
© Springer-Verlag

Automatic Video Interpretation:
A Recognition Algorithm for Temporal Scenarios Based

on Pre-compiled Scenario Models

Van-Thinh VU, François BRÉMOND and Monique THONNAT

Project ORION of I.N.R.I.A. Sophia Antipolis,
2004 route des Lucioles, BP93-06902 Sophia Antipolis Cedex, France.

{Thinh.Vu,Francois.Bremond,Monique.Thonnat}@sophia.inria.fr
http://www-sop.inria.fr/orion/orion-eng.html

Abstract. This paper presents a new scenario recognition algorithm for Video
Interpretation. We represent a scenario model with the characters involved in
the scenario, with its sub-scenarios and with the constraints combining the sub-
scenarios. By pre-compiling the scenario models, the recognition algorithm
processes temporal constraints by decomposing complex scenarios into
intermediate sub-scenarios to reduce the algorithm complexity. We have tested
the recognition algorithm on several videos of a bank agency to try to recognize
a scenario of "Attack". We conclude by showing experimental results of the
efficiency of this algorithm for real time temporal scenario recognition.

Keyword. Automatic Video Interpretation, Scenario Recognition, Chronicle
Recognition, Temporal Constraint Resolution, Scenario Representation.

1 Introduction

A problem of current focus in cognitive vision is Automatic Video Interpretation ([1],
[2], [3], [4], [8], [11], [12]). The goal is to develop a systematic methodology for the
design, implementation and integration of cognitive vision systems for recognizing
scenarios involved in a scene depicted by a video sequence. An Automatic Video
Interpretation System (AVIS) as described in Fig. 1, takes as input (1) a priori
knowledge containing scenario models predefined by experts and the 3D geometric
and semantic information of the observed environment and (2) video streams acquired
by the camera(s). The output of the system is the set of recognized scenarios at each
instant. In this paper, we focus on the module of scenario recognition. The scenario
recognition module takes as input the a priori knowledge of the scene and a stream of
individuals tracked by a vision module.

To solve scenario recognition issues, we first propose a language to describe
scenario models and second a Temporal Constraint Resolution approach to recognize
in real time scenario occurrences. Our scenario representation is mainly based on the
representation of T. Vu, F. Bremond and M. Thonnat [12] and also based on the one
of M. Ghallab and C. Dousson [4]. In this paper, we focus on the optimization of the
recognition method presented in [12]. We enhance the processing of temporal
operators by pre-compiling scenario models to decompose them into simpler scenario
models. By this way, the scenario recognition algorithm uses a linear search
compared to an exponential search for similar state of the art algorithms.

© Springer-Verlag

Fig. 1. Overview of an Automatic Video Interpretation System.

We present in section 2 some related works. Our scenario representation is
described in section 3. The recognition algorithm is detailed in section 4. We
conclude our paper by showing experimental results.

2 Related works

For 20 years and particularly since the years 90s, a problem of focus in cognitive
vision has been Automatic Video Interpretation. There are now several research units
and companies defining new approaches to design systems that can understand human
activities in dynamic scenes. Three main categories of approaches are used to
recognize temporal scenarios based on (1) a probabilistic/neural network combining
potentially recognized scenarios, (2) a symbolic network that Stores Totally
Recognized Scenarios (STRS) and (3) a symbolic network that Stores Partially
Recognized Scenarios (SPRS).

For the computer vision community, a natural approach consists of using a
probabilistic/neural network. The nodes of this network correspond usually to
scenarios that are recognized at a given instant with a computed probability. For
example, in 1996, A. J. Howell, H. Buxton [7] proposed an approach to recognize a
scenario based on a neuronal network (time delay Radial Basis Function). Two years
later, F. Bremond, S. Hongeng and R. Nevatia [6] proposed a scenario recognition
method that uses concurrence Bayesian threads to estimate the likelihood of potential
scenarios.

For the artificial intelligent community, a natural way to recognize a scenario is to
use a symbolic network which nodes correspond usually to the boolean recognition of
scenarios. For example, in 2000, N. Rota and M. Thonnat [11] used a declarative
representation of scenarios defined as a set of spatio-temporal and logic constraints.
They used a traditional constraint resolution technique to recognize scenarios. To
reduce the processing time for the recognition step, they proposed to check the
consistency of the constraint network using the AC4 algorithm [9]. More recently, in
2002, R. Gerber, H. Nagel and H. Schreiber [5] defined a method to recognize a
scenario based on a fuzzy temporal logic. In the same year, T. Vu, F. Bremond and
M. Thonnat [12] present an approach to optimize the temporal constraint resolution

A priori knowledge

Video
stream

Vision
module

Recognition
of elementary

scenarios

Recognition
of composed

scenarios
Recognized

scenario

Scenario recognition module

3D geometric and semantic information
of the observed environment

Scenario models
predefined by experts

© Springer-Verlag

by ordering in time the sub-scenarios of the scenario to be recognized. The common
characteristic of these approaches is to store all totally recognized scenarios
(recognized in the past).

Another approach consists of using symbolic network and to store partially
recognized scenarios (to be recognized in the future). For example, in the years 90s,
M. Ghallab and C. Dousson [4] have used the terminology chronicle to express a
temporal scenario. A chronicle is represented as a set of temporal constraints on time-
stamped events. The recognition algorithm keeps and updates partial recognition of
scenarios using the propagation of temporal constraints based on RETE algorithm.
Their applications are dedicated to the control of turbines and telephonic networks.
Some years later, N. Chleq and M. Thonnat (1996) [3] made an adaptation of
temporal constraints propagation for video surveillance. In the same period, C.
Pinhanez and A. Bobick [10] have used Allen's interval algebra to represent scenarios
and have presented a specific algorithm to reduce its complexity.

All these techniques allow an efficient recognition of scenarios, but there are still
some temporal constraints which can not be processed. For example, most of these
approaches require that the scenarios are bounded in time [4], or process temporal
constraints and atemporal constraints in the same way [11].

We can distinguish two main categories of approaches to recognize a scenario
based on a symbolic network: the STRS approaches recognize scenarios based on an
analysis of scenarios recognized in the past ([11], [12]), whereas the SPRS
approaches recognize scenarios based on an analysis of scenarios that can be
recognized in the future [4]. The STRS approaches recognize a scenario by searching
in the set of previously recognized scenarios a set of sub-scenarios matching the
scenario model to be recognized. Thus, if the system fails to recognize a scenario, it
will have to retry the same process (re-verify the same constraints) in the next instant,
implying a costly processing time. A second problem is that STRS algorithms have to
store and maintain all occurrences of previously recognized scenarios. The SPRS
approaches recognize a scenario by predicting the expected scenarios to be recognized
in the next instants. Thus, the scenarios have to be bounded in time to avoid the never
ending expected scenarios. A second problem is that SPRS algorithms have to store
and maintain all occurrences of partially recognized scenarios, implying a costly
processing space.

The method presented in this article is a STRS approach taking advantages of the
SPRS approaches. The objective is to reduce the processing time when searching in
the past (list of previously recognized scenarios) for an occurrence of a given scenario
model.

3 Scenario Representation

Our goal is to make explicit all the knowledge necessary for the system to be able to
recognize scenarios occurring in the scene. The description of this knowledge has to
be declarative and intuitive (in natural terms), so that the experts of the application
domain can easily define and modify it. Thus, the recognition process uses only the
knowledge represented by experts through scenario models.

© Springer-Verlag

Let Φ be the set of scenarios and Ω be the set of scenario models.
For each ω ∈ Ω model of a scenario instance ρ ∈ Φ, we note ρ = ρ(ω) and ω = ω(ρ):
a) α(ρ) is the set of actors involved in ρ and α(ω) is the set of characters (actor

variables) corresponding to the actors α(ρ),
b) β(ρ) is the set of sub-scenario instances that compose ρ and β(ω) is the set of

temporal variables corresponding to sub-scenario models of β(ρ). If β(ρ) = ∅, ρ is
called elementary scenario, if not, ρ is called composed scenario. We note ρ(v) a
scenario instance corresponding to the value of a temporal variable v. The
recognition of a scenario is a boolean value in a time interval,

c) γ(ω) is the set of constraints of ω expressing relations between characters α(ω) and
sub-scenarios β(ω). We note γT(ω) the set of temporal constraints of ω, and γA(ω)
= γ(ω) \ γT(ω) the set of atemporal constraints of ω. c ∈ γ(ω) is called temporal
constraint if c includes at least one temporal variable.

Scenario(Attack,
 Characters((cashier : Person), (robber : Person))
 SubScenarios(
 (cas_at_pos, inside_zone, cashier, "Back_Counter")
 (rob_enters,changes_zone,robber, "Entrance_zone","Infront_Counter")
 (cas_at_safe, inside_zone, cashier, "Safe")
 (rob_at_safe, inside_zone, robber, "Safe"))
 Constraints((rob_enters during cas_at_pos)
 (rob_enters before cas_at_safe)

(cas_at_pos before cas_at_safe)
(rob_enters before rob_at_safe)
(rob_at_safe during cas_at_safe)))

Fig. 2. Representation of a bank scenario "Attack": (1) the cashier is at his/her position behind
the counter, (2) the robber enters the bank and moves toward the front of the counter then (3)
both of them arrive at the safe door.

An actor can be a person tracked as a mobile object by the vision module or a static
object of the observed environment like a chair. A person is represented by his/her
characteristics: his/her position in the observed environment, width, velocity,…. A
static object of the environment is defined by a priori knowledge (before processing)
and can be either a zone of interest (a plane polygon as the entrance zone) or a piece
of equipment (a 3D object such as a desk). A zone is represented by its vertices and a
piece of equipment is represented by the vertices of its 3D bounding box. The zones
and the equipment constitute the scene context of the observed environment [1]. Static
objects and mobile objects are called scene-objects.

In our representation, any scenario ρ involves at least one person, and is defined on
a time interval called δ(ρ). An interval is represented by its starting and ending times
noted start(ρ) and end(ρ). For a temporal variable v corresponding to ω(ρ), we also
note that start(v) and end(v) for its starting and ending times. Defining scenario on a
time interval is important for the experts to describe scenarios in a natural way.

Fig. 2 represents a model of a bank scenario "Attack". This scenario involves two
characters, a cashier and a robber.

This representation is similar to previous representation of scenarios [12]. The
difference is that we distinguish the temporal constraints combining sub-scenarios
from atemporal constraints.

© Springer-Verlag

4 Scenario Recognition

The scenario recognition process has to detect which scenario is happening from a
stream of observed persons tracked by a vision module at each instant. The
recognition process takes also as input the a priori knowledge of the scene and the
scenario models. We suppose that the persons are correctly tracked: their
characteristics (their position in the scene, their height,…) are well detected and at
two successive instants, two persons having the same name correspond to the same
real person.

To recognize the pre-defined scenario models at each instant, we first select a set
of scenario templates (called triggers) that indicate which scenarios can be
recognized. These templates correspond to an elementary scenario or to a scenario
that terminates with a sub-scenario recognized at the current instant. Secondly we
find solutions for each of these scenario templates by looking for sub-scenario
instances already recognized in the past to complete the scenario template (the
resolution of a scenario template is described in section 4.1). A solution of a scenario
model ω is a set of actors that are involved in the recognized scenario and the list of
corresponding sub-scenario instances satisfying all the constraints of ω.
for each elementary scenario model ESM
 create a trigger T of type 1 for ESM
 for each solution ρe of T
 if ρe is not extensible then
 add ρe to the list of recognized scenarios
 add all triggers of type 2 of ρe to the list LT
 if ρe is extensible with ρ'e recognized at the previous instant then
 merge ρe with scenario ρ'e
 add all triggers of type 2 and 3 of ρ'e to LT
while (LT ≠ ∅)
 order LT by the inclusive relation of scenario models
 for each trigger T ∈ LT
 for each solution ρc of T
 add ρc to the list of recognized scenarios
 add all triggers of type 2 and 3 of ρc to LT

Fig. 3: Overview of the scenario recognition algorithm.

We define a "trigger" as a scenario template which can be recognized. There are
three types of triggers: (1) the elementary scenario models, (2) composed scenarios
with specified actors and (3) composed scenarios already recognized at the previous
instant. At the current instant, we initiate a list LT of triggers with all triggers of first
type (i.e. elementary scenario models) as shown on Fig. 3. Once we have recognized
an elementary scenario ρe, we try to extend ρe with a recognized scenario ρ'e at the
previous instant (the extension of a scenario is the extension of its ending time). If ρe
can not be extended, we add the triggers of type 2 that terminate with ρe to the list
LT. If ρe is extended with ρ'e, we add the triggers of type 2 and 3 that terminate with
ρ'e. The triggers of type 2 are the templates of a composed scenario instantiated with
the actors of ρ'e and the triggers of type 3 are the templates of a composed scenario ρc
already recognized at the previous instant and that terminates with ρ'e. After this step,
there is a loop process first to order the list LT by the inclusive relation of scenario
model contained in the triggers and second to solve the triggers of LT. If a trigger
contains a template of a scenario ρ'c that can be solved (i.e. totally instantiated), we
add the triggers of type 2 and 3 that terminate with ρ'c. Once, a scenario is recognized,
we add it to the list of already recognized scenarios indexed by a graph combining the
scenario models and the list of actors to speed up the search process.

© Springer-Verlag

4.1 Finding solutions for a scenario model

The algorithm for finding a solution for a scenario template (trigger) consists in a loop
of selecting a set of actors then of verifying the corresponding constraints until all
combinations of actors have been tested. This selection of actors leads the recognition
algorithm to an exponential combination in function of the number of actors.
However, in practice, there are few actors in scenario models, so the recognition
algorithm can still be real time.

For a scenario model ω contained in a trigger, we first check the atemporal
constraints γA(ω) on actor variables. For this step, we select a set of actors
corresponding to α(ω). If ω is a composed scenario model and has been selected by a
second type trigger (i.e. a partially instantiated scenario template), some actor
variables can already be instantiated. Once the actors have been selected, we check all
atemporal constraints. These atemporal constraints are ordered with the occurrence
order of the actor variables (in a compilation phase) to speed up the recognition
process [12]. If the scenario is an elementary scenario, after the verification of its
atemporal constraints, the scenario is said to be recognized. If the scenario is a
composed scenario, after the verification of its atemporal constraints, its actors have
been instantiated but its temporal constraints still need to be verified.

To verify the temporal constraints of a composed scenario model, we extract from
the set of recognized scenario instances a sub-set of recognized sub-scenarios
satisfying the constraints defined in the scenario model. To search for sub-scenarios,
the STRS algorithms of the state of the art (i.e. [12]) process usually the temporal
operators by ordering the sub-scenarios in time.

Once we find a solution of a scenario model, we store the recognized scenario
instance and we add to the list LT the trigger terminating with this scenario. If the
scenario is an elementary scenario, we also try to extend this solution (scenario
instance) with a scenario of same type (same model and same actors) recognized at
the previous instant. First, if such a scenario does not exist, we just add the solution to
the set of recognized scenarios. Second, if it is possible to extend the solution, we
merge these two elementary scenario instances (we merge their time interval) to
obtain only one elementary scenario which corresponds to a continuously recognized
scenario. The extension of one elementary scenario can lead recursively to the
extension of all previously recognized scenarios terminated by this scenario (as
described in the previous section).

The STRS algorithms of state of the art perform at each instant a complete search
process among all possible scenarios and sub-scenarios leading to an exponential
algorithm. We propose to analyze temporal constraints of each scenario to order its
sub-scenarios. Then the search space is reduced by decomposing the initial model into
a set of simple scenarios models easy to recognize.

4.2 Decomposition of a composed scenario

A composed scenario is a sequence of sub-scenarios partially ordered in time. Each
sub-scenario corresponds to a temporal variable in the corresponding scenario model.
The STRS algorithms usually re-search already recognized sub-scenarios and re-
verify the temporal constraints contained in any composed scenario until they find a
solution for this scenario. For example, if a scenario ω is composed of three sub-
scenarios: ω1 before ω2 before ω3 and if ω3 has been recognized, it make sense to try
to recognize the main scenario ω. Therefore, the STRS algorithms will try all

© Springer-Verlag

combinations of scenario instances ρ(ω1), ρ(ω2) with ρ(ω3) which can lead to a
combinatory explosion.

If a scenario is composed of only two sub-scenarios (ω = [ω1 before ω2]) and if the
sub-scenario instance ρ(ω2) has been recognized, the algorithm has to search only for
one sub-scenario instance ρ(ω1) in the list of recognized scenarios and this implies
just a linear search. Therefore, as soon as the sub-scenario verifies a constraint, then
the corresponding scenario is recognized and stored. To obtain a fast method to
recognize a scenario model with a linear search algorithm, we propose to decompose
any scenarios into scenarios composed at most of two sub-scenarios.

4.3 Compilation of predefined scenario models

In this section, we focus on the compilation of predefined composed scenario models.
To do this, we propose an initial phase compiling a composed scenario model ω in the
following steps: (1) order in time the temporal variables of ω, (2) generate
intermediate scenario models for ω and (3) link the generated intermediate scenario
models by using the constraints defined in ω.

(a) (b)

Fig. 4. Ordering in time the temporal variables of a scenario model "Attack": (a) all constraints
and (b) the necessary constraints after simplifying the initial graph.

To order in time the temporal variables β(ω), we use a graph based method (based
on [4]). The graph nodes are the temporal variables and the arcs are the temporal
constraints between two variables. The arcs are oriented and are represented by time
interval corresponding to the time delay between the ending times of the two
variables. For example, the constraint ci between vi, vj is represented by an interval [a,
b] indicating that vj can end in the interval [end(vi)+a, end(vi)+b]. The constraint
before is represented by [1, ∞]. After building the initial graph with all temporal
constraints between temporal variables of ω, we compute the equivalent complete
graph (to check the graph consistency) and we simplify the graph by removing
unnecessary arcs to obtain the least constrained graph. The variables are ordered by
the order of the ending time. The initial and simplified graphs for the scenario
"Attack" (Fig. 2) are shown on Fig. 4.

After ordering in time the temporal variables of ω, we generate intermediate
scenario models composed at most of two sub-scenarios. For each intermediate
scenario model ω, we call start (noted π(ω)) the first sub-scenario of ω; and we call
termination (noted τ(ω)) the second sub-scenario of ω.

cas_at_pos

rob_enters cas_at_safe

rob_at_safe

[1, ∞][0, 0]

[1, ∞]

[1, ∞] [0, 0]

cas_at_pos

rob_enters cas_at_safe

rob_at_safe

[0, 0]

[1, ∞]

[0, 0]

© Springer-Verlag

Suppose that β(ω) = (v1, v2,…, vn) is a sequence of n (n > 2) partially ordered
temporal variables. We generate n-1 intermediate models ω1, ω2,…, ωn-1 as followed:

β(ω1) = (v1, v2) and
β(ωi) = (vi, vi+1) for i > 1, where vi corresponds to the scenario of model ωi-1,
α(ωi) = α(π(ωi)) ∪ α(τ(ωi)),
γT(ωi) is composed of the temporal constraints corresponding to the arcs entering

vi+1 (i.e. τ(ωi)) in the simplified graph. We can notice that several temporal operators
of Allen's algebra can be ignored in this step because they are well expressed by order
of temporal variables in the graph. Another task consists of modifying the constraints
to adapt to the new scenario models.

γA(ωi) is composed of the atemporal constraints involving actor variables
belonging to α(ω1) for i = 1 and belonging to α(ωi) but not to α(ωi+1) for i > 1. To
avoid using the same constraint two times in two different intermediate scenarios, the
atemporal constraints must involve at least one actor variable which belongs to α(ωi)
but not to α(ωi-1).
Scenario(Attack_1,
 Characters((cashier : Person), (robber : Person))
 SubScenarios((cas_at_pos, inside_zone, cashier, "Back_Counter")
 (rob_enters,changes_zone,robber,"Entrance_zone","Infront_Counter"))
 Constraints((cas_at_pos during rob_enters)))

Scenario(Attack_2,
 Characters((cashier : Person), (robber : Person))
 SubScenarios((att_1, Attack_1, cashier, robber)
 (cas_at_safe, inside_zone, cashier, "Safe"))
 Constraints(((start of att_1) before cas_at_safe)))

Scenario(Attack_3,
 Characters((cashier : Person), (robber : Person))
 SubScenarios((att_2, Attack_2, cashier, robber)
 (rob_at_safe, inside_zone, robber, "Safe"))
 Constraints((rob_at_safe during(termination of att_2))))

Fig. 5. Three intermediate scenario models are generated for the compilation of the scenario
model "Attack", and this model is equivalent to "Attack_3".

By using this compilation method, we can obtain all composed scenario models
with one or two temporal variables. In this phase, we also check the consistency of
scenario models by detecting recurrent definitions (i.e. graph cycles) and the
utilization of undefined scenario models. The recognition of compiled scenario
models is identical to the recognition of not-compiled scenario models. The gain in
processing time is due to the search algorithm: we just try to find one scenario
instance in the list of previously recognized scenarios instead of trying all
combinations of scenario instances.

5 Experiments and results

To validate our recognition algorithm, we first integrated the algorithm with a vision
module to obtain an operational interpretation system and then we have realized three
types of tests: (1) on recorded videos taken in a bank branch and in a metro station to
verify if the algorithm can correctly recognize the predefined scenario models, (2) on
live videos acquired on-line from cameras installed in an office and in a bank branch
to verify if the algorithm can work robustly on a long time mode, (3) on recorded

© Springer-Verlag

videos taken in a bank branch to study how the complexity of the algorithm depends
on the scenario models (i.e. number of sub-scenarios).

Number of tested
sequences

Average number
of persons/frame

Recognition
rate (%)

Number of
false alarms

Bank cam. 1 10 4 80 0
Bank cam. 2 1 2 100 0
Metro cam. 2 3 2 100 0

Table 1. The recognition of temporal scenarios using videos from a bank branch and from a
metro station.

In the first experiment, we verify on recorded videos that the algorithm correctly
recognizes several types of "Bank attack" scenarios and several types of "Vandalism
against a ticket machine" scenarios. Table 1 shows that the predefined scenarios were
correctly recognized in most of the cases. The interpretation system fails to recognize
some scenarios only in the cases when the vision module misses to detect the people
in the scene. We have not detected any false alarm during all the experiment. The
non-detection of false alarms can be explained by the fact that the scenarios are very
constrained and there are unlikely to be recognized by error.

In the second experiment, we installed the interpretation system in an office and in
a bank and we connected the system to two on-line cameras to acquire directly live
videos. In this experiment, we use the bank scenarios and we slightly modified them
to use them in the office. We ran the system in the bank for few hours and
continuously during 24h in the office. As in the first experiment, the scenarios were
most of the time correctly recognized, showing that the recognition algorithm can
work reliably and robustly in real-time and in continuous mode.

Fig. 6. The processing time (a) of the new algorithm is close to linear time and (b) the
processing time of the classical STRS algorithm is exponential in function of the number of
sub-scenarios.

In the third experiment, we studied the processing time of the algorithm focusing
on the resolution of temporal constraints. In this experiment (shown on Fig. 6a), we
tested eight configurations of scenario models: the first configuration is made of
scenarios containing 3 sub-scenarios and the last configuration is made of scenarios
containing 10 sub-scenarios. On the bank videos containing 300 frames, we found
that the processing time of the classical STRS algorithm is exponential in the number
of sub-scenarios (shown on Fig. 6b), whereas the processing time of our algorithm is
closely linear with the number of sub-scenarios.

80
82
84
86
88
90
92

3 4 5 6 7 8 9 10
Sub-scenarios

A
ve

ra
ge

 p
ro

ce
ss

in
g

tim
e

pe
r

fr
am

e
(m

ic
ro

 s
ec

on
d)

0

500

1000

1500

2000

3 4 5 6
Sub-scenarios

(a) (b)

© Springer-Verlag

6 Conclusion

In this paper, we have presented a fast scenario recognition algorithm focusing on
temporal constraints resolution. First, we have shown that classical STRS algorithms
recognize a scenario by performing an exponential search. Second, we have described
how the pre-compilation of scenarios enables the recognition algorithm to check
temporal constraints by performing linear search in the list of previously recognized
scenarios. Due to this new algorithm, the behavior recognition in bank monitoring
becomes real time.

However, the recognition process can get into a combinatory explosion depending
on the number of actors defined in the scenario models. Therefore, our current work
consists of studying how scenario models can be decomposed in term of actors to
limit the combinatory explosion.

Reference

[1] François Brémond. Environnement de résolution de problèmes pour l’interprétation
de séquences d’images. Thèse, INRIA-Université de Nice Sophia Antipolis, 10/1997.

[2] Francois Bremond and Gerard Medioni. Scenario Recognition in Airborne Video
Imagery. Interpretation of Visual Motion Workshop, Computer Vision and Pattern
Recognition (CVPR98), Santa Barbara, June 1998.

[3] Nicolas Chleq and Monique Thonnat. Realtime image sequence interpretation for
video-surveillance applications. International conference on Image Processing
(ICIP'96). Proceeding IEEE ICIP'96. Vol 2. pp 801-804. Lausanne, Switzerland.
September 1996.

[4] Malik Ghallab. On Chronicles: Representation, On-line Recognition and Learning. 5th

International Conference on Principles of Knowledge Representation and Reasoning
(KR'96), Cambridge (USA), 5-8 Novembre 1996, pp.597-606.

[5] R. Gerber, H. Nagel and H. Schreiber. Deriving Textual Descriptions of Road Traffic
Queues from Video Sequences. The 15-th European Conference on Artificial Intelligence
(ECAI'2002), Lyon, France, 21-26 July 2002, pp.736-740.

[6] S. Hongeng, F. Bremond and R. Nevatia. Representation and Optimal Recognition of
Human Activities. In IEEE Proceedings of Computer Vision and Pattern Recognition,
South Carolina, USA, 2000.

[7] A.J. Howell and H. Buxton. Active vision techniques for visually mediated interaction.
Image and Vision Computing, 2002.

[8] Tony Jebara et Alex Pentland. On Reversing Jensen’s Inequality. In Neural Information
Processing Systems 13, NIPS 13, 12/2000.

[9] Roger Mohr et Thomas C. Henderson. Arc and Path Consistency Revisited. Research
Note, Artificial Intelligence, pp225-233, vol28, 1986.

[10] Claudio Pinhanez et Aaron Bobick. Human Action Detection Using PNF Propagation
of Temporal Constraints. M.T.T Media Laboratory Perceptual Section Technical Report
No. 423, 04/1997.

[11] Nathanaël Rota et Monique Thonnat. Activity Recognition from Video Sequences using
Declarative Models. 14th European Conference on Artificial Intelligence (ECAI 2000),
Berlin, Proceeding ECAI’00 – W. Horn (ed.) IOS Press, Amsterdam, 20-25/08/2000.

[12] Van-Thinh Vu, François Bremond and Monique Thonnat. Temporal Constraints for
Video Interpretation. The 15-th European Conference on Artificial Intelligence
(ECAI'2002), Lyon, France, 21-26 July 2002.

