of one voice flow
when multiplexing is not applied and Figure 9 represents
this delay when TFMC is used. An interesting result is that
TFMC, globally, achieves better delay than non-multiplexed
flows (delay reduced by 20 ms for some packets) and ensure
less variations in the delay. Maintaining low delay variation
will reduce the delay jitter and this will ameliorate the
perceived voice quality. This result can be explained by
the fact that TFMC decreases dynamically the header traffic

0.07

‘TFMC paékets delay‘

0.065

0.06 - ,

0.055

0.05

Delay (s)

0.045

0.04

0.035 1

0.03 1 1 1 1 1
0 20000 40000 60000 80000 100000 120000

Sequence number

Fig. 9. Delay of voice packets improved when TFMC mechanism is used

load and the number of packets at routers according to the
network congestion state, therefore it decreases congestion
and queueing delays. The adaptability of the scheme to the
network conditions results in a reduced packet voice delay
(< 55 ms).

VI. CONCLUSION

We have proposed a new adaptive voice flow multiplexing
scheme called TFMC (TCP-Friendly Multiplexing Control),
which tries to keep the transmission protocol overhead to a
minimum while maintaining a steady voice data throughput.
TFMC combines RTP voice flow multiplexing and the TCP-
friendly congestion control mechanism. Simulation results
show that TFMC achieves performance goals of voice flows
(reduced delay and delay jitter) as well as efficient network
utilization, and fairness with TCP traffic. Our scheme is
scalable because no changes are needed at core routers and
minimal control messages are used: one feedback message
per several multiplexed voice flows. In addition, no modifi-
cations of the RTP packet format are required, thus it can
be easily implemented and deployed.

REFERENCES

[1] H. P. Sze, S. C. Liew, J. Y. B. Lee, and C. S. Yip, A Multiplexing
Scheme for H.323 Voice-Over-IP Applications, IEEE Journal on Se-
lected Areas in Communications, Vol. 20, No. 7, September 2002.

[2] T. Hoshi, K. Tanigawa, and T. Takahashi, IP Telephony Gateway and
Its Media Stream Control, Hitachi Review, Vol. 48, No. 4, 1999.

[3] ITU, Dual Rate Speech Coder for Multimedia Communications Trans-
mitting at 5.3 and 6.3 kbit/s, ITU-T Recommendation G.723.1, March
1996.

[4] ITU, C source Code and Test Vectors for Implementation Verification
of the G.729 Reduced Complexity 8 kbit/s CS-ACELP Speech Coder,
ITU-T Recommendation G.729 Annex A, November 1996.

[5] ETSI, Digital Cellular Telecommunications System Full Rate Speech
Transcoding, ETSI GSM 6.10 version 5.1.1, May 1998.

[6] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, RTP: A
Transport Protocol for Real-Time Applications, Request for Comments
1889, January 1996.

[71 H. Schulzrinne, RTP Profile for Audio and Video Conferences with
Minimal Control, Request for Comments 1890, January 1996.

[8] K. Tanigawa, T. Hoshi, and K. Tsukada, Simple RTP Multiplexing
Transfer Methods for VoIP, Internet Draft draft-tanigawa-rtp-multiplex-
01.txt, May 1999.

[9] ITU, Packet-Based Multimedia Communications Systems, ITU-T Rec-
ommendation H.323, November 2000.

[10] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson
, R. Sparks, M. Handley and E. Schooler, SIP: Session Initiation
Protocol, Request for Comments 3261, June 2002.

[11] F. Cuervo, N. Greene, A. Rayhan, C. Huitema, B. Rosen and J. Segers,
Megaco Protocol Version 1.0, RFC 3015, November 2000.

[12] M. Handley and V. Jacobson, SDP: Session Description Protocol,
RFC 2327, April 1998.

[13] J. Ash, B. Goode, J. Hand, and R. Zhang, Requirements for End-
to-End VoIP Header Compression, Internet Draft, Network Working
Group, February 2003.

[14] S. Casner and V. Jacobson, Compressing IP/UDP/RTP Headers for
Low Speed Serial Links, in Proc. IETF RFC 2508, February 1999.
[15] B. Thomspon, T. Koren, and D. Wing, Tunneling Multiplexed Com-

pressed RTP ("TCRTP’), Internet Draft, February 2002.

[16] R.Pazhyannur, I. Ali, and C. Fox, PPP multiplexing, IETF RFC 3153,
August 2001.

[17] J. Rosenberg and H. Schulzrinne, Issues and Options for an Aggrega-
tion Service within RTP, Internet Draft, IETF Audio/Video Transport
Working Group, May 1997.

[18] J. Rosenberg, and H. Schulzrinne, An RTP payload Format for User
Multiplexing, Internet Draft, Audio/Video Transport Working Group,
November 1998.

[19] K. El-Khatib, G. Luo, G. Bochmann, and P. Feng, Multiplexing
Scheme for RTP Flows Between Access Routers, Internet Draft, Au-
dio/Video Transport Working Group, April 2000.

[20] J. Mahdavi and S. Floyd, TCP-Friendly Unicast Rate-Based Flow
Control, note sent to end2end-interest mailing list, January 1997.

[21] S. Floyd, and K. Fall, Promoting the Use of End-to-End Congestion
Control in the Internet, IEEE/ACM Transactions on Networking,
August 1999.

[22] T. Turletti, S. Parisis, and J. Bolot, Experiments with a Layered
Transmission Scheme over the Internet, Technical Report RR-3296,
INRIA, France.

[23] D. Sisalem and H. Schulzrinne, The Loss-Delay based Adjustment
Algorithm: a TCP-friendly Adaptation Scheme, in Proceedings of
NOSSDAV’98, pp. 215-226, July 1998.

[24] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, Modeling TCP
Throughput: A Simple Model and its Empirical Validation, Proc. ACM
SIGCOMM 1998.

[25] M. Handley, S. Floyd, J. Padhye and J. Widmer, TCP Friendly Rate
Control (TFRC): Protocol Specification, Request for Comments 3448,
January 2003.

[26] S. Floyd, M. Handley, J. Padhye and J. Widmer, Equation-Based
Congestion Control for Unicast Applications, in Proceedings of ACM
SIGCOMM’2000, pp. 43-56, August 2000.

