
An A PRIORI -based Method for Frequent Composite Event Discovery in Videos

Alexander Toshev
University of Pennsylvania

Philadelphia, PA 19104
toshev@seas.upenn.edu

François Bŕemond Monique Thonnat
INRIA, 2004 route des Lucioles BP 93

Sophia Antipolis, France
{fbremond,thonnat}@sophia.inria.fr

Abstract

We propose a method for discovery of composite events
in videos. The algorithm processes a set of primitive events
such as simple spatial relations between objects obtained
from a tracking system and outputs frequent event patterns
which can be interpreted as frequent composite events. We
use theAPRIORI algorithm from the field of data mining
for efficient detection of frequent patterns. We adapt this
algorithm to handle temporal uncertainty in the data with-
out losing its computational effectiveness. It is formulated
as a generic framework in which the context knowledge is
clearly separated from the method in form of a similarity
measure for comparison between two video activities and a
library of primitive events serving as a basis for the com-
posite events.

1 Introduction

The problem of video event recognition has been studied
extensively ([7]). In most of the approaches explicit mod-
els of events are used which are either created manually or
learned from labelled data. In this work we focus on the
problem of detecting frequent complex activities without a
model.

In this work an event is a spatio-temporal property of
an object in a time interval or a change of such a property
([12]). An example of an event at a parking lot is ’vehicle
on the road’ (see fig. 1(a)). For the recognition of events an
algorithm was developed in the above work as a component
of a system for video event recognition calledVSIP ([2]).
The events are formally defined in an event description lan-
guage which allows us to define complex events in terms of
simpler ones and in this way to build a hierarchical struc-
tures of events. For instance, in a parking lot a complex
event is a ’parking manoeuvre’ which consists of ’a vehi-
cle on the road’, ’a vehicle on the parking road’, ’vehicle
on a parking place’ and ’person coming out from the vehi-
cle’. The simplest events at the bottom of this description

are referred as primitive while the complex ones are called
composite. In order to provide a complete description of a
domain an extensive library of events is needed containing
a formal description for each possible behavior. To simplify
the library and decrease the deployment efforts we retain in
this library only the most simple and general events which
are the primitive ones. These are simple spatial relations
like ’object in a zone’ or ’object near another object’. The
frequent composite events are deduced in an automatic way
from the set of all detected primitive events.

For the latter task we adapt the data mining APRIORI

algorithm ([1]) which uses the so called APRIORI prop-
erty: the subpatterns of frequent patterns are also frequent.
Therefore, starting with short patterns we count the occur-
rence only of those patterns whose subpatterns were marked
as frequent in a previous step. In this way the search space
is reduced. A pseudo code can be found in Algorithm (1).
In line 3 all pairs of patterns of lengthi− 1 from the previ-
ous iteration which have exactlyi − 2 mutual elements are
merged into patterns of lengthi. In the next step equal pat-
terns are combined in classes. Finally, only the classes with
a size greater than a given size thresholdsth are retained.

Algorithm 1 APRIORI(S, l, sth)
I NPUT: A set of statesS = {s1 . . . sn}.
OUTPUT: All l-pattern classesC(l) with size s(C(l))

greater than a given sizesth.
1: natural i ← 2; pattern set Pi ← ∅; K1 ←
{{s1} . . . {sn}}

2: while i ≤ l do
3: Pi ← CREATENEXTLENGTHPATTERNS(Ki−1, i)
4: K̂i ← COMBINEPATTERNSINTOCLASSES(Pi)
5: Ki ← RETAINFREQUENTPATTERNS(K̂i, sth)
6: i← i + 1
7: end while

return Kl

The difficulties of a direct application of the above algo-
rithm in the domain of video event analysis arise from the
uncertainty of the data: there are no equal but only similar

occurrences of the same behavior type. Precisely, we have
to answer two questions:

(i) How do we measure the number of occurrences of an
activity (its frequency) and how the frequency of a sub-
activity is related to the frequency of an activity (line
5)?

(ii) How do we decide which patterns of events represent
the same event type (line 4)?

The answer to these questions depends on the way we
compare event patterns. Therefore, a similarity measure is
necessary which evaluates to which extend two patterns rep-
resent the same activity. Using this similarity as a basis we
can answer in a domain-independent way the above ques-
tions. In particular, the number of occurrences of a behav-
ior and thus implicitly its frequency can be defined in a soft
manner taking into account the similarity as shown in sec-
tion 3. Additionally, the APRIORI property does not hold
in case of similarity because subpatterns of patterns can be
less similar than the patterns themselves. Therefore, we for-
mulate in section 6 a WEAK-APRIORI property which de-
creases the frequency threshold for shorter patterns in order
to prevent losing subpatterns of frequent patterns and thus
to guarantee their detection in the merge step in line 3. The
second point - combination of patterns into classes - uses an
entropy-based clustering algorithm presented in section 5.

The domain knowledge is provided in two forms: be-
sides the similarity we must specify a library of generic
primitive event types. The occurrences of these events are
the input to the algorithm and therefore serve as a basis for
the composite events which can be detected.

We present a generic framework for high-level frequent
event discovery. The context knowledge is clearly separated
from the algorithm and thus makes the approach applicable
in different domains for which primitive events and similar-
ity can be defined. By solving the above issues we guar-
antee robust event detection in noisy environments. More-
over, the algorithm outputs a set of composite events which
are hierarchically ordered and thus generates a clear event
structure.

2 Related Works

Although the research in the field of unsupervised event
detection and learning is at its beginning there are several
approaches studied.

One of the most widely used techniques is to learn in
an unsupervised manner the topology of a Markov model.
[3] use an entropy-based function instead of the Maximum-
Likelihood estimator in the E-step of the EM-algorithm for
learning parameters of Hidden Markov Models (HMM).
This leads to a concentration of the transitional probabilities

just on several states which correspond in most of the cases
to meaningful events. Another approach is based on vari-
able length Markov models which can express the depen-
dence of a Markov state on more than one previous states
([6]). While this method learns good stochastic models of
the data it cannot handle temporal relations. A further sim-
ilar technique is based on hierarchical HMMs whose topol-
ogy is learned by merging and splitting states ([15]). The
advantage of the above techniques for topology learning of
Markov models is that they work in a completely unsuper-
vised way. Additionally, they can be used after the learning
phase to recognize efficiently the discovered events. On the
other hand, these methods deal with simple events and are
not capable of creating concept hierarchies. The states of
the Markov models do not also correspond always to mean-
ingful events.

Another method was proposed by [10] who use inductive
logic programming to generalize simple events. Although
being promising this system was developed only for sim-
ple interactions without taking into account any temporal
relations. For low-level event detection and learning several
standard techniques were also used. [8] use Self-Organizing
Maps to learn typical trajectories of moving objects. [16]
learn gestures by extracting and clustering prototypes of
gesture components from trajectories of hand movements
using the k-means algorithm. The authors use the Mini-
mum Description Length principle to determine the optimal
number of gesture components. All these approaches per-
form well in the case of the problem they are specified for
but cannot be generalized.

The data mining community has been studying the task
of frequent pattern extraction for several decades. How-
ever, more emphasis is put on the computational effective-
ness than on the robustness against noise. There are only a
few approaches coping with some specific problems arising
from uncertainty: [14] deal with false attribute values; tem-
poral variability is addressed in [11]. Unfortunately, they do
not propose a general way of dealing with different types of
uncertainty.

3 A Model of Frequent Patterns

In this section we introduce some basic notation. We
are interested in reoccurring structures in a primitive event
set, expecting that these structures correspond to meaning-
ful complex activities:

Definition 1 An m-event patternp is a set of primitive
events with cardinalitym: p = {e1 . . . em}. The set of
all m-event patterns is denoted byP (m). A subpatternof a
patternp is a patternp̂ whose events are contained inp.

Although a patternp is just a set it describes implicitly
a structure through the relations between its events. Addi-

tionally, a similarity measure is needed in order to express
the degree of similarity between patterns:

Definition 2 A similarity measuresim(m)(p1, p2) of order
m between twom-patternsp1 andp2 is a mappingsim(m) :
P (m) × P (m) → [0, 1], whereP (m) is the set of allm-
patterns.

The concrete form of this mapping depends on the do-
main and therefore it is not possible to require further prop-
erties. Using the above notions of patterns and similarity
we can build pattern classes:

Definition 3 An m-pattern classC(m) of orderm is a set
of m-event patterns. Asubclassof a classC is a classĈ
whose patterns are subpatterns of patterns inC.

We expect that a pattern class stands for a behavior
type and thus contains examples of this behavior which
should be similar to each other. This property is guaran-
teed through the class building step (line 4 in Algorithm 1)
which is realized as clustering maximizing the weighted en-
tropy of the class (see section 5).

A frequent subclasses of a class stands also for a fre-
quent shorter activity which should be described addition-
ally if it occurs more frequently than activity represented
by the class itself. Using the APRIORI-algorithm (1) from
section 1 we can maintain links from subclasses to classes
formed in the next loop of the algorithm and retain the sub-
classes containing more examples than the number of ex-
amples in the class. In this way a hierarchical description of
composite events can be achieved.

Based on the above similarity we can define in a domain-
independent way a measure for the membership of a pattern
in a pattern class and the pattern class size:

Definition 4 A class similarity measuresim(m)(p, C) be-
tween an m-event patternp and a pattern classC of order
m is a mappingsim(m) : P (m) ×K(m) → [0, 1]:

sim(m)(p, C)
def
=

1
|C|

∑
p′∈C

sim(m)(p, p′) (1)

whereP (m) is the set of allm-patterns andK(m) is the set
of all pattern classes of orderm.

Definition 5 Thesizes(C) of a pattern classC is the sum
of the similarities between all patterns inC to C:

s(C)
def
=

∑
p∈C

sim(p, C) (2)

A large class size means both a large number of examples
of the behavior represented through the class (large number

of summands in eq. (2)) and also high degree of representa-
tiveness of the behavior through its examples (high value of
the summands in eq. (2)). In the case that we use an equal-
ity instead of a similarity the above class size corresponds
to the number of the patterns in the class:s(C) = |C|. The
class size can be viewed also to be proportional to frequency
of the event type described by the class.

4 WEAK -APRIORI Property

Using the above notation, the APRIORI property cited in
the introduction and used as a basis for the algorithm can be
expressed as follows:

s(C(m−1)) ≥ s(C(m))

whereC(m−1) is a subclass ofC(m). In the case of similar-
ity instead of equality the APRIORI property does not have
to be always valid: it can be violated bym-patterns which
have(m− 1)-subpatterns that are not so similar as the pat-
terns itself. A reason may be a pair of strongly dissimilar
events in the subpatterns whose impact on the total similar-
ity between the patterns loses strength with increasing pat-
tern length. This property can hold for all pairs of patterns
in a class and thus leads to a smaller size of its subclasses.
In this case the APRIORI property will not hold.

A remedy is a different version of the APRIORI property
which requires a weaker bound on the size of the subclass:

Definition 6 WEAK-APRIORI-Property: For all sub-
classesC(m−1) of a pattern classC(m) holds:

s(C(m−1)) ≥ g(m)s(C(m))− f(m)|C(m−1)|

whereg(m) and f(m) are positive functions of the class
orderm.

The functionsg(m) andf(m) serve as a correction for the
smaller size of a subclass. The concrete form off(m) and
g(m) depends on the similarity measure and an instantiation
is given in eq. (3) for the similarity defined there. Provided
the property in Def. 6 holds for a similarity measure we can
see that Algorithm 1 correctly recognizes alll-classes with
size at leaststh if we use in line 5 in theith loop for the size
of a classC the following dynamic threshold(i ∈ [2, l]):

s
(i)
th (|C|) = sth

m∏
k=i+1

g(k)− |C|
m∑

k=i+1

f(k)
k−1∏

j=i+1

g(j)

This threshold results from the WEAK-APRIORI property
by propagating the class size decrease from stepl till step
i. It guarantees that we will not miss in earlier loops of the
algorithm any subclasses which can be used to construct and
consequently detect all classes of orderl with size at least
sth. A proof of this fact can be found in [13].

5 Pattern Clustering

The objective of line 4 in Algorithm (1) is to classify
the generated patterns into clusters which correspond to the
same activity type. Precisely, this clustering step must result
in large coherent classes which are also clearly distinguish-
able from each other.

We propose an entropy-based agglomerative hierarchi-
cal clustering method ([9], [4]). Starting with classes con-
taining only one pattern, in each successive step we merge
those two classesCi andCj whose merge leads to the high-
est increase of a utility functionU(Ci, Cj). This function is
based on the weighted entropyHw(C) of a classC which
is defined as the product of the class sizes(C) and the class
entropyH(C). The entropyH(C) is defined by interpret-
ing a class as a random variable with values equal to the pat-
terns and probabilitiesPC(·) of those values proportional to
the class similarities:

PC(p) def=
sim(p, C)∑

p′∈C sim(p′, C)
=

sim(p, C)
s(C)

wherep ∈ C. From the above definitions follows:

Hw(C) def= s(C)H(C) =
∑
p∈C

sim(p, C) log
(

s(C)
sim(p, C)

)

A class of high quality is characterized by a large value
of the weighted entropy: large class size indicates a lot of
mutually similar patterns in the class and large class entropy
indicates good coherence and lack of outliers.

During the clustering we merge classes if this step leads
to an increase of the weighted entropy of the new class com-
pared with the old classes:

U(Ci, Cj)
def= Hw(Ci ∪ Cj)−Hw(Ci)−Hw(Cj) > 0

We iterate the above merge step until no further increase
can be achieved. In this case we have hopefully all patterns
describing the same activity type in one class.

6 Similarity Measure

In this section we describe informally a similarity mea-
sure between video events. As an application we use videos
recorded at a parking lot divided into zones (see fig. (1(b)))
in which vehiclesand personsare tracked. The system
recognizes the events ’an object being in a zone’ and ’an
object close to another object’. These events can be de-
scribed completely by a tuple of attributes: event name, ob-
ject types, zone name and start/end time.

A similarity measure compares event patterns using the
attributes of the primitive events. We distinguish between

Figure 1. (a) Visualization of the event ’vehi-
cle on the parking road’. (b) Manually defined
zones in the scene.

symbolicandnumericattributes. In the above domain ex-
amples for the first attribute types are event name, object
type, and zone name; examples for the second type are event
duration, event start/end time. The former are in most of
the cases unordered and can be compared only for equal-
ity while the latter must be treated with a soft comparison
function:

Csymb(x, y) def=
{

1, x = y
0, otherwise

Cnum(x, y) def= e−
(x−y)2

αxy

wherex, y ∈ R andα ∈ R+ is a parameter. The usage
of the denominatorxy makes the function more sensitive
to differences between small values. This corresponds to
the assumption that attributes with small values are more
susceptible to changes.

Another taxonomy of the attributes is based on their us-
age. Some attributes can be compared directly like event
names, object types, zone name, and event duration. In
other cases we must evaluate an attribute in relation with
attributes of other events: comparing event start/end times
directly does not make sense but only in the context of an-
other event in order to express the temporal relation between
them. Based on this distinction between attributes we define

theattribute-structure similarity :

sima-s(pi, pj)
def= wa attr(pi, pj) + ws struct(pi, pj)

with wa, ws ≥ 0, wa + ws = 1, which compares not only
the properties of the primitive events in a separate manner
through itsattribute similarity attr(pi, pj) but also com-
pares the structures of the patterns expressed in terms of
the temporal relations between the events in a pattern for-
mulated asstructure similarity struct(pi, pj). Using the
above two notions we combine direct comparison with prin-
ciples of analogy reasoning ([5]).

The above components of the similarity must be defined
manually for each domain. Hereby, the attributes of a prim-
itive evente(i)

k of am-patternpi, k = 1 . . .m, are compared

with the attributes of exactly one evente
(j)
k of the otherm-

patternpj using an appropriate compare function: symbolic
attributes are compared only about equality; for numeric at-

tributesx andy we usee−
(x−y)2

αxy . The similarity between
patterns is the average of the similarities between all primi-
tive events:

attr(e(i)
k , e

(j)
k) def=

∏
a(i)∈D(e

(i)
k)

C(a(i), ci,j(a(i)))

attr(pi, pj)
def=

1
m

m∑
k=1

attr(e(i)
k , e

(j)
k)

whereci,j(a) ∈ D(e(j)
k) is the corresponding attribute in

e
(j)
k to an attributea from e

(i)
k . The structure similarity

compares the temporal relations of the primitive events. The
temporal relation betweene(i)

k ande
(i)
l from pi can be com-

pared with the temporal relation betweene
(j)
k ande

(j)
l from

pj as follows:

struct(e(i)
k , e

(i)
l , e

(j)
k , e

(j)
l) def=

Cnum(dist(e(i)
k , e

(i)
l),dist(e(j)

k , e
(j)
l))

where dist(·, ·) compares the temporal distance between
events:

dist(ei, ej)
def=

{
d(ei, ej), |d(ei, ej)| ≤ |d(ej , ei)|
d(ej , ei), otherwise

d(ei, ej) = b(ei) − e(ej) with b(e) ande(e) start und end
time of an evente. Finally:

struct(pi, pj)
def=

1
m(m− 1)

m∑
k,l=1,k 6=l

struct(e(i)
k , e

(i)
l , e

(j)
k , e

(j)
l)

configuration sample pattern 1 sample pattern 2
pert. noise length rank length rank

5 0% 5 1 6 2
25% 5 1 6 1
50% 5 1 6 2

10 0% 5 1 6 2
25% 5 2 5 1
50% 5 1 6 1

Table 1. Results with synthetic data. For
each configuaration of perturbation variance,
noise portion, and sample pattern the rank
and the length of the most meaningful de-
tected pattern are displayed.

It can be shown that the attribute-similarity similarity satis-
fies the WEAK-APRIORI property ([13]):

s(C(m−1)) ≥
(

1− 1
m− 1

)
︸ ︷︷ ︸

g(m)

s(C(m))

−
(

wa

m− 1
+

2ws

m− 2

)
︸ ︷︷ ︸

f(m)

|C(m−1)| (3)

With increasing pattern lengthm the bound on the right side
of the above inequality converges towardss(C(m)) because
g(m) m→∞−→ 1 and f(m) m→∞−→ 0. Hence, the violation
of the initial APRIORI property decreases with increasing
pattern length and so the computational effectiveness of the
initial algorithm is preserved.

7 Evaluation

We test our approach on two types of sets containing fre-
quent composite events: synthetic data and data from the
parking lot monitoring domain. In both cases we describe
the data manually and compare the most frequent patterns
found by the algorithm with this description. We assess (i)
which subpatterns of the expected event patterns were re-
covered and (ii) what is their frequency compared with the
frequency of the other detected patterns. The latter aspect is
quantified in form of a rank: a pattern has rankk if it is the
kth most frequent.

The synthetic data was generated from two manually cre-
ated sample patterns of length 6. For each sample pattern 6
test sets were created as follows. 5 copies of each of these
patterns were perturbed and randomly positioned in a time
interval of 15000 time frames. Precisely, the start/end times
were perturbed with a gaussian noise with variance equal
to 5 and 10 time frames and mean 0 and thus resulting in

two sets for each sample pattern. Additionally, noisy events
were added to each set whose portion of all events equals
to 0%, 25% or 50%. The resulting sets and the results of
the experiments for each set are displayed in table (1) and
show that in all test runs at least a 5-subpattern of the op-
timal 6-pattern was recovered. This pattern was in 65% of
the cases the most frequent and in the remaining cases the
second frequent. In the case when the expected pattern was
the second frequent, the most frequent pattern was caused
by events which coincidentally form patterns. The perfor-
mance of the algorithm was stable even in the worst case of
high perturbation and 50% noise.

In order to evaluate the technique in a real situation we
apply it in the parking lot domain. We process appr. 4 hours
video from two days resulting in appr. 200 hundred prim-
itive events representing appr. 20 composite events divided
into two sets, one set for each day. These sets are presented
in fig. (2) together with the results. In both cases the most
frequent complex events were detected and they had in both
cases rank 1. These events correspond to the manoeuvre
parking and thus the most natural activity in the domain was
detected.

The reasons for not obtaining a pattern of full length
are strong perturbations in some cases and imperfect track-
ing which splits sometimes one primitive event into sev-
eral due to lost objects. The computational cost reduces
rapidly with each iteration of the APRIORI algorithm: in
each step beyond the3rd one less than 1% of all possible
patterns were taken into account. This shows the effec-
tiveness of the WEAK-APRIORI property in the case of the
attribute-similarity measure: the bound becomes more re-
strictive with increasing pattern length for which the num-
ber of possible patterns increases. On a machine with a 3.4
GHz Intel Pentiumr CPU the algorithm needed between 30
and 90 minutes for each run.

8 Conclusion and Future Work

In this paper we present an approach for detecting fre-
quent composite events using the APRIORI algorithm from
the data mining field. We were able to adapt this algorithm
to handle uncertainty without losing its computational at-
tractiveness. It discovers clear composite events and struc-
tures them hierarchically. The proposed method is built as
a general framework for which context knowledge in form
of a similarity measure and a generic library of primitive
events must be specified.

In the future we would like to investigate other similarity
measures based, for example, on probabilities. In a similar-
ity we can incorporate not only uncertainty of the temporal
attributes but also of the remaining attributes such as labels,
for examples. Another topic is the analysis of the detected
frequent patterns in order to create a compact and expressive

(a) BOREL PARKING 11 03

(b) BOREL PARKING 21 03

Figure 2. Manually created description of the
data and results. Each flow displays a se-
quence of primitive events of ’vehicle or per-
son in an zone’ with the zone name and ob-
ject type given. The occurrence refers to
data descriptions. The discovered complex
events are marked green with their rank to
the right.

model of the whole data. A different topic is to improve the
performance of the method. This can be achieved through
better implementation but also through integrating the oper-
ation from the line 3 in Algorithm (1) as another merge step
in the clustering from line 4: we can create longer patterns
by combining classes whose patterns have large number of
overlapping states. In this way the whole algorithm can be
represented as a clustering.

References

[1] Rakesh Agrawal and Ramakrishnan Srikant:Mining
Sequential Patterns.Proc. of the11th International
Conference on Data Engineering, 1995, pp. 3 - 14.

[2] Alberto Avanzi, Francois Bremond,
Christophe Tornieri and Monique Thonnat:Design
and Assessment of an Intelligent Activity Monitoring

Platform. EURASIP Journal on Applied Signal
Processing, 2005 (in press).

[3] Matthew Brand and Vera Kettnaker:Discovery and
Segmentation of Activities in Video.IEEE Trans.
on Pattern Analysis and Machine Intelligence, 22:8
(2000), pp. 844 - 851.

[4] Richard O. Duda, Peter E. Hart, and David G. Stork:
Pattern Classification.John Wiley & Sons, Inc., New
York, 2001.

[5] Brian Falkenhainer, Kenneth D. Forbus, and De-
dre Gentner: The Structure-Mapping Engine: Algo-
rithm and Examples.Artificial Intelligence, 41, (1989),
pp. 1 - 62.

[6] Aphrodite Galata, Anthony Cohn, Derek Magee, and
David Hogg:Modeling Interaction Using Learnt Qual-
itative Spatio-Temoral Relations and Variable Length
Markov Models. Proc. of the15th European Confer-
ence on Artificial Intelligence, 2002, pp. 741 - 745

[7] Weiming Hu, Tieniu Tan, Liang Wang, and Steve May-
bank: A Survey on Visual Surveillance of Object Mo-
tion and Behaviors.IEEE Trans. on Systems, Man, and
Cybernetics - Part C: Applications and Reviews, 34:3
(2004), pp. 334 - 352.

[8] Weiming Hu, Dan Xie, Tieniu Tan, Liang Wang, and
Steve Maybank:Learning Activity Patterns Using Self-
Organazing Neural Networks.IEEE Trans. on Sys-
tems, Man, and Cybernetics - Part B: Cybernetics, 34:3
(2004), pp. 1618 - 1626.

[9] Tao Li, Sheng Ma, Mitsunori Ogihara:Entropy-Based
Criterion in Categorical Clustering.Proc. of The21st

International Conference on Machine Learning, 2004,
p. 68

[10] D. R. Magee, C. J. Needham, P. Santos, A. G. Cohn,
D. C. Hogg:Autonomous learning for a cognitive agent
using continuous models and inductive logic program-
ming from audio-visual input.Anchoring Symbols to
Sensor Data, 2004 AAAI Workshop, 2004, pp. 17-24.

[11] Xingzhi Sun, Maria E. Orlowska, and Xue Li:Intro-
ducing Uncertainty into Pattern Discovery in Temporal
Event Sequences.Proc. of the3th IEEE International
Conference on Data Mining, 2003, pp. 299 - 306.

[12] Van-Thinh Vu, François Bŕemond, and
Monique Thonnat: Temporal Constraints for Video
Interpretation. Proc. of the15th European Conference
on Artificial Intelligence, 2002.

[13] Alexander Toshev:Unsupervised Learning of Sce-
nario Models in the Context of Video Surveillance.
Diploma thesis, Institut f̈ur Algorithmen und Kognitive
Systeme, Fakultät für Informatik, Universiẗat Karlsruhe
(TH), Karlsruhe, Germany, July 2005.

[14] Jiong Yang, Wei Wang, Philip S. Yu, and Jiawei Han:
Mining Long Sequential Patterns in a Noisy Environ-
ment. Proc of the 2002 ACM SIGMOD International
Conference on Management of Data, 2002, pp. 406 -
417.

[15] Lexing Xie, Shih-Fu Chang, Ajay Divakaran, and
Huifang Sun: Unsupervised Mining of Statistical
Temoral Structures in Video.Video Mining; A. Rosen-
feld, D. Doermann, D. Dementhon (Eds.), 2003,
pp. 279 - 307.

[16] Michael Walter, Alexandra Psarrou, and Shao-
gang Gong:Data Driven Model Acquisition using Min-
imum Description Length.Proc. of the British Machine
Vision Conference, 2001, pp. 673 - 683.

