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Abstract

This paper presents a new object categorization
method and shows how it can be used for image re-
trieval. Our approach involves machine learning and
knowledge representation techniques. A major ele-
ment of our approach is a visual concept ontology
composed of several types of concepts (spatial con-
cepts and relations, color concepts and texture con-
cepts). Visual concepts contained in this ontology can be
seen as an intermediate layer between domain knowl-
edge and image processing procedures. Our approach
is composed of three phases: (1) a knowledge acquisi-
tion phase, (2) a learning phase and (3) a categoriza-
tion phase. This paper is mainly focused on phases (2)
and (3). A major issue is the symbol grounding prob-
lem which consists of linking meaningfully symbols to
sensory information. We propose a solution to this dif-
ficult issue by showing how learning techniques can map
numerical features to visual concepts.

1. Introduction

This paper presents an object categorization method
based on a visual concept ontology. The paper also shows
how we have applied the proposed approach to image re-
trieval. Both knowledge representation and machine learn-
ing techniques are involved in the categorization process.
The proposed approach is designed for semantic inter-
pretation of isolated objects of interest. Related work
on scene analysis issues (i.e. involving non isolated ob-
jects) can be found in [2]. Our approach is composed of
three phases: (1) a knowledge acquisition phase, (2) a learn-
ing phase and (3) a categorization phase.

A long experience in complex object categorization [3] has
shown that experts often use awell defined and shared vocab-
ulary fordescribing theobjects of their domain. In [4],wehave

explained how ontological engineering can be applied to ac-
quire expert knowledge. Our goal is now to show how to use
this expert knowledge in order to guide object categorization.

Section 2 gives an overview of key issues and existing ap-
proaches in object categorization. Section 3 gives an overview
of the proposed knowledge acquisition process. Section 4 ex-
plains how visual concepts are learned by machine learn-
ing techniques. Section 5 presents an object categorization
algorithm. Section 6 details results based on the proposed
methodology applied to image indexing and retrieval. We fi-
nally conclude in section 7.

2. Related Work

An overview of object categorization techniques can be
found in [1]. When object recognition is performed using the
whole image, the image is often considered as an arrange-
ment of colored pixels rather than a picture of objects. This
abstraction is often called appearance. Object recognition is
oftenachievedbycomputingglobal statistics on thewhole im-
age (e.g. histograms, color coherence vectors [7]). This kind
of approach does not take into account object level seman-
tics.

Considering parts of an image produced by a segmen-
tation process is useful to object-level semantics. In [5], it
is explained how image parts can be handled by high-level
bayesian image interpretation techniques. The author ex-
plains that bayesian analysis techniques are more widely ap-
plicable and reliable than ad hoc algorithms. Such statistical
models are explicit and allow to evaluate confidence about
conclusions.

Knowledge based vision systems have proven to be effec-
tive for complex object recognition [3] and for scene under-
standing [6]. These systems give access to a high semantic
level. They offer a great capacity of reusability and extend-
ability and better tractability of the different sub-problems
(i.e. image processing, symbol grounding and image interpre-
tation) encountered in image understanding. Themajor neg-
ative point of these systems is that they rely on knowledge
bases which are difficult to produce.



To achieve object recognition, we propose an intermediate
approach: to use expert knowledge to structure prior distri-
butions of relevant visual features (i.e. texture, color, shape).
Thismeans thatwe aimat using expert knowledge to perform
a focused learning of semanticallymeaningful visual features.

3. Knowledge Acquisition Phase

First come knowledge acquisition issues which have been
discussed in [4].This phase is drivenby avisual concept ontol-
ogy.As seen infig. 1, knowledge acquisitionprocess consists of
achieving the following tasks: domain taxonomy acquisition
(i.e. hierarchy of domain classes); ontology driven visual de-
scriptionof domain classeswhich leads toamore completedo-
main knowledge base; image sample management (i.e. anno-
tation and manual segmentation of samples of object classes
of interest). Sample annotation consists of labeling eachman-
ually segmented region of interest by a domain class name.

Figure 1. Knowledge acquisition phase overview

Definition 1 LetΘ be the set of visual concepts.¹Θ is a par-
tial order between visual concepts. ∀(Ci, Cj) ∈ Θ

2, Ci ¹Θ Cj

means that Ci is a sub-concept of Cj .

Definition 2 Let Φ be the set of domain classes. A ∈ Θ
is the set of domain class attributes. A is a predefined
set of visual concepts. A = {geometry, size, orientation,
position, hue, brightness, saturation, repartition, contrast,
pattern}. For a class α ∈ Φ, Aα ⊆ A is the set of attributes
of α.¹Φ is a partial order between domain classes (i.e. super-
class attribute). We define S : Φ → Φ so that S(α) is the set
of subparts of α (i.e. subparts attribute).

Definition 3 Let a ∈ Aα be an attribute of α ∈ Φ. We de-
fine V : Aα → Θ so that V(a) is the set of values of a and so
that ∀Ci ∈ V(a), Ci ¹Θ a.

Definition 4 Let Γ be the set of manually segmented regions
of interest. We define LΦ : Φ → Γ so that LΦ(α) is the set of
representative regions of interest of a domain class α.

Knowledge acquisition phase consists of defining Φ, ¹Φ,
S(α) and V(a). Φ, ¹Φ and S(α) belong to domain knowl-
edge. This knowledge is shared by the specialists of the do-
main (e.g. biologists, astronomers). It is also independant of
any vision layer and can be reused for other purposes. Defin-
ing V(a) allows to reduce the semantic gap between expert
knowledge and image level. As explained in the next section,
semantic gap is completely filled during a learning phase.

The complete ontology is composed of 103 visual concepts
(e.g. Granulated Texture, Coarse Texture, Circular Surface,
Dark) . The depth of the ontological tree is 8. This ontol-
ogy is an extendible basis that can be specialized depending
on the application domain. Numerical features are the low-
level definitions of visual concepts. 16 numerical features are
associated with spatial visual concepts (e.g. compacity, sur-
face). 127 features are used to characterize texture concepts
(e.g. cooccurence matrices). 512 features (e.g. color coher-
ence vectors [7]) are associated with color concepts. Associa-
tion between features and visual concepts defines how visual
concepts are computed on image data. For instance, extrac-
tion of the visual conceptGranulatedTexture is performed by
computing cooccurence matrices on a region of interest.

An example of a pollen grain class formalized with the
frame formalism is shown in table 1. This example results
from a knowledge acquisition phase involving palynologists.
In this case α = {Poaceae}, S(α) = {PollenWithPori},
Aα = {geometry, size, hue, brightness, pattern, contrast}.
Attribute value hue is defined as V(hue) = {Pink}.

4. Visual Concept Learning Phase

The role of visual concept learning is to learn representa-
tive samples of visual concepts used during knowledge acqui-
sition phase. Visual concept learning fills the gap between on-
tological concepts and image level. An example of a visual
concept learning task is to learn how to detect the visual con-
cept Pink in any image.

Visual concept learning consists of training a set of de-
tectors D = {di} to recognize visual concepts contained in
the ontology. This learning is done thanks to a set of train-
ing vectors computed during feature extraction on manually
segmented and annotated regions of interest. The visual con-
cept ontology is used because the learning process is done
in a hierarchical way by using ontological tree structure. Vi-
sual concept learning is composed of three steps : training set
building, feature selection and training (fig. 2).

T={Ti}

X={xi,Ci}
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Selection 

T’={Ti’}

Training 

Trained
Detectors

D={di} 

Visual
Concept
Ontology

Figure2.Visualconceptlearning



Domain Class Poaceae

SuperClass: PollenWithPori

SubParts:

Pori pori1 {PoriWithAnulus}

SpatialAttributes :

geometry : {CircularSurface, EllipticalSurface}

size : {ImportantSize}

ColorAttributes :

hue: {Pink }

brightness: {Dark}

TextureAttributes :

pattern: {GranulatedTexture}

contrast: {Slight}

Table 1. High level description of domain class Poaceae. Attributes names are in bold face. Attribute values
are in italic. Expert terminology is in smallcaps.

Theproposedarchitecture is designed to learn the set of vi-
sual concepts used during knowledge acquisition. A training
set Ti is associated with each visual conceptCi ∈ Θ. A train-
ing set is a set of N labeled vectors xi ∈ Rn. Vectors are la-
beled by yi ∈ {−1, 1}. yi = 1 means that xi is a representa-
tive sample ofCi. yi = −1means that xi is a negative sample
of Ci. We define di as an estimation of the probability distri-
bution p(Ci|x). Each di is built thanks to the training vec-
tors xi labeled by yi such that yi = 1 if xi is a representative
ofCi. A training vectorsxj is labeled by yj = −1 ifxj is a neg-
ative sample of Cj .
Training Set Building uses the set of training vectors

X = {xi,Ci}. Let us consider an image sample γ ∈ Γ
so that x has been computed on γ. x is labeled by Ci if
∃a ∈ Aα | (Ci ∈ V(a) ∧ γ ∈ LΦ(α)). For instance, if a re-
gion of interest is a representative sample of a domain class
in which attribute pattern has for value GranulatedTexture,
then the feature vector x computed on this region of inter-
est by applying a gabor filter will be labeled by the visual con-
ceptGranulatedTexture. Training set building consists of ob-
taining T = {Ti} fromX so that:















Pi =
⋃

j
{(xj,+1) | Cj ¹Θ Ci}

Ni =
⋃

j
{(xj,−1) | Cj ¹Θ

(Ck ∈ brothers(Ci)) ∧ (xj,+1) /∈ Pi}
Ti = Pi ∪Ni

Pi is the set of representative training vectors of a visual
conceptCi.Ni is the set of training vectors computed on neg-
ative samples of a visual concept Ci. The training set asso-
ciated with Ci is noted Ti. Training set building result is Ti
(feature vectors labeled by +1 or −1) for each Ci. The hi-
erarchical structure of the ontology is used to compute each
Ti.
Feature selection chooses themost characterizing features

for better visual concept detection. We currently use a Se-
quential Forward Floating Selection (SFFS) algorithm [8] to
perform feature selection. Feature selection consists of com-
puting T ′ = {T ′

i} so that T
′
i = SFFS(Ti). This method iter-

atively adds or removes features until some termination cri-
terion is met. Bhattacharyya distance between classes is used
as a separability criterion.
Training consists of computing D = {di} so that di is an

estimation of the probability distribution of p(Ci|x). Estima-
tion usesT ′

i to build each di.We currently usemulti layer per-
ceptrons to perform estimation. The next section shows how
D = {di} is used to perform object categorization. The com-
bination of the domain knowledge base (fig. 1) and visual con-
cept detectors is called an augmented knowledge base.

5. Object Categorization Phase

Figure 3 presents an overview of the categorization phase.
Figure 4 describes the recognition algorithm in a simplified
way.

Figure3.Objectcategorizationphaseoverview

This algorithm is divided into four steps. Itmatches an un-
known object to categorize with one or several classes of the
domain.
(1) The categorization process is initiated by a categoriza-

tion request which contains an image of the object to catego-
rize.



Figure4.SimplifiedVersionofobjectcategorizationalgorithm

(2) The object of interest has to be segmented from back-
ground. To achieve object extraction, we use a region grow-
ing segmentation algorithm. Initial seeds are placed at the
corners of the image. If the algorithm tries to classify a sub-
part, the segmentation task consists of extracting the sub-
part from the main object. In both cases, a segmentation re-
quest has to be sent to initiate segmentation.
(3) Then comes local matching between current class at-

tribute values (e.g. CircularSurface for attribute geometry)
and visual concepts recognized by the detectors trained dur-
ing the learning process. Local matching function mA is de-
fined as :







mA : A → [0, 1]
∀x ∈ Rn, ∀α ∈ Φ, ∀a ∈ Aα, ∀Ci ∈ V(a)
mA(a) = max{di(x)}

Feature vector x used to compute local matching is the re-
sult of feature extraction. The result of local matching is a set
of probabilities associated with each attribute value. For the
subpart attribute, a recursive call has tobemade so as to com-
pute its global matching value.
(4) Global matching consists of evaluating if current class

matches the object to be recognized. This matching is done
by combining probabilities computed during local matching.
Global matching functionmΦ is defined as :















mΦ : Φ→ [0, 1]
∀α ∈ Φ, ∀a ∈ Aα, ∀β ∈ S(α)
mΦ(α) =

∑

a
mA(a)/Card(Aα)+

∑

β
mΦ(β)/Card(S(α))

If mΦ is greater than a predefined threshold
thcompatibility ∈ [0, 1] then matching between current
class and unknown object is validated. If object matches cur-
rent class, the classification algorithm tries to go deeper
in the domain class hierarchy defined by the partial or-
der¹Φ. If matching fails, current class is dropped.

6. Application to Image Indexing and

Retrieval

This sectionshowshowthemethologypresented in thispa-
per is used to perform image linguistic indexing. For a given
image, indexing is done by using the class name of the main
object contained in this image. This approach has to be op-
posed to feature-based indexing. Once the indexing process
is finished, retrieval is straightforward.

As shown in fig. 5, we define the set of domain classes
as Φ = {OutdoorScene, AerialScene, MaritimeScene,
Aircraft, Ship, Sea, Sky, Landscape}. We also de-
fine S(AerialScene) = {Aircraft, Landscape, Sky} and
S(MaritimeScene) = {Ship, Sea, Sky}. Table 2 shows
how domain classes are visually described by visual con-
cepts. Three attributes are used : geometry, hue and
repartition. Attribute repartition value is defined as
V(repartition) = {Uniform} for class Sky.

We have usedOntoVis (a knowledge acquisition tool de-
scribed in [4]) to perform manual segmentation (fig. 6) and
annotation of 120 samples images (fig. 7) (60 images for class



Domain Class geometry hue repartition

Sky - Blue or White Uniform
Sea - Blue or Green Random
Aircraft Aircraft Shape Grey or White or Green -
Ship Ship Shape Grey or White -

Table2.Examplesofvisualconceptdescriptionofdomainclasses.

Figure 5. Hierarchical (¹Φ) and composition
(S(α))relationsbetweenclasses.

Aircraft, 20 images for class Ship, 20 for class Sky and 20 for
class Sea). Due to lack of expertise, we have described the ge-
ometry of aircrafts and ships respectively as Aircraft Shape
and Ship Shape. This is an example of a specialization of the
visual concept PolygonalSurface provided by the visual con-
cept ontology. This shows that our approach is still valid even
if little knowledge is provided.

Figure 6.A sample image and its associatedman-
ualsegmentation.

Figure7.Typical Imagesof interest : aircrafts and
shipsintheirenvironment.

During the learning phase, 120 annotated and manually
segmented samples obtained during knowledge acquisition
are used to compute the set of visual concept detectors (D).

Multi layerperceptronsareused toperformvisual conceptde-
tection. The input layer of a given perceptron associatedwith
a visual concept depends on the number of features defin-
ing this visual concept. For instance, hue attribute values are
characterizedbyhistogramsquantifiedon255 levels.This im-
plies that theperceptronassociatedwith conceptsusedashue
attribute values has an input layer of size 255. The intermedi-
ate layer of each perceptron contains 20 neurons. The output
layer of a perceptron trained to recognize a visual conceptCi

is of size one. Once the learning phase is over, the object cat-
egorization is able to use the resulting augmented knowledge
base to perform categorization.

Our object categorizationalgorithm isused toperform im-
age retrieval in both video streams and still image databases.
Frames are acquired from video streams one by one. The al-
gorithm is entirely programmed in C++. This categoriza-
tion method has been tested on an image database struc-
tured as following: French TV news (7000 frames); Aircraft
and Ship images found on GoogleTMimage search engine
(http://images.google.com) (169 frames) and images taken
with a personal camera (1000 frames). A categorization ex-
ample is given in fig. 8. The output of the categorization pro-
cess is a symbolic explanation of the result. Categorization
time (on a P4 3.06Ghzwith 1.5Gb of RAM) for a 360x288 im-
age is of 500 ms. Figure 9 shows the precision/recall tradeoff.
Precision is defined as the ratio between the number of rele-
vant retrieved imagesand thenumberof retrieved images.Re-
call is defined as the ratio between the number of relevant re-
trieved images and the number of relevant images in the im-
age database. This curve has been obtained by a variation
(step=0.01) of global matching threshold thcompatibility (see
section 5). It can be seen that for a precision rate of 73%, a re-
call rate of 19% is obtained. This means that 73% of retrieved
images are relevant and that 19% of the relevant images con-
tained in the image database have been retrieved. For our
end-users, a good precision ismore important than a good re-
call : the system satisfies their needs. From our point of view,
results are promising. The results depend on the quality of
automatic segmentation : when segmentation of the object
is bad, categorization often fails. Segmentation process im-
provement should increase system performances.

7. Conclusion

This paper presents an original approach to complex ob-
ject recognition. This approach takes advantage of explicit
aspects of knowledge based approaches. Moreover, machine
learning techniques allow to reduce the knowledge acquisi-



Figure8.Categorizationresultisasymbolicexpla-
nationoftheinputimage.
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Figure 9. Plot of relative percentage for precision
vs.recall.

tion effort. This approach is structured in three main phases.
A knowledge acquisition phase which consists of describing a
set of domain classeswithvisual conceptsprovidedbyavisual
concept ontology. This ontology is composed of the following
types of visual concepts : spatial concepts and relations, color
concepts and texture concepts. The result is a domain knowl-
edge base. An object learning phase follows the knowledge
acquisition process in order to obtain a knowledge base aug-
mented by a set of detectors trained to the recognition of the
visual concepts used for the description of each class. The cat-
egorization phase tries to match an unknown object with one
or several domain classes. The matching is done between vi-
sual concepts computed on the unknown object and visual
concepts used for the description of domain classes. The pro-
posed approach allows semantic and explicit object catego-
rization. The global architecture does not act as a black box
and is able to explain categorization results, unlike catego-
rization techniques which consider the image at the appear-
ance level and not at the object level. One strong point is the
modularity of the approach. New algorithms can be easily in-
tegrated in order to obtain a better segmentation or a better
feature extraction. Changes at the low-level part have no con-
sequence on the high-level part. An important contribution
to past knowledge based vision systems is that learning tech-

niques simplify knowledge acquisition : the expert provides
well shared knowledge (i.e domain knowledge) and not im-
age processing knowledge. In systems like [6] or [3], symbol
grounding was performed by inference rules which were diffi-
cult to define. In our approach, a learning phase achieves this
task.
We have applied the proposed approach to image index-

ingwhichenables straightforwardretrieval.Promisingresults
have been obtained. Since querying is based on expert knowl-
edge, no query image is needed. As explained in [10], such
a knowledge oriented approach allows one to gain access to
a meaningful conceptual level that is difficult to reach with
classic query-by-example paradigm. Indeed, in the query-by-
example paradigm, it is difficult for the system to determine
which semantical aspects make a given image relevant.
There are several remaining issues. At the segmentation

level, a major remaining challenge is to define precisely the
feedback to the segmentation level when object categoriza-
tion fails. A good object segmentation aswell as good subpart
segmentations are needed in this approach. For some specific
applications, this hypothesis is reasonable. In general, seg-
mentation remains a major issue. We plan to use visual con-
cepts, programsupervision [9] and learning techniques todeal
with this problem.
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