

Video Understanding Applications

- Strong impact for visual surveillance in transportation (metro station, trains, airports, aircraft, harbors)
- Control access, intrusion detection and Video surveillance in building
- Traffic monitoring (parking, vehicle counting, street monitoring, driver assistance)
- Bank agency monitoring
- Risk management (simulation)
- Video communication (Mediaspace)
- Sports monitoring (Tennis, Soccer, F1, Swimming pool monitoring)
- New application domains : Aware House, Health (HomeCare), Teaching, Biology, Animal Behaviors, ...
- Creation of a start-up Keeneo July 2005 (15 persons): http://www.keeneo.com/

Video Understanding: Domains

• Smart Sensors: Acquisition (dedicated hardware), thermal, omni-directional, PTZ, cmos, IP, tri CCD, FPGA.

- Networking: UDP, scalable compression, secure transmission, indexing and storage.
- Computer Vision: 2D object detection (Wei Yun I2R Singapore), active vision, tracking of people using 3D geometric approaches (T. Ellis Kingston University UK)
- Multi-Sensor Information Fusion: cameras (overlapping, distant) + microphones, contact sensors, physiological sensors, optical cells, RFID (GL Foresti Udine Univ I)
- Event Recognition: Probabilistic approaches HMM, DBN (A Bobick Georgia Tech USA, H Buxton Univ Sussex UK), logics, symbolic constraint networks
- Reusable Systems: Real-time distributed dependable platform for video surveillance (Multitel, Be), OSGI, adaptable systems, Machine learning
- Visualization: 3D animation, ergonomic, video abstraction, annotation, simulation, HCI, interactive surface.

Video Understanding: Issues

- Performance: robustness of real-time (vision) algorithms
- Bridging the gaps at different abstraction levels:
 - From sensors to image processing
 - From image processing to 4D (3D + time) analysis
 - From 4D analysis to semantics
- Uncertainty management:
 - uncertainty management of noisy data (imprecise, incomplete, missing, corrupted)
 - formalization of the expertise (fuzzy, subjective, incoherent, implicit knowledge)
- Independence of the models/methods versus:
 - Sensors (position, type), scenes, low level processing and target applications
 - several spatio-temporal scales
- Knowledge management :
 - Bottom-up versus top-down, focus of attention
 - Regularities, invariants, models and context awareness
 - Knowledge acquisition versus ((none, semi)-supervised, incremental) learning techniques
 - Formalization, modeling, ontology, standardization

Video Understanding: Approach

Global approach integrating all video understanding functionalities, while focusing on the easy generation of dedicated systems based on

- cognitive vision: 4D analysis (3D + temporal analysis)
- artificial intelligence: explicit knowledge (scenario, context, 3D environment)
- software engineering: reusable & adaptable platform (control, library of dedicated algorithms)
- ⇒ Extract and structure knowledge (invariants & models) for
 - Perception for video understanding (perceptual, visual world)
 - Maintenance of the 3D coherency throughout time (physical world of 3D spatio-temporal objects)
 - Event recognition (semantics world)
 - Evaluation, control and learning (systems world)

Outline (1/2)

- Introduction on Video Understanding
- Knowledge Representation [WSCG02]
- Perception
 - People detection [IDSS03a]
 - Posture recognition [VSPETS03], [PRLetter06]
 - Coherent Motion Regions
- 4D coherency
 - People tracking [IDSS03b], [CVDP02]
 - Multi cameras combination [ACV02], [ICDP06a]
 - People lateral shape recognition [AVSS05a]
- Event representation [KES02], [ECAI02]

Outline (2/2)

- Event recognition:
 - State of the art
 - finite state automata [ICNSC04]
 - Bayesian network [ICVS03b]
 - CSP
 - Temporal constraints [AVSS05b], [IJCAI03], [ICVS03a], [PhDTV04], [ICDP06]
- Autonomous systems:
 - performance evaluation [VSPETS05], [PETS05], [IDSS04], [ICVIIP03], [WMVC07], [AVSS07]
 - program supervision [ICVS06c], [ICVIIP04], [MVA06a]
 - parameter learning [PhDBG06]
 - knowledge discovery [ICDP06], [VIE07]
 - learning scenario models [ICVS06a], [ICDP06b]
- Results and demonstrations: metro, bank, train, airport, trichogramma monitoring, Homecare [ICVS06b], [AJCAI06], [ICVW06], [ITSC05], [BR06], [MVA06b], [SETIT07]

People detection

Classification into more than 8 classes (e.g. Person, Groupe, Train) based on 2D and 3D descriptors (position, **3D ratio height/width**, ...)

Example of 4 classes: Person, Group, Noise, Unknown

People detection (M. Zuniga)

Classification into 3 people classes : 1Person, 2Persons, 3Persons, Unknown, ..., based on **3D parallelepiped**

Posture Recognition : silhouette comparison

Real world

Virtual world

Posture Recognition : results

Coherent Motion Regions (MB. Kaaniche)

Approach: Track and Cluster KLT (Kanade-Lucas-Tomasi) feature points.

Multi sensors information fusion: Lateral Shape Recognition (B. Bui)

- Approach: real-time recognition of lateral shapes such as "adult", "child", "suitcase"
 - based on naive Bayesian classifiers
 - combining video and multi-sensor system (leds, optical cells).

A fixed camera at the height of 2.5m observes the mobile objects from the top.

Lateral sensors (leds, 5 cameras, optical cells) on the side.

RINRIA

Lateral Shape Recognition: Experimental Results

•Recognition of "adult with child"

Image from the top

3D synthetic view of the scene

•Recognition of "two overlapping adults"

Event Representation

Video events: real world notion corresponding to short actions up to activities.

• *<u>Primitive State</u>:* a spatio-temporal property linked to vision routines involving one or several actors, valid at a given time point or stable on a *time interval*

Ex : « close», « walking», « sitting»

- <u>Composite State</u>: a combination of primitive states
- *Primitive Event:* significant change of states

Ex : « enters», « stands up», « leaves »

• *<u>Composite Event</u>:* a combination of states and events. Corresponds to a long term (symbolic, application dependent) activity.

Ex : « fighting», « vandalism»

Event Representation

A video event is mainly constituted of five parts:

Physical objects: all real world objects present in the scene observed by the cameras

Mobile objects, contextual objects, zones of interest

- · Components: list of states and sub-events involved in the event
- Forbidden Components: list of states and sub-events that must not be detected in the event
- Constraints: symbolic, logical, spatio-temporal relations between components or physical objects
- Action: a set of tasks to be performed when the event is recognized

Scenario Recognition: Elementary Scenario

• The recognition of a compiled elementary scenario model m_e consists of a loop:

- 1. Choosing a physical object for each physical-object variable
- 2. Verifying all constraints linked to this variable

 m_e is recognized if all the physical-object variables are assigned a value and all the linked constraints are satisfied.

Scenario Recognition: Composed Scenario

• Problem:

given a scenario model $\underline{m_c} = (\underline{m_1 \text{ before } \underline{m_2} \text{ before } \underline{m_3})};$

if a scenario instance i₃ of m₃ has been recognized

then the main scenario model m_c may be recognized.

However, the classical algorithms will try all combinations of scenario instances of m_1 and of m_2 with i_3

 \rightarrow a combinatorial explosion.

• Solution:

decompose the composed scenario models into simpler scenario models in an initial (compilation) stage such as each composed scenario model is composed of two components: $\underline{m_c} = (\underline{m_4} \text{ before } \underline{m_3})$

➔ a linear search.

Scenario Recognition: Results Vandalism in metro in Nuremberg

Scenario recognition: Results Bank agency monitoring : Paris (M. Maziere)

Scenario recognition: Results Parked aircraft monitoring in Toulouse (F Fusier)

• "Unloading Front Operation"

SCENARIO UNLOADING_DETAILED_OPERATION

PHYSICAL OBJECTS :

VEHICLES : {Loader, Transporter} PERSONS : {Worker} STATIC ZONES : {ERA} AIRCRAFT ZONES : {Front_Unloading_Area, Baggages_Unloading_Area} DYNAMIC ZONES : {Transporter_Parking_Area}

VIDEO EVENTS:

Loader_Arrival Transporter_Arrival Worker_Arrived Worker_Manipulating_Container

Scenario recognition: Results HealthCare Monitoring (N. Zouba)

Approach :

• Multi-sensor analysis of elderly activities

• Detect in real-time any alarming situation

• Identify a person profile from the global trends of life parameters

Examples:

- Use_foodcupboard
- Use_microwave

Video Understanding: Performance Evaluation (V. Valentin, R. Ma)

• ETISEO: French initiative for algorithm validation and knowledge acquisition: http://www-sop.inria.fr/orion/ETISEO/

- Approach: 3 critical evaluation concepts
 - Selection of test video sequences
 - Follow a specified characterization of problems
 - Study one problem at a time, several levels of difficulty
 - Collect long sequences for significance
 - Ground truth definition
 - Up to the event level
 - · Give clear and precise instructions to the annotator
 - E.g., annotate both visible and occluded part of objects
 - Metric definition
 - Set of metrics for each video processing task
 - Performance indicators: sensitivity and precision

Evaluation : current approach (AT. NGHIEM)

- ETISEO limitations:
 - Selection of video sequence according to difficulty levels is subjective
 - Generalization of evaluation results is subjective.
 - One video sequence may contain several video processing problems at many difficulty levels
- Approach: treat each video processing problem separately
 - Define a measure to compute difficulty levels of input data (e.g. video sequences)
 - Select video sequences containing only the current problems at various difficulty levels
 - For each algorithm, determine the highest difficulty level for which this algorithm still has acceptable performance.
- Approach validation : applied to two problems
 - Detect weakly contrasted objects
 - Detect objects mixed with shadows

Video Understanding: Learning Parameters (B.Georis)

• **Objective**: a learning tool to automatically tune algorithm parameters with experimental data

• Used for learning the segmentation parameters with respect to the illumination conditions

Method

- Identify a set of parameters of a task
 - 18 segmentation thresholds
- depending on environment characteristics
 - Image intensity histogram
- Study the variability of the characteristic
 - Histogram clustering -> 5 clusters
- Determine optimal parameters for each cluster
 - Optimization of the 18 segmentation thresholds

Video Understanding: Learning Parameters

Camera View

• CARETAKER: An European initiative to provide an efficient tool for the **management of large multimedia** collections.

Results on Torino subway (45min), 2052 trajectories

Knowledge Discovery: achievements

• Computes on-line simple events and the interactions between moving objects and between contextual objects.

• Semantic knowledge is extracted by the off-line long term analysis of these interactions:

- 70% of people are coming from north entrance
- Most people spend 10 sec in the hall
- 64% of people are going directly to the gates without stopping at the ticket machine
- At rush hours people are 40% quicker to buy a ticket
- ...

Conclusion

A global framework for building video understanding systems:

• Hypotheses:

- mostly fixed cameras
- 3D model of the empty scene
- predefined behavior models
- Results:
 - Video understanding real-time **systems** for Individuals, Groups of People, Vehicles, Crowd, or Animals ...
 - Knowledge structured within the different abstraction levels (i.e. processing worlds)
 - Formal description of the empty scene
 - Structures for algorithm parameters
 - Structures for object detection rules, tracking rules, fusion rules, ...
 - Operational **language** for **event** recognition (more than 60 states and events), video event ontology
 - Tools for knowledge management
 - Metrics, tools for performance evaluation, learning
 - Parsers, Formats for data exchange
 - ...

Conclusion: perspectives

- Object and video event detection
 - Finer human shape description: gesture models
 - Video analysis robustness: reliability computation
- Knowledge Acquisition
 - Design of learning techniques to complement a priori knowledge:
 - visual concept learning
 - scenario model learning
- System Reusability
 - Use of program supervision techniques: *dynamic configuration of programs and parameters*
 - Scaling issue: managing large network of heterogeneous sensors (cameras, microphones, optical cells, radars....)

