
Running head: Video-Based Event Recognition

Video-Based Event Recognition: Activity

Representation and Probabilistic Recognition

Methods

Somboon Hongeng, Ram Nevatia and Francois Bremond ∗
University of Southern California

Institute for Robotics and Intelligent Systems
Los Angeles, California 90089

E-mail:{hongeng| nevatia}@iris.usc.edu

∗ Present Contact: INRIA Project ORION, 2004 Route des Lucioles BP 93, 06902
Sophia Antipolis Cedex, France

Preprint submitted to CVIU 15 May 2003

Abstract

We present a new representation and recognition method for human activities. An
activity is considered to be composed of action threads, each thread being executed
by a single actor. A single thread action is represented by a stochastic finite automa-
ton of event states, which are recognized from the characteristics of the trajectory
and shape of moving blob of the actor using Bayesian methods. A multi-agent event
is composed of several action threads related by temporal constraints. Multi-agent
events are recognized by propagating the constraints and likelihood of event threads
in a temporal logic network. We present results on real-world data and performance
characterization on perturbed data.

Key words: video-based event detection, event mining, activity recognition

2

1 Introduction

Automatic event detection in video streams is gaining attention in the com-
puter vision research community due to the needs of many applications such
as surveillance for security, video content understanding and human-computer
interaction. The type of event to be recognized can vary from a small scale
action such as facial expressions, hand gestures and human poses to a large
scale activity that may involve a physical interaction among locomotory ob-
jects moving around in the scene for a long period of time. There also may be
interactions between moving objects and other objects in the scene, requiring
static scene understanding. Addressing all the issues in event detection is thus
enormously challenging and a major undertaking. In this paper, we focus on
the detection of large scale activities where some knowledge of the scene (e.g.,
the characteristics of the objects in the environment) is known. One charac-
teristic of activities of our interest is that they exhibit some specific patterns
of whole-body motion. For example, consider a group of people stealing lug-
gage left unattended by the owners. One particular pattern of the “stealing”
event may be: two persons approach the owners and obstruct the view of the
luggage, while another person takes the luggage. In the following, the word
“event” and “activity” are used to refer to a large scale activity.

The task of activity recognition is to bridge the gap between numerical pixel
level data and a high level abstract activity description. A common approach
involves first detecting and tracking moving object features from image se-
quences. The goal of this step is to transform pixel level data into low-level
features that are more appropriate for activity analysis. From the tracked fea-
tures, the type of moving objects and their spatio-temporal interaction are
then analyzed [1–4]. There are several challenges that need to be addressed to
achieve this task:

• Motion detection and object tracking from real video data are often unsta-
ble due to poor video quality, shadows, occlusion and so on. A single view
constraint common to many applications further complicates these prob-
lems.

• The interpretation of low-level features (e.g., appearance of objects) may be
dependent on the view point.

• There is spatio-temporal variation in the execution style of the same activity
by different actors, leading to a variety of temporal durations.

• Repeated performance by the same individual can vary in appearance.
• Similar motion patterns may be caused by different activities.

Therefore, there is need for a generic activity representation as well as a robust
recognition mechanism that handle both data and event variations. The rep-
resentation must be able to describe a simple action as well as a complicated,

3

cooperative task by several actors. For a pragmatic system, the representation
should also be easily modified and extended by a user. Recognition methods
must handle the probabilities accurately at all processing levels.

A large number of activity detection systems have been developed in the last
decades. Details of some of the current approaches are given in section 2. One
deficiency of most approaches is that they are developed for events that suit
the goal in a particular domain and lack genericity. Many event representations
(e.g., image-pixel based representation) cannot be extended easily. Most event
detection algorithms are only for simple events (e.g., “walking” or “running”)
performed by a single actor, or for specific movements such as periodic motion.
Some of them rely on the accuracy of motion sensors and do not provide a
measure of confidence of the results, which is crucial for discriminating similar
events in a noisy environment.

In this paper, we present a system that overcomes some of these deficiencies.
We model scenario events from shape and trajectory features using a hierar-
chical activity representation extended from [5], where events are organized
into several layers of abstraction, providing flexibility and modularity in mod-
eling scheme. The event recognition methods described in [5] is based on a
heuristic method and could not handle multiple-actor events. In this paper,
an event is considered to be composed of action threads, each thread being ex-
ecuted by a single actor. A single thread action is represented by a stochastic
finite automaton of event states, which are recognized from the characteris-
tics of the trajectory and shape of the moving blob of the actor based on
rigourous Bayesian analysis. A multi-agent event is represented by an event
graph composed of several action threads related by logical and temporal
constraints. Multi-agent events are recognized by propagating the constraints
and likelihood of event threads in the event graph. Our earlier papers [6,4]
have described these components to some extent. This paper integrates all the
materials and provides more details and performance evaluation.

The organization of the paper is as follows: Related work is discussed in sec-
tion 2. An overview of our event detection system is described in section 3.
Our tracking approach based on ground plane location is in section 4. The
extended hierarchical representation is in section 5. Algorithm for recogniz-
ing scenarios is described in detail including experimental results in section 6
and 7. Performance characterization of the algorithm is in section 8.

2 Related Work

During the last decade, there has been a significant amount of event under-
standing research in various application domains [7,8]. A review of the current

4

approaches in motion analysis can be found in [9]. Most of the current ap-
proaches to activity recognition are composed of defining models for specific
activity types that suit the goal in a particular domain and developing proce-
dural recognition methods. In [10], simple periodic events (e.g., walking) are
recognized by constructing dynamic models of the periodic pattern of people’s
movements and is highly dependent on the robustness of the tracking.

Bayesian networks have been used to recognize static postures (e.g., “standing
close to a car”) or simple events (e.g., “sitting”) from visual evidence gath-
ered during one video frame [1,11,3]. The use of Bayesian networks in these
approaches differs in the way they are applied (e.g., what data is used as evi-
dential input and how this data is computed, the structures of the networks,
etc.). One of the limitations of using Bayesian networks is that they are not
suitable for encoding the dynamic of long term activities.

Inspired by applications in speech recognition, Hidden Markov Model(HMM)
formalism has been extensively applied to activity recognition [12–16]. In one
of the earlier attempts [12], discrete HMMs are used as representation of tennis
strokes. Feature vectors of a tennis stroke are defined directly from the pixel
values of a subsampled image. A tennis stroke is recognized by computing the
probability that the model produces the sequence of feature vectors observed
during the action. Parameterized-HMM [14] and coupled-HMM [16] were in-
troduced later to recognize more complex events such as an interaction of two
mobile objects. In [2], a stochastic context-free grammar parsing algorithm is
used to compute the probability of a temporally consistent sequence of prim-
itive actions recognized by HMMs. Even though HMMs are robust against
various temporal segmentations of events, the structure and probability dis-
tributions are not transparent and need to be learned using iterative methods.
For complex events, such networks and the parameter space to be learned may
become prohibitively large.

There is only a limited amount of research on multi-agent events [17,3] as the
tracking of multiple objects in a natural scene is difficult and it is difficult to
maintain the parameters of the fine temporal granularity of the event models
such as HMMs. In [3], a complicated Bayesian network is defined together
with specific functions to evaluate some temporal relationships among events
(e.g., before and around) to recognize actions involving multiple agents tracked
manually in a football match. Generalizing this system for other tasks than
those of a football match may require substantial development.

In recent years, there has also been a significant amount of work toward the
fusion of multimodal information (e.g., color, motion, acoustic, speech, text)
for event and action recognition. Most approaches [18–20] rely on contextual
knowledge and are limited to specific domains (e.g., offices, classrooms, TV
programs).

5

Analyze
Scenario 1

Analyze
Scenario 2

Analyze
Scenario N

Compute
Mobile Object

Properties

Detect and
Track

Moving Regions

User Provided Context
-Spatial Context
-Task Context

:Low Level Processing

:High Level Processing

Recognized
ScenariosVideo

Library of
Event Models

Fig. 1. Overview of the system

Our approach is closely related to the work by Ivanov et. al. [2] in the sense
that external knowledge about the problem domain is incorporated into the
expected structure of the activity model. In [5], we introduced a hierarchi-
cal activity representation that allows the recognition of a series of actions
performed by a single mobile object. Image features are linked explicitly to
a symbolic notion of activity through several layers of more abstract activity
descriptions. Rule-based methods are used to approximate the belief of the
occurrence of activities. A set of rules are defined at each recognition step
to verify whether the properties of mobile objects match their expected dis-
tributions (represented by a mean and a variance) for a particular action or
event. This method often involves a careful hand-tuning of parameters such
as threshold values. In this paper, we extend the representation described
in [5] and present a recognition algorithm that computes the probabilities of
activities in a more rigorous way using Bayesian and logical methods.

3 Overview of the System

Figure 1 shows schematically our approach to recognize the behavior of moving
objects from an image sequence and available context. Context consists of
associated information, other than the sensed data, that is useful for activity
recognition such as a spatial map and prior activity expectation (task context).
Our system is composed of two modules: 1) Motion detection and tracking
(shown in blue); 2) Event Analysis (shown in green).

Our tracking system is augmented from a graph-based moving blob tracking
system described in [5]. A stationary single-view camera is used in our experi-
ments. Background pixels are learned statistically in real time from the input
video streams. Moving regions are segmented from background by detecting
changes in the intensity. Knowledge of the ground plane, acquired as a spatial

6

Bounding Box Ref.
Person

Trajectory

speeddirection

 speed
evolution

 max
speed

slowing
 down

heading
 toward

getting
 closer

distance
to ref_obj

angle to
ref_obj

distance
evolution

"SHAPE, LOCATION" "MOTION"

 approach
 a reference person

straight

M
ob

ile
 o

bj
ec

t
pr

op
er

ty
 le

ve
l

S
ce

na
rio

 le
ve

l
Im

ag
e

fe
at

ur
e

Complex, single thread event ("Converse")

then

Simple event

approach
 a ref person

stop at
 a ref person

"CONTEXT"

Fig. 2. A representation of the complex event “converse”.

context, is used to filter moving regions and track objects robustly. Shape and
trajectory features of moving objects are then computed by some low level
image processing routines and used to infer the probability of potential events
defined in a library of scenario event models.

Events in the scenario library are modeled using a hierarchical event represen-
tation, in which a hierarchy of entities is defined to bridge the gap between a
high level event description and the pixel level information. Figure 2 shows an
example of this representation for the event “converse”, which is described as
“a person approaches a reference person from a distance and then stops at the
reference person when he arrives”. Image features are defined at the lowest
layer of the event representation. Several layers of more abstract mobile ob-
ject properties and scenarios are then constructed explicitly by users to
describe a more complex and abstract activity shown at the highest layer.

Mobile object properties are general properties of a mobile object that are com-
puted over a few frames. Some properties can be elementary such as width,
height, color histogram or texture while the others can be complex (e.g., a
graph description for the shape of an object). Properties can also be defined
with regard to the context (e.g., “locate in the security area”). In figure 2,
mobile object properties are defined based on spatio-temporal characteristics
of the corresponding shapes of moving blobs (shown in light blue) and the
trajectories (shown in dark blue). The links between a mobile object prop-
erty at a higher layer to a set of properties at the lower layers represent some

7

relation between them (e.g., taking a ratio of width and height properties to
compute the aspect ratio of the shape of mobile objects). Typically, approxi-
mately three layers of properties are defined and used in a broad spectrum of
applications. A filtering function and a mean function are applied to property
values collected over time to minimize the errors caused by environmental and
sensor noise.

Scenarios correspond to long-term activities described by the classes of mov-
ing objects (e.g., human, car or suitcase) and the event in which they are
involved. Both the class of an object and the event have a confidence value
(or a probability distribution) attached to them based on statistical analysis.
Scenarios are defined from a set of properties or sub-scenarios. The structure
of a scenario is thus hierarchical. We classify scenario events into a single
thread and multiple thread event. In a single thread event, relevant actions
occur along a linear time scale. Single thread events are further categorized
into a simple or complex event. Simple events are defined as a short coherent
unit of movement (e.g., “approaching a reference person”) and can be verified
from a set of sub-events (“getting closer to the reference person”, “heading
toward”, etc.) and mobile object properties. Complex events are a linearly
ordered time sequence of simple events (or other complex events), requiring a
long term evaluation of sub-events. In figure 2, the complex event “converse”
is a sequential occurrence of “approach a reference person” and “stop at the
reference person”. A multiple thread event is composed of several action
threads, possibly performed by several actors. These action threads are related
by some logical and time relations. In a typical application, there are about
two to four layers of single-thread events and another two to four layers of
multiple-thread events. Since our event representation at the scenario level
maps closely to how human would describe events, little expertise is expected
from the users. The users only need to have basic understanding of our event
taxonomy.

Recognition process begins with the evaluation of the evidence (image fea-
tures) and the computation of the probabilities of simple events at each time
frame based on Bayesian analysis. The probabilities of simple events are then
combined in a long term to recognize and segment complex events. Multiple
thread events are recognized by combining the probabilities of complex event
threads whose temporal segmentations satisfy the logical and time constraints.
We describe in detail each component of our system in the following.

4 Detection and Tracking

Activity recognition by computer involves the analysis of the spatio-temporal
interaction among the trajectories of moving objects [3,6,1]. Robust detection

8

R
t
i

R

R

Rt+1
j

k

l

t+1

t+1

(a) frame 74 (b) frame 75

Fig. 3. Splitting of moving regions and noise.

and tracking of moving objects from an image sequence is therefore an im-
portant key to reliable activity recognition. In the case of a static camera,
detection of moving regions is relatively easier to perform, often based on
background modeling and foreground segmentation. However, noise, shadows
and reflections often arise in real sequences, causing detection to be unstable.
For example, moving regions belonging to the same object may not connect
or may merge with some unrelated regions. Tracking moving objects involves
making hypotheses about the shapes of the objects from such unstable mov-
ing regions and track them correctly in the presence of partial or total occlu-
sions. If some knowledge about the objects being tracked or about the scene is
available, tracking can be simplified [21]. Otherwise, correspondence between
regions must be established based on pixel level information such as shape
and texture [5]. Such auxiliary knowledge other than the sensed data is called
context. In many applications, a large amount of context is often available.
In this paper, we demonstrate the use of the ground plane information as a
constraint to achieve robust tracking.

Robust tracking often requires an object model and a sophisticated optimiza-
tion process [22]. In the case that a model is not available or the size of the
image of an object is too small, tracking must rely on the spatial and temporal
correspondence between low level image features of moving regions. One dif-
ficulty is that the same moving regions at different times may split in several
parts or merge with some other objects nearby due to noise, occlusion and low
contrast. Figure 3 illustrates one of these problems, where the moving region
Ri

t at time t (a human shape) splits into two smaller regions Rj
t+1 and Rk

t+1

and noise detected at time t + 1. The image correlation between the moving
region Ri

t and Rj
t+1 or Rk

t+1 by itself is often low and creates an incorrect
trajectory. Filtering moving regions is therefore an important step of a reliable
trajectory computation.

4.1 Ground Plane Assumption for Filtering

Let us assume that objects move along a known ground plane. An estimate
of the ground plane location of the lowest point of a moving region can be
used as a spatial constraint to find the best candidate region that corresponds

9

Camera

Ground Plane

Image Plane
 (frame 75)

Projection of Rj

Projection of Rk

Projection of Ri
 at frame 74

Fig. 4. Projection of the bottom points of moving regions on to the ground plane.

to Ri
t. This is illustrated in figure 4. The dotted line shows the projection of

moving region Ri
t of frame 74 on the ground plane, whose correspondence is

to be found at frame 75. The solid lines show the projection of two moving
regions detected at frame 75. Given that objects move on the ground, Rk

t+1 is
unlikely to correspond to Ri

t (the head blob) as they would be located too far
apart on the ground plane. The best candidate region Rj

t+1 (the body blob)
can then be selected as the most likely region correspondence accordingly.
Other moving blobs for which no correspondences are made, are tracked by
their relationship to the body blob.

To accurately compute the world coordinates of a point on an image plane,
we need the parameters of a camera model. However, if we only need to esti-
mate the 3D locations of points of moving regions on a ground plane, we can
choose the world coordinate system such that Z = 0 as we are only interested
in (X, Y) positions. This reduces the 3x4 perspective camera transformation
matrix to a 3x3 projective transformation matrix (or plane homography) as
follows:




x1

x2

x3




=




h11h12h13

h21h22h23

h31h32h33







X

Y

1




.

Since the non-singular homogeneous matrix H has 8 degrees of freedom, four
or more points correspondence (x, y) to (X, Y) are enough to determine it
uniquely, where x = x1/x3 and y = x2/x3. For the scene shown in figure 5
where the distance of an object from the camera is approximately 37 meters,
we collected 8 points correspondence and solved for H with an error margin
of 15cm.

10

4.2 Merging Regions Using K-S Statistics

The best region candidate chosen based on a ground plane location may not be
of the correct shape as shown by Rj . It may need to be merged with other sub-
regions subject to some similarity measure. This merging process is iterated
until no further merging occurs. In the final step, regions that are too small
to represent valid objects can be disregarded.

The merging process between the best candidate sub-region Rj
t+1 and sub-

region Rk
t+1 is performed as follows. We first make a hypothesis that both

regions belong to the same object represented by Rt+1
j,k and that their pixel

data are drawn from the same distribution as those of Ri
t. To test this hy-

pothesis, we compute the spatial similarity between Rt+1
j,k and Ri

t. We base
the test on the distribution of gray intensity. The Kolmogorov-Smirnov (K-S)
statistics [23] provides a simple measure of the overall difference between two
cumulative distribution functions. Let us assume that the intensity distribu-
tion of a region Rm is modeled by a Gaussian distribution (N(x, µm, σm)). K-S
statistics (D) of two regions Rm and Rn can be computed as follows:

D(Rm, Rn) = max
0≤x≤255

|
∫ x

0

1√
2πσm

e
− (x−µm)2

2σ2
m dx|

− |
∫ x

0

1√
2πσn

e
− (x−µn)2

2σ2
n dx|

(1)

The significance level of D is then computed as Qks([Ne +0.12+0.11/
√

Ne]D),

where Ne is the effective area of the regions (Ne = size(Rm)∗size(Rn)
size(Rm)+size(Rn)

) and

Qks(λ) = 2Σ∞
j=1(−1)j−1e−2j2λ2

(2)

Regions are merged if the significance level and the K-S statistics of Ri
t and

Rt+1
j,k are lower than those of Ri

t and Rj
t+1. If the type of objects are known

(e.g., a human), a constraint on the size of the moving regions after merging
can also be used as a criteria to reject incorrect hypotheses.

Figure 5 shows the detection of moving regions of the “stealing” sequence
at different times. To track objects in the sequence, a graph representation
is used [5]. Figure 6 shows the graphs used for tracking object “D” before
and after applying our filtering process. The nodes at each layer represent the
moving regions detected at one video frame. An edge indicates a hypothesized
correspondence between two regions of different frames. The nodes that are
linked from the same parent represent the moving regions detected within the
neighborhood of the parent node. The red nodes in the figure show moving
regions of another object being tracked nearby. The numbers associated with

11

A

Ref Obj
A

(a) frame 104 (b) frame 241

B
C

B
C

(c) frame 311 (d) frame 340

DBC D

(e) frame 405 (f) frame 436

D

D

(g) frame 490 (h) frame 557

Fig. 5. The “Stealing by Blocking” sequence. “A” approaches a reference object (a
person standing in the middle with his belongings on the ground). “B” and “C” then
approach and block the view of “A” and the reference person from their belongings.
In the mean time, “D” comes and takes the belongings.

the edges indicate the similarity of the region distribution based on K-S test
ranging from 0 to 1. In figure 6(a), several hypotheses can be made about the
possible tracks of “D” as indicated by numerous branching edges along the
path from frame 360. However, none of these represents a correct track since
most of the edges coming from a single parent node or going to a single child
node are the results of the splitting and merging of moving regions as shown
in figure 3. For example, at frame 360 and 368, “a” and “b” split into three

12

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3 3

3

3

3

3

3

3 3

3 3

3

3

0.44

0.63

0.56

0.78

0.86

0.95

0.9

0.94

0.80

0.97 0.87

0.88

0.94

0.88 0.87

0.85
0.76

0.71
0.63

0.68 0.78

0.95

0.98

0.95

0.99

0.84

0.97
0.81

0.84 0.80

0.86

0.70

368

365

frame

360
"A"

"B"

48

3

3

3

3

3

3

3

3

3

3

3 3

3

0.88

0.95

0.90

0.94

0.95

0.98

0.95

0.99

0.94

 0.97 0.81

0.70

"Merged"

"Merged"

48

(a)Before (b)After

Fig. 6. A graph representation of the possible tracks of object “D”. (a) Without using
the ground plane knowledge, several hypotheses can be made about the possible tracks
of the object. (b) After filtering, regions are merged or disregarded, decreasing the
ambiguity.

sub-regions at the following frames. Figure 6 (b) shows the tracking graph
after filtering regions based on the ground plane locations and K-S statistics.
At frame 361 and 369, moving regions are merged and produce a higher simi-
larity level to the moving region of the previous frame. At frame 365, 366 and
367, some moving regions are discarded as noise as they contradict with the
ground plane assumption or when merged with the best candidate region, the
similarity level decreases. After filtering, some tracking ambiguity may still
remain in the graph. For example, the node at frame 362 can be associated
with two regions in the following frame, one of which is also associated with
the moving region of another object nearby. Such ambiguity can be removed
based on other criteria such as event context.

4.3 Resolving the Discontinuity of Object Trajectories

The discontinuity of tracks of moving objects in an outdoor scene often arises
when moving objects are not detected for a few frames, such as from total oc-
clusion, or when all regions do not satisfy the ground plane assumption. This
is shown in figure 7. In this case, hypotheses about connections of fragments
of tracks need to be made. We verify a hypothesis about the track corre-
spondence based on the similarity of the intensity distribution of the moving
blobs. We also evaluate events with various possible mergers and choose the
one that gives the highest value. Figure 8 shows the final results of our track-

13

ing approach, where the correct shapes of moving objects are recovered and
the confusion of possible multiple tracks is reduced.

2 23

(a)Object 2 is totally occluded by the tree.

5 5 6
3

(b)Discontinuing tracks between Object 5 and 6.

Fig. 7. (a) Object 3 is considered a different object from object 2 due to the total
occlusion. (b) Due to the reflection on a car surface, the moving region of object 5
is larger than that of object 6, causing the discontinuity of the trajectory.

(a) frame 241 (b) frame 297

5
0 3 6

340

6
0

(c) frame 340 (d) frame 571

Fig. 8. Trajectories of the objects tracked using the ground plane knowledge and K-S
statistics.

14

5 Event Classification and Representation

Events are viewed as consisting of single or multiple threads. In a single
thread event, relevant actions occur along a linear time scale (as is the
case when only one actor is present). In multiple thread events, multiple
actors may be present. A single thread event may be further categorized into
a simple or complex event. We describe in detail how these events are defined
and modeled in the following.

5.1 Simple, Single Thread Events (or Simple Events)

Simple events are defined as a short coherent unit of movement described by
a concurrent logical constraint on a set of sub-events (other simple events)
or directly from a set of mobile object properties. For example, in figure 2,
simple event “a person is approaching a reference person” is described by
the occurrence of three sub-events: “getting closer to the reference person”,
“heading toward it”, and “slowing down”. These sub-events are defined from
the properties of the object trajectory. The representation of a simple event
can be viewed as an instantiation of a Bayesian network. Bayesian networks
allow users to directly determine the causal relations between mobile object
properties and simple events, reducing the complexity and redundancy of the
representation. Simple events are verified at every frame from the probability
distributions of the sub-events at that instance.

5.2 Complex, Single Thread Events (or Complex Events)

Complex events correspond to a linearly ordered time sequence of simple or
other complex events. They may take place over long sequences (100 frames
or more) and are usually over at least 10 frames. For example, “converse”
is a linear occurrence of two consecutive simple events: “a person approaches
the reference person”, then “stops at the reference person”. We propose to use
a finite state automaton to represent a complex event as it allows a natural
description [6]. Figure 9 shows an automaton representation of “converse”,
where each automaton state represents a sub-event.

5.3 Multiple Thread Events

Multiple thread events correspond to two or more single thread events with
some logical and time relations between them. Each composite thread may be

15

State 2State 1

S1: approach
a ref person

S2: stop at
(staying around)S0:Init

Fig. 9. A finite-state automaton that represents the complex event “converse”.

performed by different actors. In such case, multiple thread events can be con-
sidered to model interactions among actors. In [16], interactions among actors
are modeled by coupled HMMs. In coupled HMMs, interactions are defined
at a fine temporal granularity and are represented by probabilistic transitions
from a hidden state of one HMM to other hidden states of another HMM. In
our case, we consider event threads to be a large scale event and propose to
use the binary interval-to-interval relations, first defined by Allen [24], such
as “before”, “starts”, “during” and “overlap”, to describe temporal relations
between sub-events of a multi-thread event. For example, “event A must occur
before event B” and “event A or event D occurs”.

A multi-thread event is represented by an event graph similar to interval
algebra networks [24]. One particular specification of an event that we call
“stealing” may be composed of several threads of complex events performed
by four actors, as described in Table 1. The temporal constraints among these
events are that

1) “converse” occurs before “approach1” and “approach2”, 2) “blocking” starts
right after or some time after approach1 or approach2, and 3) “taking object”
occurs during “blocking”. Figure 10 shows a graphical representation of these
events. The symbols “b”, “d” and “s” stand for interval temporal constraints
“before”, “during” and “starts” respectively.

converse

approach2approach1

blocking taking obj

{b} {b}

{b, s} {b, s}

{d}

Time

OR

Fig. 10. A graphical description of a multi-thread event.

16

Description of sub-events of “stealing”

converse actor1 approaches his friend

and drops a suitcase on the ground.

approach1 actor2 approaches and

stops between actor1 and the suitcases.

approach2 actor3 approaches and stops

between actor1’s friend and the suitcases.

blocking actor2 or actor3 are blocking

the view of the suitcases.

taking object actor4 approaches

and takes the suitcases away.
Table 1
Description of the multiple thread event “stealing”.

6 Single-Thread Event Recognition

To recognize which event model matches the video images the best, the entities
in the representation must be computed. Computations at each level are inher-
ently uncertain, hence a formal uncertainty reasoning mechanism is needed.
We propose the use of Bayesian methods for making an inference about single-
thread events, which are then combined to compute the probabilities of the
multiple-thread events.

Suppose we have a set of competing event scenarios S = S1, ..., SN . Let Oti

represents a set of mobile object properties computed at time frame ti. Given
a temporal sequence of observations O1,t = O1O2...Ot of moving objects, we
want to make a decision as to which event has occurred and when it starts and
finishes. To make such a decision, we want to compute ∀i, P (Si|O1,t) and find
the event with the maximal value. P (Si|O1,t) can be computed by inferring
the distribution of sub-event values at the lower layers and propagating them
towards the top layer. In particular, the event recognition process starts with
the computation of the likelihood of single-thread events from the properties
defined for the moving object of interest. The probabilities of these single-
thread events are then combined to verify a multi-agent event. In this section,
we discuss the Bayesian inference of P (Si|O1,t) where Si is a single-thread
event.

17

6.1 Object Class and Simple Event Recognition

The class of an object and its simple events are both represented by a Bayesian
network and are inferred from the mobile object properties computed during
a time frame. In Bayesian terms, the input entities are viewed as providing
the evidence variables and the task is to compute the probability distribution
of an output entity hypothesis. If the entities to be combined are statistically
independent (given the scenario), a simple naive Bayes’ classifier can be used
to compute the distribution of the combined result. When the entities are not
conditionally independent, Bayesian networks offer an efficient representation
that can represent dependence by decomposing the network into conditionally
independent components. To effectively use Bayesian networks, we need the
knowledge about the network structure (i.e., which entities are directly related
or linked to which entities) and the conditional probabilities associated with
the links.

6.1.1 The Structure of Bayesian Networks

In our case, the structure of the network is derived from the knowledge about
the domain. For example, logical constraints of sub-events that represent the
recognition of a particular event indicate the direct causal link between them
(i.e., the sub-events are the consequences of that event). By defining each event
such that its sub-events are conditionally independent of each other given
the event values, the hierarchy such as the one in figure 2 can be converted
naturally into a Bayesian network which is composed of several layers of naive
Bayesian classifiers (i.e., no hidden nodes). Each layer in the hierarchy can
be viewed as having several naive Bayesian classifiers (one classifier per each
scenario). Belief propagation is performed in one direction from the bottom
layer to the top layer.

In figure 2, at the top layer, the parent event “approach a reference person”,
is linked to three child events: “getting closer to the reference person” (e1),
“heading toward the reference person”(e2), and “slowing down” (e3). These
child events form another layer of three naive Bayesian classifiers (e.g., e1

becomes a parent of “distance evolution” (the difference of the distance to the
reference object at frame t and t − 1). The probability distribution over the
parent event values in Bayesian classifiers (P (H|e1, e2, e3)) is inferred from
the distribution of child event values and the conditional probabilities of child
events given the values of the parent event as shown in figure 11. Given that
e1, e2 and e3 are conditionally independent given H , the belief is propagated
from the sub-events e1, e2 and e3 to infer the probability distribution of H

18

H:Approach
the Reference

Person

e1:Getting
Closer

e2:Heading
Toward

e3:Slowing
Down

Fig. 11. A detailed illustration of a naive Bayesian classifier that is used to infer
“approach the reference person” in figure 2.

(i.e., P (H|e1, e2, e3)) by applying Bayes’ rule as follows:

P (H|e1e2e3) = αP (e1|H)P (e2|H)P (e3|H)P (H)

P (¬H|e1e2e3) = αP (e1|¬H)P (e2|¬H)P (e3|¬H)P (¬H),

where α is a normalizing constant such that P (H|e1e2e3)+P (¬H|e1e2e3) = 1.

6.1.2 Parameter Learning

Parameters to be learned in a Bayesian network are the conditional probabil-
ities of child events given the values of the parent event. Traditionally, these
parameters are learned using the Expectation-Maximization (EM) algorithm
when hidden nodes are present. In our case where all nodes are transparent
(e.g., we can observe whether the object is moving towards another object or
whether it is slowing down), these conditional probabilities (i.e., P (ei|H) and
P (ei|¬H))can be learned from image sequences directly such as by making a
histogram of observed values of the evidence variables, e1, e2, e3, given the
value of a given hypothesis, H . In the case where a single Gaussian distribu-
tion can be assumed, the Gaussian parameters (µ and σ) can be computed
easily.

6.2 Complex Event Recognition

Complex events, defined as a temporal sequence of sub-events, are repre-
sented by a finite state automaton as shown in figure 9 for the event “con-
verse”. The dynamics of the complex event is modeled by the probabilistic
transitions among the event states, as shown by the arrows in the figure,
where state i either advances to state i+1 or remains in the same state. Both
sub-events of “converse” are simple events. The recognition process consists
of decoding the pattern of sub-events (which, in our case, are inferred from

19

observed motion and shape features) and segmenting them into the corre-
sponding states. As the occurrence of sub-events are uncertain, the decision
on the transition between states also becomes uncertain. We define the proba-
bility of a multi-state complex event (MS) as P (MS∗|O): the probability that
the complete automaton state sequence of MS occurs with the most likely state
transition timing given the sequence of observations O = O(1,t). This can be
computed as follows:

P (MS∗|O) = max
∀(t1,t2,...,tN)

P (S1(t1,t2−1)
S2(t2,t3−1)

...SN(tN ,t)
|O), (3)

where ti refers to the time that the transition to state i from state i−1 occurs
and Si(ti,ti+1−1)

means that scenario event i occurs during ti and ti+1 - 1.

For compactness, we drop the timing notation symbols and let Si be Si(ti,ti+1−1)

and SN
1 be S1(t1,t2−1)

S2(t2,t3−1)
...SN(tN ,t)

. Similarly, let Oi be O(ti,ti+1−1) and

Oj
i be OiOi+1...Oj. The computation of P (SN

1 |O) can be decomposed into
the recognition results of sub-events by the following steps. First, from the
conditional probability axiom, we have that,

P (SN
1 |O) = P (SN , SN−1

1 |ON , ON−1
1) (4)

= P (SN−1
1 |SN , ON−1

1 , ON)P (SN |ON−1
1 , ON). (5)

By making an assumption that given ON , SN is independent of ON−1
1 and vice

versa, Eq. 5 can be written as:

P (SN
1 |O) = P (SN−1

1 |SN , ON−1
1)P (SN |ON). (6)

From the conditional probability axiom, Eq. 6 becomes,

P (SN
1 |O) =

P (SN |SN−1
1 , ON−1

1)P (SN−1
1 |ON−1

1)P (SN |ON)
P (SN |ON−1

1)
. (7)

By making an assumption that SN and ON−1
1 are independent of each other,

we can write Eq. 7 as:

P (SN
1 |O) = P (SN |ON)[

P (SN |SN−1
1)

P (SN)
]P (SN−1

1 |ON−1
1). (8)

By making a Markov assumption that the probability of being in state i at time
t depends only on the state at time t−1 (i.e., P (SN |SN−1

1)=P (SN |SN−1tN−1
)),

the terms in the bracket in Eq. 8 can be written as aN,N−1 (the probability of
the path being taken from SN−1 to SN normalized by all the possible paths
from SN−1). Eq. 8 can now be written as:

P (SN
1 |O) = P (SN |ON)aN,N−1P (SN−1

1 |ON−1
1). (9)

20

We can recursively expand the term P (SN−1
1 |ON−1

1) using equations 4 to 9
and finally get that,

P (SN
1 |O) =

∏
1≤i≤N

ai,i−1P (Si(ti,ti+1−1)
|O(ti,ti+1−1)) (10)

where tN+1 = t and ai,i−1 is assumed to be constant for all scenarios. By
substitute Eq. 10 into Eq. 3, we have:

P (MS∗|O) = max
∀(t1,...,tN)

∏
1≤i≤N

ai,i−1P (Si(ti,ti+1−1)
|O(ti,ti+1−1)). (11)

We describe next the algorithm to find the values of t1, t2, ..., tN that maximize
P (MS∗|O).

Complex Event Recognition Algorithm

The direct computation of P (MS∗|O) at time T using Eq. 11 involves an
operation of O(T N) complexity since there are O(T N) combination of values
of t1, t2, ..., tN . However a more efficient recursive algorithm based on dynamic
programming can be applied. This algorithm is an adaptation of the Viterbi’s
algorithm used for HMMs to our finite-state automaton. Let Ri(t) be the
likelihood that MS occupies state i at time t with the most likely transition
timing between states given the observation sequence O(t1,t). That is,

Ri(t) = max
∀(t1,t2,...,ti)

P (S1(t1,t2−1)
S2(t2,t3−1)

...Si(ti,t)
|O(t1,t)) . . . (a)

= max
∀(t1,t2,...,ti)

∏
1≤j≤i

aj,j−1P (Sj(tj,tj+1−1)
|O(tj ,tj+1−1)) . . . (b)

(12)

The solution for Eq. 3 is, therefore, equivalent to RN(t). Ri(t) can be derived
from previously recognized state i−1 as follows. For short, let Aj be the term
on the right hand side of the product.

Ri(t) = max
∀(t1,t2,...,ti)

∏
1≤j≤i

Aj . . . (a)

= max
ti−1≤ti≤t

[Ai max
∀(t1,t2,...,ti−1)

∏
1≤j≤i−1

Aj] . . . (b)

= max
ti−1≤ti≤t

AiRi−1(ti − 1) . . . (c)

(13)

By substitute Ai back in Eq. 13 (c), we have that,

Ri(t) = max
ti−1≤ti≤t

ai,i−1P (Si(ti,t)
|O(ti, t))Ri−1(ti − 1) (14)

tibest
= argmax

ti−1≤ti≤t
ai,i−1P (Si(ti,t)

|O(ti,t))Ri−1(ti − 1) (15)

At time t, starting from state 1 where R0(t) is always 1, Eq. 14 are recur-
sively processed until the final state N is reached, where RN(t) represents the
probability of the sequence of states occurs with optimal transition timing
t1best

, t2best
, ..., tNbest

(i.e., P (MS∗|O)).

21

Finding tibest
that Maximizes Ri(t)

To compute Ri(t) in Eq. 14, two issues need to be addressed: how P (Si(ti,t)
|O(ti,t))

is computed and how to search for ti that maximizes Ri(t).

One way to derive P (Si(ti,t)
|O(ti,t)) is to write it out in terms of state transi-

tional probabilities (ai,i) and the probability of the state Sitj
given Otj for all

ti ≤ tj ≤ t:

P (Si(ti,t)
|O(ti,t)) = (

∏
ti≤tj≤t

P (Sitj
|Otj))(ai,i)t−tj)(1 − ai,i) (16)

This is similar to the probability computation method in the traditional HMM
decoding except for the alternate role of Sitj

and Otj . One weakness of Eq. 16 is
that the event duration is inappropriately modeled by an exponential function
(ai,i)

t−tj)(1− ai,i). Unlike the case of speech recognition where the duration of
a phoneme (e.g., the sound /th in ”the”) is restrictively short, the duration of
an activity is highly variable and can last for several minutes. Therefore, the
exponential model of event duration may not give accurate results as

A more accurate way of computing P (Si(ti,t)
|O(ti,t)) is to model the event du-

ration explicitly (also known as a semi-HMM) [25]. Eq. 14 can be thought
as one implementation of the semi-HMM, where the best sequence of events
are searched in a longer time scale. Decoding a semi-HMM is NT times more
complex than a conventional HMM (where N is the number of event states
and T is the total time frames), since we need to re-evaluate P (Si(ti,t)

|O(ti,t))
for all possible ti at each time frame t. In our experiment, we approximate the
decoding in the semi-HMM as follows.

We assume that all event durations are equally likely and, therefore, are can-
celed out when alternative event paths are compared during the same period
of time. We approximate P (Si(ti,t)

|O(ti,t)) by computing a temporal mean (ex-
pected value) of the distribution of P (Sitm |Otm) collected from frame tm = ti
to tm = t to average out the noise.

To find the optimal ti (i.e., tibest
) that maximizes Ri(t), we would have to

investigate all possible values of each ti. However, there is a criteria to disregard
many of these values as a candidate for tibest

. Let t′i be a possible value of ti.
One indicator for t′i to be disregarded as a potential candidate for ti is the
fact that the accumulative probability that scenario i does not occur during t′i
and t is greater than the accumulative probability that scenario i does occur,
which indicates that scenario i does not occur during t′i and t. In general, only
a certain numbers, say k, of such ti candidates (tki = ti1 , ..., tik) that compute
the highest Ri(t) can be maintained.

The algorithm for maintaining the set tki is summarized in the following. Let

22

• S+
i (t′i, t) be the accumulative probability density of the scenario (above

threshold δ which is inversely proportionate to the degree of noise in the
image sequences) from time t′i to t,

• S−
i (t′i, t) be the accumulative probability density when the scenario is not

recognized (i.e., under the threshold δ) from time t′i to t, and
• E[Si](t′i,t) be the expected recognition value of event Si during t′i and t. It

represents the temporal mean of the distribution P (Si(t′
i
,t)
|O(t′i,t)) used in

Eq. 14 and 15.

S+
i (t′i, t) and S−

i (t′i, t) are computed as follows:

S+
i (t′i, t) =

∑
t′i≤j≤t,P (Sij

)>δ

P (Sij),

S−
i (t′i, t) =

∑
t′i≤j≤t,P (Sij

)≤δ

(1 − P (Sij))

E[Si](t′i,t) is computed from S+
i (t′i, t) and S−

i (t′i, t) as follows:

If (S+
i (t′i, t) > S−

i (t′i, t)),

then E[Si](t′i,t) =
S+

i (t)

t−t′i
,

else, E[Si](t′i,t) = 0 and t′i is discarded from the potential candidate
values for tibest

.

In term of complexity, if only a certain number k of ti are maintained, we need
to update k number of temporal means to compute Ri(t). Since this process
is repeated for all N states, multi-state complex event recognition algorithm
requires O(NT) operations, which is as efficient as the Viterbi algorithm used
in the HMM approach. However, the construction of the model, and the ini-
tialization and learning of the parameters can be much easier in our case since
the nodes of the network are transparent.

6.3 Analysis Results of Single-Thread Events

We constructed eighteen Bayesian networks similar to the one shown in fig-
ure 2 to represent simple events. These events consist of actions related to
both the shape of a moving object (e.g., “stand”, “crouch”) and object’s tra-
jectory (e.g., “approach”, “stop at”, “slow down”). Some simple events are
defined with regard to a geometrical zone (e.g., a road) such as “moving along
the path”. Eight complex events are modeled by constructing an automaton
of simple events or other complex events. Parameters of each network are as-
sumed to be Gaussian distributions and are learned from a training data set
composed of up to 5 pre-segmented sequences (approximately 600 frames).
Training sequences are staged performance by different pedestrians and con-

23

100 150 200 250 300 350 400 450 500 550

0

0.2

0.4

0.6

0.8

1

Frame Number

P
ro

ba
bi

lit
y

"Approach"

"Stop"

"WalkingAlongPath"

Obj A: Simple Events

100 150 200 250 300 350 400 450 500 550

0

0.2

0.4

0.6

0.8

1

Frame Number

P
ro

ba
bi

lit
y

Obj A: "Converse"

a) Simple events b)Complex event: “Converse”

Fig. 12. Analysis of single-thread events for object “A”.

tain about half of positive and half of negative examples. They are taken in
different days, weather conditions and locations. A priori probabilities of all
events are assumed to be equal. These event models constitute the scenario
library in figure 1. We tested our single-thread event recognition algorithm on
video streams collected in various domains: parking lots, street corners and
airborne platforms. In the following, the algorithm is first demonstrated us-
ing the analysis results of the actions of two objects in “stealing” sequence
(figure 5). Then, we show that our system can discriminate and correctly rec-
ognize competing scenarios using videos obtained from a different scene than
the “stealing” sequence.

6.3.1 Recognition of “Converse” and “Taking Object”

• Complex event “converse” is a sequential occurrence of two simple events:
“approach the reference person” and “stop at the reference person”. This is,
indeed, the action performed by object “A” in the “stealing” sequence. We
process the “stealing” sequence by analyzing all simple and complex events
modeled in the library. Figure 12(a) shows the evolution of the probabilities
of four most significant simple events. The probabilities of other simple
events related to the trajectory are lower than 0.2 at all time frames. These
results correspond with the human observation of the action of object “A”.
Object “A” first appears on the pedestrian path (defined by the user using
a polygon drawn on the ground plane) on the right and moves along it
for about thirty frames. It then proceeds toward the reference object and
stops. It can be noticed that the probabilities of “approach the reference
person” are considerably noisy compared to “stop at the reference person”.
This is because the recognition of “approach the reference person depends on
instantaneous direction and speed of the objects, of which the measurements
are not stable. In contrary, “stop at” event varies smoothly on the distance
measurements. That is, once the object appears near the reference person,
“stop at” will remains high as long as the object does not appear to jump
a distance.

Figure 12(b) shows the evolution of complex event “converse” which is
recognized by detecting the sequential occurrence of “approach the refer-
ence object” and “stop at”. It can be noticed that even though “converse”

24

100 150 200 250 300 350 400 450 500 550

0

0.2

0.4

0.6

0.8

1

Frame Number

P
ro

ba
bi

lit
y

Obj D: Simple Events

"PickUpObj"

"Leave"

"Approach"

100 150 200 250 300 350 400 450 500 550

0

0.2

0.4

0.6

0.8

1

Frame Number

P
ro

ba
bi

lit
y

Obj D: "TakingObject"

a) Sub-events of “Taking Object” b)Complex event: “Taking Object”

Fig. 13. Analysis of single-thread events for object “D”.

depends on the recognition of the noisy “approach the reference person”,
its probability is more stable. This is because the temporal mean algorithm
averages out the noise.

• Complex event “taking Object” is a sequential occurrence of “approach the
reference person”, “pick up object” and “leave”. It is modeled in a similar
way to “converse”. However, while all sub-events in “converse” are sim-
ple events, “pick up object” is defined as a complex event “bend down”
conditioned on the fact that the suitcase has disappeared. “Bend down”
is modeled by an automaton composed of five shape-related event states:
“stand”, “height decreasing”, “crouch”, “height increasing” and “stand”.

Figure 13(a) shows the probabilities of the sub-events of “taking ob-
ject” for the object “D”, which match with the human observation. In fig-
ure 13(b), “taking object” is recognized when its sub-events have sequentially
occurred. We note that “pick up object” is, in fact, an articulated motion
that, in an ideal case, should be recognized by tracking movements of hu-
man limbs. However, in many applications (in particular, the surveillance
of an outdoor scene), moving objects may appear very small and tracking
body configuration is not possible. We have shown that, in such cases, the
approximate movement of shape (i.e., the change of the bounding box) may
be combined with an event context (i.e., the fact that the suitcase is missing)
to recognize a more sophisticated activity.

6.3.2 Recognizing Competing Events in a Parking Lot

We demonstrate the efficacy of our single-thread event recognition algorithm
in a different domain by analyzing ten video streams (digitized at 15 Hz) that
capture activities in two different parking lot areas. The parameters of the
networks are learned from sequences taken at the first parking lot. We tested
the network on the sequences taken from the both parking lots; the second lot
has a different street structure (the streets are of high curvature). We show
results of two test sequences called sequence A and B shown in figure 14 (a)
and 15 (a) taken in the second parking lot.

25

frameA.63 frameA.111 frameA.157

(a) Detection and tracking of moving regions for “contact1”.

60 70 80 90 100 110 120 130 140

0

0.2

0.4

0.6

0.8

1

Contact1

Frame Number

P
ro

ba
bi

lit
y

approach

close_to_mob

turn_and_leave

contact1

60 70 80 90 100 110 120 130 140

0

0.2

0.4

0.6

0.8

1

Passing By Mobile Object

Frame Number
P

ro
ba

bi
lit

y

approach

close_to_mob

leave

passing_by

I)Output of the “contact1” II)Output of the “passing by”

(b) Recognition results of two competing activities.

Fig. 14. (a) Input sequence A shows a complex event “contact1”. Object 1 (at the
top) approaches object 2 (at the bottom), makes contact (both objects have merged as
they meet), turns around and leaves. (b) “Contact1” is recognized with P (MS∗|O)
= 0.7. On the other hand, “passing by” is recognized with lower probability (almost
0 at the end) since sub-event “leaving without turning around” is not established.

Description of Competing Events

We model two competing events to be detected using our hierarchical represen-
tation. First activity, “contact1” is a complex event defined as an automaton
of three sub-events: “two men approach each other, make contact, turn around
and leave”. These sub-events are then described by the network similar to the
one in figure 11. The second activity, “passing by” is also a complex event
defined as “A man approaches another man, walks past the other, and then
leaves”. “passing by” is described by a network similar to that for “contact1”,
but with different sub-events.

Recognition Results

The analysis results for sequence A are shown in figure 14 (b). The dotted,
dotted-dashed, and solid lines show the likelihood of the sub-events which are
derived using Bayesian networks described in section 6.1. The line marked
with “+” shows P (MS∗|O) computed based on our complex event recogni-
tion algorithm. The results show that “contact1” is recognized with higher

26

frameB.97 frameB.108 frameB.138

(a) Detection and tracking of moving regions for scenario “passing by”

20 40 60 80 100 120

0

0.2

0.4

0.6

0.8

1

Contact1

Frame Number

P
ro

ba
bi

lit
y

approach

close_to_mob

turn_and_leave

contact1

20 40 60 80 100 120

0

0.2

0.4

0.6

0.8

1

Passing By Mobile Object

Frame Number
P

ro
ba

bi
lit

y

approach

close_to_mob

leave

passing_by

I)Output of the“contact1” II)Output of the “passing by”

(b) Recognition results of two competing activities.

Fig. 15. (a) Input sequence B shows a complex event “passing by”:Object 1 walks
past object 2. (b) “passing by” is recognized with higher confidence (P (MS∗|O) =
0.6) than “contact1”(P (MS∗|O) = 0.2).

confidence (P (MS∗|O) = 0.7) compared to “passing by” (P (MS∗|O) = 0).

Figure 15 (b) shows the analysis results for sequence B. This sequence depicts
the event “Passing By” which is correctly recognized with probability of 0.6,
while the event “Contact1” is poorly recognized at the lower value of 0.2.

7 Multi-Thread Event Recognition

Multi-thread events are recognized by evaluating the likelihood values of the
temporal and logical relations among event threads. Constraint satisfaction
and propagation techniques have been used in the past [24] based on the
assumption that events and their durations are deterministic. We present in
this section an algorithm to verify and propagate temporal constraints when
events are uncertain.

27

400 450 500 550 600

0

0.2

0.4

0.6

0.8

1

Frame Number
P

ro
ba

bi
lit

y

"TakingObject"

X
X

X
X

X
X

0.05

Fig. 16. The likelihood of the complex event inferred by a probabilistic finite state
automaton. The event, at different times, may have different likely start times as
illustrated by “x”, depending on the most likely transition timings between states
considered up to the current frame.

7.1 Evaluation of Temporal Relations

Suppose that we have two complex events: event A and event B, each with
a likelihood distribution similar to the one shown in figure 16. Computing
the likelihood of these events satisfying a temporal constraint requires an
exploration of the combination of all possible event intervals of both events
that may occur during time frame 1 and the current frame. For example, to
compute “A before B”, we need to find a time t′ frame such that event A
started and ended before t′ and event B started after t′ and may still occur.
The event intervals of A and B that give the maximal combined likelihood
define the occurrence of the multi-thread event.

In our case, the interval of an event can be inferred from the finite state
automation by keeping track of the transition timings between states and
by making an assumption that the end point of an event can be determined
when the likelihood of the event becomes very low. For example, in figure 16,
assuming that an event ends when the likelihood becomes lower than 0.05,
we have three possible end times of this event at frame 511, 542, and 575.
From our experiment, the number of possible end points of a complex event
is relatively small compared to the length of video data. Suppose that event
threads are independent of each other. After the constraint on the interval
of two events are verified, we can compute the likelihood of the multi-thread
event as the product of their probabilities. This computation requires a search
operation of O(kR+1) complexity if there is an average of k possible starting
points for an event model and R is the number of temporal relations in a series
of nodes in the event graph.

Other temporal relations can also be computed similarly. For example, to
compute “A during B”, we first find all possible event intervals of A and B.

28

We then search for a combination of these events that produces the maximal
likelihood subject to a constraint that the start and end times of A must be
during the interval of B.

Event threads that are defined using a logical constraint such as “and” and
“or” can be combined much easier than a temporal constraint, as we do not
need to verify a temporal relation. For “A and B”, we compute the product
of the event likelihood. For “A or B”, we choose the event with a higher
likelihood.

7.2 Inferring a Multi-Thread Event

A multi-thread event that is described by more than two event threads can be
inferred by propagating the temporal constraints and the likelihood degrees
of sub-events along the event graph. For example, suppose that we have two
event constraints: “A before B” and “B before C”. To evaluate “B before C”,
we need to consider an extra constraint that “event B” occurs after “event
A”.

7.3 Multi-Thread Event Analysis Results

We have constructed four multi-thread event models, with the most compli-
cated event model being the “stealing” scenario. In this section, We illus-
trate our multi-agent event recognition algorithm using the sequence “steal-
ing”(figure 5). Figure 17 (a) shows the recognition of the most significant
complex events (modeled by a probabilistic automaton) evaluated on object
A, B, C and D. The plots in the figure correspond to the detection of event
nodes in figure 10. The results of simple events are omitted for clarity. Ob-
ject A is recognized to be performing “converse” at approximately frame 200
after it approaches and stops at the reference person. Objects B and C are
recognized to be performing “approach to block” at frame 400 and 320, re-
spectively. These events are an instantiation of “approach1” and “approach2”
in figure 10. The “blocking” event is detected as two objects approach each
other and stop in the view blocking zone at approximately frame 400. Finally,
Object D is recognized to be performing “taking objects”. Figure 17 (b) shows
the recognition of the temporal relations defined in “stealing” together with
the assignment of the actors. In figure 17 (c), the solid and dotted-dashed lines
show the probabilities of event “stealing”, where the sub-event “approach to
block” is performed by object B and object C, respectively.

We note that as the complexity of the event model increases, the probability
of the event tends to decrease. This is due to the introduction of more param-

29

100 150 200 250 300 350 400 450 500 550

0

0.2

0.4

0.6

0.8

1

Frame Number

P
ro

ba
bi

lit
y

ObjA: "Converse"
ObjB: "ApproachToBlock"
ObjC: "ApproachToBlock"

ObjB,ObjC: "Blocking"
Obj D: "TakingObject"

(a)Recognition of single-thread events.

100 150 200 250 300 350 400 450 500 550

0

0.2

0.4

0.6

0.8

1

Frame Number

P
ro

ba
bi

lit
y

Multi-thread Events Related to "Blocking"

"Converse(objA),Before,
AppToBlock(objB)"

"Converse(objA),Before,
AppToBlock(objC)"

"AppToBlock(objC),
Before, Blocking"

"AppToBlock(objB),
 Start, Blocking"

(b)Multi-thread events evaluated related
to “blocking” and the corresponding as-
signment of actors.

100 150 200 250 300 350 400 450 500 550

0

0.2

0.4

0.6

0.8

1

Frame Number

P
ro

ba
bi

lit
y

Most Significant Instantiations of "Stealing"

P("stealing")=0.64

P("stealing")=0.69

(c) “Recognition results of “stealing”, each
with different actor and temporal event
combinations.

Fig. 17. Event analysis results of the sequence “stealing”.

eters, and hence the ambiguity arises. To accurately select a rare but complex
scenario, an alternative model selection criteria that takes into consideration
of the model complexity is necessary.

8 Performance Characterization

We have tested our system successfully on real video streams containing a vari-
ety of events in addition to the ones shown in section 6.3 and 7.3. These events
are mainly for surveillance purposes such as “a person drops off a package”, “a
person (a car) follows another person (another car)” and “people cooperatively
exchange objects”. Evaluating the performance of an event detection system,
however, requires a much more extensive collection of data. In an ideal case,
the data set should contain all possible variations of any particular event cap-
tured at various time, under different environments and possibly in a crowd.

30

0 50 100 150 200 250 300 350 400

0

0.2

0.4

0.6

0.8

1

Contact1 recognition results on simulated data

Image Sequence Number

P
ro

ba
bi

ili
ty

60 70 80 90 100 110 120 130 140

0

0.2

0.4

0.6

0.8

1

Contact1

Frame Number

P
ro

ba
bi

lit
y

approach

close_to_mob

turn_and_leave

contact1

(a)Results on perturbed sequences. (b)Example of perturbed sequence.

Fig. 18. (a) “Contact1” recognition values of 400 perturbed image sequences. (b)
The recognition result on an example of perturbed sequence with the loss of tracking
on every three frames. The recognition of sub-events becomes zero every time the
mobile object is lost. “Contact1”, however, is still correctly recognized.

Obtaining such data is possible if the action to be recognized is confined in
a highly structured scene and has little variation in the execution style as in
the case of sport events. However, significant scenarios such as “stealing” oc-
cur rarely and sometimes have execution styles that are difficult to anticipate.
Abstract activities also allow for more variation in temporal constraints. For
example, the path and the duration that a thief takes to steal a suitcase can
vary depending on the location of the suitcase. Simulated data of “variations”
may help in such cases.

There are several variations that may affect the performance of our recognition
algorithm:

• Bayesian networks can be affected by noise and error in motion detection
and tracking;

• Probabilistic event automaton can be sensitive to the variable durations of
sub-events in addition to tracking noise;

• The performance of event graphs can be affected further by the variable
timing of event relations due to different execution styles.

In the following, we characterize the performance of our recognition methods
using spatio-temporal perturbation of tracking data computed from real video
streams that simulates these noise and variations.

8.1 Loss of Tracking

Suppose we are to detect event “contact1” described in section 6.3. We gener-
ate four hundred perturbed sequences from sequence A shown in figure 14 by
randomly inserting and deleting the tracked mobile objects as follows. A ran-
dom number uniformly distributed between 1 and 20 is generated and used as
a timing point where the sequence is perturbed. For each perturbed sequence,
three such random numbers are selected and used as timing point to duplicate

31

or delete a frame or to remove the information on the tracked blobs. For ex-
ample, if the random number is 3, a frame may be inserted once in every three
frame and so on. The smaller the random number is the more the sequence
becomes perturbed. As a result, mobile objects may appear to be stationary
or lost from time to time. The probabilities of “contact1” at the final frame
of each processing are shown in figure 18 (a). It shows that on average “con-
tact1” is recognized with a probability of 0.55 (with the highest value of 0.74
and lowest value of 0.21). Figure 18 (b) shows the result of recognition on a
sequence where the tracked moving blobs were removed once in every three
frames. From the stability of the line marked with “+”, our method still infers
the correct scenario.

8.2 Levels of Noise

Suppose we are to recognize and discriminate between “contact1”(figure 14)
and “passing by”(figure 15). We generate noisy sequences from sequence A and
B by corrupting the tracking data with Gaussian noise. First, we compute the
mean (µ = 13.01cm/frame) and variance (σ = 6.68cm/frame) of the speed
of walking people detected in both sequences. Tracking data of the original
sequence is then corrupted with a Gaussian noise G(µ = 0, ω · σ) to simulate
a noisy sequence, where ω is the level of noise. The larger ω is, the noisier the
tracking data becomes corrupted.

In the following experiment, we test our algorithm on ω = 1, 3 and 7. Forty
sequences of noisy “contact1” and “passing by” are evaluated for each level of
noise. If the probability of the event model corresponding to the sequence is
lower than the threshold value (τ), we say that it produces a negative result.
If the probability of the competing event model is higher than τ , then we say
that it produces a false alarm. In an ideal case, the system would produce
zero negative results and zero false alarm. We characterize results in terms of
missing rate and false alarm rate. Missing rate is the ratio of negative results to
all the positive sequences and false alarm rate is the ratio of the false alarms
to all the positive sequences. A trade-off between the missing rate and the
false alarm rate can be exercised by varying the threshold value. An optimal
threshold can be selected to give the desired trade-off for a given application
based on some criteria. To help make such a decision, it is common to plot a
trade-off curve by varying threshold values. This curve is commonly called a
Receiver Operating Characterizing (ROC) curve.

Figure 19 shows ROC curves for each noise level for the detection of “contact1”
and “passing by”. It can be seen that when the variance of the random Gaus-
sian noise of tracking data is below 20.04cm/frame (three times as much as
the walking speed variance of humans), it is still possible to maintain both the

32

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ROC on Dataset of Various Gaussian Noise Levels

False Rate %

M
is

si
ng

 R
at

e
%

1*σ

7*σ

3*σ

σ: human ground speed variance (6.68 cm./frame)

Fig. 19. ROC curves for a data set with various noise levels.

missing rate and the false alarm rate under 10%. This is because the Gaussian
noise only locally corrupts the ground location of an object frame by frame.
The overall shape of the trajectory is, therefore, still preserved. Such local
noise is averaged out during the temporal mean computation. The error oc-
curs when the noise repeatedly causes a large displacement while the person
still stops at the reference person, causing the recognition of “stops at” to be
weak for a long period of time.

8.3 Variable Event Durations

In this section, we examine how the duration of sub-events affect the recog-
nition of complex events. We model two competing complex events. The first
event (EV1), “approach a reference person and then stop”, is composed of two
sub-events: “approach” and “stop”. The second event (EV2), “approach a ref-
erence person and then leave”, is also composed of two sub-events: “approach”
and “leave”. We simulated, for each complex event, a test data set of twenty
sequences for five different noise levels (ω = 1, 3, 5, 7 and 10) using the method
described in section 8.2. Half of the test data set (i.e. ten sequences) has a
shorter duration of the second sub-event.

For each noise level, we analyze the test data set and compute the mean and
standard deviation of the probabilities of both EV1 and EV2. Figures 20(a)
and (b) show the results of the “approach then leave” test sequences with
different lengths of the second sub-event (“leave the reference person”); 28
and 97 frames, respectively. The average probabilities of the positive event
model EV2 are shown in solid lines with the standard deviation displayed
with ��. The dotted lines are the probabilities of the negative event model
EV1. Similar to figures 20(a) and (b), figures 20(c) and (d) show the analysis

33

1 2 3 4 5 6 7 8 9 10 11
0

10

20

30

40

50

60

70

80

90

"Approach Then Leave": Short Test Sequences (28 Frames)

Noise Level

Li
ke

lih
oo

d
%

Ev1: Approach_Then_Stop (negative)

EV2: Approach_Then_Leave (positive)

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

Noise Level

Li
ke

lih
oo

d
%

EV1: Approach_Then_Stop (negative)

EV2: Approach_Then_Leave (positive)

"Approach Then Leave": Long Test Sequences (97 Frames)

(a) Short ”approach then leave”. (b) Long ”approach then leave”.

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

Noise Level

Li
ke

lih
oo

d
%

EV2: Approach_Then_Leave (negative)

EV1: Approach_Then_Stop (positive)

"Approach Then Stop": Short Test Sequences (26 Frames)

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

Noise Level

Li
ke

lih
oo

d
%

EV2: Approach_Then_Leave (negative)

EV1: Approach_Then_Stop (positive)

"Approach Then Stop": Long Test Sequences (106 Frames)

(c) Short ”approach then stop”. (d) Long ”approach then stop”.

Fig. 20. Discriminating “approach then leave” and “approach then stop” in test
sequences of various lengths.

results of the “approach then stop” test sequences with different lengths of the
second sub-events; 97 and 106 frames, respectively. In (c) and (d), EV1 (solid
lines) become the positive event model.

It can be seen that the system can discriminate between competing event
models much better when the sub-events are observed for a longer period of
time. That is, a larger gap between the solid and dotted lines is observed at
every noise level in the figures on the right than those on the left. Especially
in the “approach then leave” test sequences, the system discriminates poorly
between EV1 and EV2 when the event “leave” is not observed long enough.
This, in fact, corresponds with human observation because as observers get
confused when event duration is one or two seconds long.

34

converse

non-blocking taking obj

{b, d}

{d}

Time

Fig. 21. A graphical description of event “cooperative object transfer”.

8.4 Varying Execution Styles

It is conceivable that the recognition of a multi-agent event may vary as a
result of a change in the pattern of execution by an actor. Such variation,
however, should not be significant in a robust system as long as the temporal
relations among sub-events do not change. One of the greatest difficulties in
performance analysis of a multi-agent event detection system is to find an
extensive set of real test data that includes all possible action execution styles
by individuals. Analysis of ROC curves on synthetic data similar to the case
of single-thread events may help.

We define two competing multi-agent events for ROC analysis. The first event
is “stealing”, of which the event graph is described in section 5. The second
event is “cooperative object transfer” and is described as a person approaching
to converse with another person whose luggage is left on the ground. Then,
another person comes and takes the luggage away. Discriminating these two
events is extremely challenging because they are very similar. The difference
between them is whether or not the view of the belongings is obstructed while
there is a transfer of the ownership. The event graph representation of “coop-
erative object transfer” is shown in figure 21.

We simulate a test data set composed of twenty one “stealing” sequences
and twenty one “cooperative object transfer” sequences. Simulated sequences
are generated as follows. First, the trajectory of each object in the original
sequence is extracted and smoothed out to obtain a principal curve. Then,
four points on the principal curve are selected such that that curve is seg-
mented into five segments of an equal length (k). The four points are then
randomly perturbed with Gaussian noise G(µ = 0, σ = 2k) and fitted on a
smooth B-spline curve. Finally, tracking data (points along the B-spline curve)
is assigned according to the estimated walking speed (13.01cm/frame) and
variance (6.68cm/frame) of a human. The variable lengths of the perturbed
trajectories introduce variations in the timing among event threads. Therefore,
we manually classify and correctly label each of the perturbed sequences.

Figure 22 shows the ROC curve for the test data set. Even though the two

35

events are very similar, by choosing an appropriate threshold, we can achieve
the detection rate as high as 81% while keeping the false alarm rate at 16%.
The main reason for misdetection is the critical event “blocking” that helps
discriminate between “stealing” and “cooperative object transfer” can not be
recognized when the persons who perform “blocking” action move abruptly
away repeatedly during the blocking. It also fails when the blocking person
walks past the reference objects shortly and comes back to block, causing the
“approach to block” event (i.e. “approach1” and “approach2”) to be weakly
recognized.

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

ROC on Dataset of Variable Execution Styles

False Rate %

M
is

si
ng

 R
at

e
%

Fig. 22. ROC curves for a data set with varying execution styles.

9 Discussion

This paper presents an approach for both single- and multiple- actor activity
recognition. We propose a transparent, generic (extendible) activity represen-
tation that provides flexibility and modularity in event modeling scheme and
simplifies the task of parameter learning. Bayesian networks and probabilistic
finite state automata are used to describe single actor activities. The inter-
action of multiple actors is modeled by an event graph, useful for plan and
coordinated activity recognition. We have developed a complete system and
shown, by real world examples, that possible events can be inferred and seg-
mented from video data automatically by probabilistic analysis of the shape,
motion and trajectory features of moving objects.

36

9.1 Computation Time

We have described in sections 6.2 and 7.1 that the complexity of the single- and
multi-thread event detection algorithms are O(NT) and O(kR+1), respectively.
The computation time to process a video, however, depends on other free
parameters such as: the number of moving objects and the number of scene
contexts (e.g. checkpoint zones, phones, pedestrian paths). Table 2 shows the
computation time of two most complicated sequences together with the free
parameters; SE, CE, MT and Ctx are short for the numbers of simple events,
complex events, multi-thread events and contexts respectively.

Computation Time of Video Sequences

Sequence No. of Obj’s Frames SE/CE/MT/Ctx Time (sec) fps.

ObjTransfer 3 640 83/11/3/1 453 0.71

Stealing 4 460 104/15/2/3 994 0.46
Table 2
Computation Time of Video Sequences.

We note that the computation time does not include motion detection and
tracking processes. We have processed these sequences using a PII-333MHz
machine with 128 MB of RAM. To convert the computation time to today’s
processing power (e.g. P4-2GHz with 256 MB RAM), we can approximately
divide it by 8. The number of start times (tki) to maintain for each sub-event
of a single-thread event is set to 2 (see Section 6.2).

From Table 2, the average frame rate is approximately 9.36 fps by today’s pro-
cessing power. To detect “ObjTransfer”, all eleven complex events are defined
with regard to other moving objects, which are unbound parameters. Events
with an unbound parameter can significantly increase the computation time.
For example, if there are three objects in the video, there will be six possible
combinations of (actor, reference) pairs for each complex event to be analyzed.
In the cases where the number of moving objects are high (a crowd of people),
some pruning of the (actor, reference) pairs may be necessary.

9.2 Future Work

In the following, we provide some discussion on each component of our system
and future work.

• We have demonstrated at many processing levels the use of context infor-
mation for event recognition task. Knowledge of the ground plane has been
used to filter moving regions and improve the tracking results. We believe

37

that ground plane assumption is valid in many cases and our method can
easily be applied to another type of surface as long as it is known. However,
this approach requires the robust detection of the feet of the objects, which
may not be available in some applications. Tracking a crowd of people, nec-
essary for many surveillance applications, is also still very difficult due to
self-occlusion and the occlusion of the body parts with others. A robust fil-
tering mechanism that integrates both the low-level (e.g. color distribution,
texture) and the high-level (e.g. consistency of actions) information may be
useful in such cases.

• Our activity representation is currently based on 2-D shape and trajectory
features. However, it provides layers of abstraction which allows an integra-
tion of other complex features (e.g. human pose configurations, optical flow
statistics) to describe more sophisticated events. An additional mechanism
to derive the probability of an abstract event entity from these complex
features may be required. Also, further development of the temporal and
logical constraints may be required to represent a more sophisticated sce-
nario model. For example, numerical constraints such as “A occurs before
B at least an hour ago” or additional logical constraints such as “no other
events should happen between A and B” may be allowed to enhance the
characterization of a scenario.

• In section 8, we notice a decrease of the recognition performance on noisy
sequences and on variable execution styles of activities. The recognition of
the interaction of actors, in fact, relies on the accuracy of the detection and
segmentation of complex events. Currently, several assumptions are made
about the probability distributions in complex event modeling. Some of
these assumptions (e.g. a uniform distribution of event durations) may be
removed to improve the accuracy of the analysis.

• We have demonstrated a preliminary performance evaluation scheme that
validates our system on some aspects of a real application. Analysis of ROC
curves on synthetic data is useful when obtaining enough test data set is not
possible. With an increasing number of other event recognition approaches,
a more systematic performance evaluation procedure is required to make
useful comparisons between algorithms.

• One concern about the scalability of our system is that the complexity of
our inference method depends on the number of moving objects and the
complexity of the scene (e.g. number of reference scene objects). Currently
we analyze all scenarios of all possible combinations of moving objects and
reference objects. The complexity can be decreased by the use task context
to process only relevant scenarios and the use of heuristics (e.g. a threshold
on the proximity of relevant object) to choose only the objects that may
involve in a particular activity.

38

References

[1] H. Buxton, S. Gong, Visual surveillance in a dynamic and uncertain world,
Artificial Intelligence 78 (1-2), 1995, 431–459.

[2] Y. Ivanov, A. Bobick, Recognition of visual activities and interactions by
stochastic parsing, in IEEE Transactions on Pattern Analysis and Machine
Intelligence 22 (8), 2000, pp. 852–872.

[3] S. Intille, A. Bobick, Recognizing planned multiperson action, Journal of
Computer Vision and Image Understanding 3, 2001, 414–445.

[4] S. Hongeng, R. Nevatia, Multi-agent event recognition, in IEEE Proceedings of
the International Conference on Computer Vision, Vol. 2, Vancouver, Canada,
2001, pp. 84–91.

[5] G. Medioni, I. Cohen, F. Bremond, S. Hongeng, R. Nevatia, Event detection
and analysis from video streams, in IEEE Transactions on Pattern Analysis
and Machine Intelligence 23 (8), 2001, pp. 873–889.

[6] S. Hongeng, F. Bremond, R. Nevatia, Representation and optimal recognition
of human activities, in IEEE Proceedings of Computer Vision and Pattern
Recognition, Hilton Head Island, SC, 2000, pp. 1818–1825.

[7] C. S. Regazzoni, G. Fabri, G. V. (Eds.), Advanced Video-Based Surveillance
Systems, Kluwer Academic Publishers, 1999.

[8] R. T. Colins, A. J. Lipton, T. K. (Eds.), Special issue on video surveillance, in
IEEE Transactions on Pattern Analysis and Machine Intelligence 22(8), 2000.

[9] J. K. Aggarwal, Q. Cai, Human motion analysis: A review, Computer Vision
and Image Understanding 73, 1999, 428–440.

[10] L. Davis, R. Chelappa, A. Rosenfeld, D. Harwood, I. Haritaoglu, R. Cutler,
Visual surveillance and monitoring, in DARPA Image Understanding
Workshop, 1998, pp. 73–76.

[11] J. Binder, D. Koller, S. Russell, K. Kanazawa, Adaptive probabilistic networks
with hidden variables, Machine Learning 29, 1997, 213–244.

[12] J. Yamato, J. Ohya, K. Ishii, Recognizing human action in time-sequential
images using hidden markov model, in IEEE Proceedings of Computer Vision
and Pattern Recognition, Champaign, IL, 1992, pp. 379–385.

[13] T. Starner, A. Pentland, Real-time american sign language recognition from
video using hidden markov models, in Proceedings of ISCV’95, 1995.

[14] A. Wilson, A. Bobick, Recognition and interpretation of parametric gesture,
in IEEE Proceedings of the International Conference on Computer Vision,
Bombay, India, 1998, pp. 329–336.

39

[15] P. Remagnino, J. Orwell, G. A. Jones, Visual interpretation of people and
vehicle behaviours using a society of agents, in Italian Association for Artificial
Intelligence, 1999, pp. 333–342.

[16] N. Oliver, B. Rosario, A. Pentland, A bayesian computer vision system for
modeling human interactions, IEEE Transactions on Pattern Analysis and
Machine Intelligence 22(8), 2000, 831–843.

[17] R. Morris, D. Hogg, Statistical models of object interaction, in proc. of the
Int’l Conference on Computer Vision (ICCV) Workshop on Visual Surveillance,
Bombay, India, 1998, pp. 209–215.

[18] T. Syeda-Mahmood, S. Srinivasan, Detecting topical events in digital video, in
Proceedings of the Eight ACM International Conference on Multimedia, 2000,
pp. 85–94.

[19] M. R. Nephade, T. S. Huang, Detecting semantic concepts using context and
audio/visual features, in Proceedings of the IEEE workshop on Detection and
Recognition of Events in Video, 2001, pp. 92–98.

[20] N. Oliver, E. Horvitz, A. Garg, Layered representations for recognizing office
activity, in Proceedings of the Fourth IEEE International Conference on
Multimodal Interaction, Pittsburgh (PA), 2002.

[21] M. Yamamoto, K. Yagishita, Scene constraints-aided tracking of human body,
in IEEE Proceedings of Computer Vision and Pattern Recognition, 2000, pp.
151–156.

[22] H. SidenBladh, M.J.Black, D. Fleet, Stochastic tracking of 3d human figures
using 2d image motion, in Proceedings of the European Conference on Computer
Vision, 2000, pp. 702–718.

[23] R. von Mises, Mathematical Theory of Probability and Statistics, Academic
Press, New York, 1964.

[24] J. F. Allen, G. Ferguson, Actions and events in temporal logic, Journal of Logic
and Computation 4(5), 1994, 531–579.

[25] L. R. Rabiner, B. H. Juang, An introduction to hidden markov models, IEEE
ASSP Magazine, 1986, 4–16.

40

