
Temporal Constraints for Video Interpretation

Van-Thinh VU, François BREMOND and Monique THONNAT

INRIA, research group ORION, 2004 route des Lucioles, Sophia Antipolis, 06902, France
{Thinh.Vu, Monique.Thonnat, Francois.Bremond}@sophia.inria.fr

http://www-sop.inria.fr/orion/orion-eng.html

Abstract. This paper presents an original approach for temporal scenario recog-
nition for video interpretation. We propose a declarative model to represent sce-
narios and we use a logic-based approach to recognize pre-defined scenario
models. To speed up the recognition process, we propose a new method to pro-
cess the temporal operators of interval algebra and a method to extend the time
interval of recognized scenarios. We have tested our representation formalism
and the inference engine on two real video sequences.

1 Introduction

This paper presents recent works in scenario recognition for Automatic Video Inter-
pretation (see Fig. 1). The goal is to recognize scenarios involved in a scene depicted
by a video sequence. The recognition process takes as input (1) scenario models pre-
defined by experts, (2) 3D geometric information of the observed environment and (3)
a video stream of persons tracked by a vision module ([2], [18]). To represent scenar-
ios, we first propose a language to describe scenario models and secondly a constraint
verification approach to recognize in real time scenario occurrences.

Fig. 1. Overview of the Automatic Video Interpretation System.

For 20 years, the issues of temporal scenario representation and recognition have
been studied. M. Ghallab [6] has represented a temporal scenario as a set of temporal
constraints on time-stamped events. The recognition algorithm keeps and updates

A priori knowledge

Video
stream

Vision
module

Recognition
of actions

Recognition
of scenarios

Recognized
scenario

Scenario recognition module

3D geometric information of the
observed environment

scenario models predefined
by experts

partial recognitions of scenarios using the propagation of temporal constraints based
on RETE algorithm. C. Pinhanez and A. Bobick [12] have used Allen’s interval alge-
bra [1] and presented the specific algorithm reducing its complexity. S. Hongeng and
R. Nevatia [7] have proposed a behaviour recognition method that uses the concur-
rence bayesian threads to estimate the likelihood of potential scenarios. N. Rota and
M. Thonnat [14] have used a declarative representation of scenarios defined as a set of
spatio-temporal and logic constraints. They have used a traditional constraint resolu-
tion technique to recognize scenarios. They have reduced the processing time for the
recognition step by checking before the consistency of the constraint network using
the AC4 algorithm [11].

The Temporal Constraint Satisfaction Problem (TCSP) has also been studied for a
longtime. R. Dechter [3] has represented a scenario with a temporal constraint net-
works based on time intervals of delay between events. She has also used a path con-
sistency algorithm to solve the network. L. Khatib, P. Morris, R. A. Morris and F.
Rossi [10] have presented a method to solve the TCSP using preferences based on the
order of the pair of events and the delay between them.

Most of these scenario representation are not easy to use and do not let the experts
to describe their scenarios in a natural way. For example, they represent an event de-
fined at one time point and do not manipulate events defined on intervals. All these
techniques allow an efficient recognition of scenarios, but they are still some temporal
constraints which can not be processed. For example, most of these approaches require
that the scenarios are bounded in time.

2 Representation of Scenarios

Our goal is to explicit all the knowledge necessary for the system to be able to recog-
nize scenarios. The description of this knowledge has to be declarative and in natural
terms, so that the experts of the application domain can easily define and modify it.
Thus, the recognition process uses only the knowledge represented by experts through
scenario models.

We represent a scenario model with the list of the actors involved in the scenario
and a set of constraints on these actors.

An actor can be a person detected as a mobile object by the recognition process or a
static object of the observed environment. A person is represented by his/her charac-
teristics: his/her position in the observed environment, width, velocity,…. A static
object of the environment is defined as a priori knowledge (before processing) and can
be either a zone of interest (a 2D polygonal as the entrance zone) or a piece of equip-
ment (a 3D object as a desk). A zone is represented by its vertices. And a piece of
equipment is represented by the vertices of its 3D bounding box. The zones and the
equipment are represented in the scene context of the observed environment ([2],
[18]). Static objects and mobile objects are called scene-object.

In our representation, person behaviors are also involved in states, events and sce-
narios. A state characterizes a person behavior constant during a given time interval.

An event defines a change of state at two successive instants ([2], [14], [18]). The
notion of scenario is used as a generic name to combine these two notions of
states/events. A scenario may be constituted by several sub-scenarios. A scenario
involves at least one person, and is defined in a time interval. An interval is repre-
sented by its starting and ending time. Defining scenario on time interval is important
for the experts to let them describe scenarios in the more natural way. Scenarios and
scene-objects are called entities and defined by a generic class (see Fig. 2).

Fig. 2. Five types of entities are classified into "scenario" and "scene-object".

To describe a scenario model, we have used the following definitions.
Definitions:
O - a set of scene-objects,
V - a set of variables corresponding to scene-objects,
C = {c constraint | c : Vk → BOOL, k > 0},
% = 2(C) set of parts of C,
A = {attribute := value} set of affectations,
= 2(A) set of parts of A
A n-actor scenario model is an element m = (Actors, Constraints, Production) of M

= (Vn x % x #). Actors is a set of n variables expressing the actors involved in the sce-
nario with their type and name. Constraints is a set of constraints defining the relation-
ships between the actors relevant with the scenario. Production is a set of deduced
characteristics describing the scenario once it has been recognized.

The n-uplet of scene-objects s = (o1,…, on) is a solution at time t of the recognition
process using the scenario model m if all the constraints of Constraints are satisfied
when we assign the n variables of Actors with the n corresponding scene-objects of s.
In this case the scenario model m is satisfied at the time of the recognition of s. A
scenario b (called instance of m) will be produced using s with the characteristics
given by Production. The scenario b is recognized and is added to the characteristics
of the persons contained in s.

Fig. 3 shows a model of state "close_to": a person p is close to an equipment eq. It
involves two actors a person p and an equipment eq. There is only one constraint
which verifies that p is close to eq.

Entity

Scenario Scene-Object

State Event

Person

Mobile

Equipment Zone

Static

State(close_to,
 Actors((p : Person), (eq : Equipment))
 Constraints((distance(p, eq) ≤ Close_Distance))
 Production((s : State)(Name = "close_to")))

Fig. 3. A model of state "close_to": a person is close to an equipment.

We have defined a description language to represent Constraints and Production in
a scenario model. These sets of constraints are expressed by logical predicates.

To express the logical predicates, we use the arithmetical operators (+, -, *, /), the
comparison operators (<, ≤, =, != : difference, ≥, >) and the logical operators (! : not,
& : and). To represent temporal relations between the scenarios, we use operators of
the interval algebra (before, after, meets,…) [1].

We use the spatial operator "distance": to calculate the distance between two scene-
objects. We use also the operator "exists" to verify whether given scenarios exist and
satisfy several constraints.

A person p is considered to stay at an equipment eq if he/she is longtime close to
the equipment. In Fig. 4, we define a model of this scenario.

Event(stays_at,
 Actors((p : Person), (eq : Equipment))
 Constraints((exists ((state s: p close_to eq))
 ((Duration of s ≥ 10))))
 Production((st : Event)
 (Interval of st = Interval of s)))

Fig. 4. A model of scenario "stays_at": a person stays at an equipment.

A model of event "moves_close_to" is shown in Fig. 5: a person p moves close to
an equipment eq. An event of this model will be recognized if p is first far from eq and
then close to eq. "(state s1: p far_from eq)" expresses that s1 is a state where the
person p is far from the equipment eq. The production indicates how to compute the
time duration of the recognized scenario.

Event(moves_close_to,
 Actors((p : Person), (eq : Equipment))
 Constraints((exists ((state s1: p far_from eq)
 (state s2: p close_to eq))
 ((Duration of s2 ≤ 1)
 (s1 before s2))))
 Production((e : Event)
 (Interval of e = Interval of s2)))

Fig. 5. A model of event "moves_close_to": a person moves close to an equipment.

On Fig. 6 we show an example of a more complex scenario, "vandalism": a person
p tries to "break up" an equipment eq. This scenario will be recognized if a sequence
of five events described on Fig. 7 has been detected.

Scenario(vandlism,
 Actors((p : Person), (eq : Equipment))
 Constraints((exists((event e1: p moves_close_to eq)
 (event e2: p stays_at eq)
 (event e3: p moves_away_from eq)
 (event e4: p moves_close_to eq)
 (event e5: p stays_at eq))
 ((e1 before e2) (e2 meets e3)
 (e3 before e4) (e4 before e5))))
 Production((s : Scenario)
 (Interval of s = Interval of e5)))

Fig. 6. A model of scenario "vandalism": a person tries to "break up" an equipment.

ct: close_to ff: far_from st: stays_at
mc: moves_close_to ma: moves_away_from

Fig. 7. Temporal constraints for the states and events constituting a scenario "vandalism".

We propose an algorithm (described in the next section) to recognize the scenarios
pre-defined by experts using this formalism. The recognition process uses only the
knowledge represented through scenario models.

3 Recognition of Scenarios

3.1 Overview of the Recognition Process

The scenario recognition process has to detect which scenario is happening from a
stream of observed persons at each frame. The process takes as input (1) the scenario
models pre-defined by experts, (2) the geometric information of the observed envi-
ronment and (3) the persons tracked by a vision module. We suppose that the persons
are correctly tracked: their characteristics (their position in the scene, their height,…)
are well detected and at two successive frames, two persons having the same name
correspond to the same real person.

To recognize the pre-defined scenario models at each frame, we first select a set of
triggers that indicate which scenarios can be recognized and secondly we find solu-
tions (set of actors at time ct) for each of these scenarios as described in Fig. 8.

mc st ma mc st

tmeets

before

ffct
meets meets

ff ct

before before

Initiate list of triggers LT with
 the elementary models set
while LT ≠ ∅
 tr ← get first element of LT
 LT ← LT - {tr}
 if tr is of the third type of triggers
 then extend(LT, scenario contained in tr, ct)
 else
 m ← scenario model contained in tr
 Find_Solution(LT,list of actor variables of m,m,∅)

Fig. 8. The recognition process at each frame.

3.2 Selection of Models to be Recognized

The first step of the scenario recognition process is to compute which scenarios can be
recognized at the current time. We call "trigger" such a scenario which can be recog-
nized. There are three types of triggers: (1) the elementary scenarios, (2) more com-
plex scenarios with selected actors and (3) more complex scenarios already recognized
at the previous instant (see Fig. 8).

At each frame, we initiate the list LT of triggers with all elementary scenario mod-
els. An elementary scenario is a scenario that can be recognized at any time such as
"close_to". An elementary scenario is always a state. The list LT is ordered by priority
level defined by the experts.

Once we have recognized a scenario we have to add to the list of triggers LT all the
more complex scenarios which are ended with the given recognized scenario. For that,
before the processing, for each scenario model, we compute the set of post-models that
correspond to the scenarios that can be recognized once the given scenario has been
recognized. For example, once we have recognized the scenario "close_to", it is possi-
ble that the scenario "moves_close_to" would be recognized. So the list of post-
models of the scenario "close_to" contains the scenario "moves_close_to".

Therefore, when a scenario is recognized, we add to the list of triggers LT its post-
models (more complex scenarios) with the actors of the recognized scenario. We can
notice that all actor variables of the complex scenarios are not necessary instantiated at
this stage. They will be looked for later in the process.

These more complex scenarios with selected actors correspond to the second type
of trigger. To compute them, we have defined a trigger model which is composed of
two scenario models (pre/post models) with the relationships between actors of the
two models. For example, a trigger model corresponding to the scenario model
"close_to" and its post-model "moves_close_to" contains two relations: one to tell that
the variable person p of "moves_close_to" corresponds to the variable person p of
"close_to", and another one for the variable equipment eq.

The third type of trigger corresponds to already recognized and complex scenarios.
Once we have recognized a complex scenario at the previous instant and if the sub-
scenario ending the complex one is extended, then it is possible that the complex sce-

nario would still be recognized at the current time. Therefore we add to the list of
triggers LT the complex scenario with its list of actors and its list of sub-scenarios.
The extension process will be described in the next sections.

3.3 Finding Solutions of a Scenario Model

The process of finding all the solutions of a scenario model m, is realized thanks to the
function "Find_Solution". This function selects an actor for each actor variable and
check whether the selected actors satisfy the constraints defined within the scenario
model m. This function is described briefly in Fig. 9. It takes as input the scenario
model m, the list of actor variables lav to be instanciated, the list of actors A of the
actor variables already instanciated and the list LT of triggers. At the beginning of the
process, lav is initialized with all actor variables of m and A is the empty list of actors.
When there are no more actor variables (lav is empty list), then A contains one solu-
tion (a selection of actors). The side effect of this function is to store the solutions
once they are found.

Find_Solution(LT, lav, m, A)
 av ← first actor variable of lav
 while select_actor a for av in the domain of
 av[type] and verify_constraints(m, a, av)
 if av is not the last actor variable of lav
 then Find_Solution(LT, lav - {av}, m, A + {a})
 else
 create_instance b of m with A+{a}
 b’ ← search b in the recognized scenario set
 if success and if b is consecutive to b’
 then
 merge b and b’
 extend(LT, b’, ct)
 else
 store b in the recognized scenario set
 LT ← LT +
 {triggers of tye 2 created from m and A+{a}}

Fig. 9. Finding all solutions of a scenario model m.

The process "select_actor" chooses an actor for an actor variable av and to verify
the constraints involving the chosen actor.

To speed up the recognition process we order the list of constraints of the scenario
model m. For that, we define an order on the constraints:

order(c) =
i

max {avi appears in constraint c}

for example: order((speed of av2 < 3)) = 2,
order((av1 distance av2 < 100)) = 2 and
order((av5 distance av1 > 150)) = 5.

When we choose an actor for the variable avi, we only verify the constraints with
the order i. The process "select_actor" terminates when an actor is selected for the
variable av or when there is no more actor to be selected.

This method enables to test all the constraints c relative to a given variable avi:
- if order(c) < i then c is not relative to avi.
- if order(c) = i then we check if c is verified.
- if order(c) > i then c will be checked when all variables involved in c will be in-

stanciated.
"verify_constraints" is a process to verify the constraints of the scenario model m

involving a given actor variable av with the actor selected a. This process first verifies
the atemporal constraints relative to av and then verifies the temporal constraints. To
verify temporal constraints, we propose a new method described in section 3.4.

verify_constraints(m, a, av)
 while atc in atemporal constraints relative to av
 if atc is not satisfied then exit(false)
 while tc in temporal constraints relative to av
 verify_temporal_constraints(
 ltv = list of temporal variables of tc,
 ld = list of domains of ltv,
 lmk = list of markers of ltv, ∅)
 if not success then exit(false)

Fig. 10. Verification of constraints relative to an actor variable.

Each time a scenario b is recognized, we search if a previous scenario has been
recognized with the same actors. If such a scenario b’ is found and if b’ is consecutive
to b, we extend b’ with b (stop time of b’ becomes the current time). Moreover we try
to extend all recognized scenarios that are ended with b’ up to the current time. The
extension process is discussed in the next sections.

The process "store" stores a scenario in a recognized scenario list. There is one list
of recognized scenarios for each model of scenario and for each list of actors. The list
of recognized scenarios is ordered in time with the more recent on the top of the list.

A second way to speed up the recognition process is to organize the variable do-
main with the variable type to reduce the search space. There are two types of vari-
ables: the actor variables (person, equipment) and the temporal variables
("moves_close_to", "vandalism"). The domain of a temporal variable corresponds to
the list of recognized scenarios for the given scenario model and the given list of ac-
tors associated to the temporal variable. This point is explained in the next sections.

3.4 Resolution of Temporal Constraints

In the previous section, we have described the algorithm to find the solutions of a
scenario model. Every non-elementary scenario model contains at least one constraint
"exists" to express that the scenario is constituted with sub-scenarios. The relations
between sub-scenarios are mainly temporal. These temporal relations are represented

by interval algebra operators [1]. We can use the algorithm described in the previous
section (atemporal constraints) for the verification of constraint "exists" (temporal
constraints). In this case, the procedure "Find_Solution" computes all solutions by
testing all combinations of sub-scenarios. This is not interesting because (1) we are
just interested in knowing whether one solution exists and (2) we compute combina-
tions of sub-scenarios which can not be a solution (inefficient processing). More ex-
actly, the algorithm for atemporal constraints processes every constraints in the same
way, so the temporal operators are used as numerical operators. In this section we
describe our algorithm to process temporal constraints taking advantage of time inter-
vals.

In section 2, we use a constraint "exists" to indicate that a scenario is recognized
depending of the existence of the list of sub-scenarios. A constraint "exists" is com-
posed of two parts, the first one defines the m temporal variables with their domain
corresponding to the m sub-scenarios. These variables are ordered in time: the oldest
is the last variable and the latest is the first variable. The second part is a set of tempo-
ral constraints expressing temporal relations between the sub-scenarios. A solution of
a constraint "exists" is a list of previously recognized sub-scenarios verifying the cor-
responding temporal constraints.

This algorithm is written briefly in Fig. 11 as a procedure ver-
ify_temporal_constraints. It takes as input (1) a list ltv of temporal variables (corre-
sponding to sub-scenarios recognized on a time interval), (2) a list ld of domains of
these variables, (3) a list lmk of markers on these domains and (4) the partial solution
S of the constraint "exists". At the beginning of the process, ltv is initiated with the list
of temporal variables of the constraint "exists" and the partial solution S is initiated to
∅. At the end of the process, ltv is the empty list of temporal variables and S contains
a complete solution (a list of sub-scenarios) if a solution was found.

verify_temporal_constraints(ltv, ld, lmk, S)
 tv ← first element of ltv
 d ← first element of ld
 mk ← first element of lmk
 if tv is the oldest variable of ltv
 then find_sub_scenario(tv, d, mk, oldest, α)
 if success
 then S ← S + {α}
 change makers lmk with the sub-scenarios
 constituting S
 exit(true)
 else exit(false)
 else find_sub_scenario(tv, d, mk, order of tv, α)
 if success
 then verify_temporal_constraints(ltv - {tv},
 ld - {d}, lmk - {mk}, S + {α})
 else exit(false)

Fig. 11. Algorithm for the verification of temporal constraints defined in a constraint "exists".

The procedure "find_sub_scenario" finds a recognized scenario α corresponding to
a temopral variable tv defined in domain d of sub-scenarios. A marker mk is used to
limite the search domain. is_last_variable indicates if we start the search by looking at

the more recent/older sub-scenario. α is a solution if it satisfies all constraints relative
to the temporal variable tv. Because the variables are ordered in time, only the
constraints which order (as previously defined) corresponds to the variable tv, need to
be verified. This procedure is written briefly in Fig. 12.

find_sub_scenario(tv, d, mk, variable_order, α)
 if variable_order is the oldest
 then
 while tv in [mk, first element of d]
 verify all constraints relative to tv
 if success
 then
 α ← tv
 exit(true)
 else if variable_order is the latest
 then
 verify all constraints relative to tv with the
 first element of d
 if success
 then
 α ← tv
 exit(true)
 else
 while tv in [first element of d, mk]
 verify all constraints relative to tv
 if success
 then
 α ← tv
 exit(true)
 exit(false)

Fig. 12. Find a sub-scenario for a temporal variable of a constraint "exists".

The domain d is the list of already recognized sub-scenarios of the same type (the
same scenario model and the same list of actors). Each sub-scenario is defined on a
time interval and the list is temporally ordered. This order is strict in the sens that
there are no overlapping sub-scenarios. The marker indicates where the previous
"find_sub_scenario" process ended in the domain of sub-scenarios (i.e. which was the
last sub-scenario used to recognize the given scenario model m). There is one marker
for each temporal variable corresponding to one domain of sub-scenarios. This marker
enables us to limit the search domain. At the end of the process
"verify_temporal_constraints", if a solution is found, the markers of lmk are changed
to the sub-scenarios used to recognize the current solution of scenario model m.

There are three ways to process a temporal variable tv depending on the order of tv
in the scenario model m (corresponding to the constraint "exists"). (1) If tv is the last
variable, then we select the sub-scenario recognized at the current time. If this sce-
nario exists and verifies the temporal constraints, it can be part of the solution S. If not
there is no solution for S because scenario happening before the current time have
already been checked. (2) If tv is the oldest variable, then we look for the oldest solu-

tion from the maker (corresponding to the last used sub-scenario to recognize the
scenario model m) up to the latest sub-scenario. So we look for the oldest solution to
get the recognized scenario with the longest duration. (3) In other cases (neither the
oldest nor the latest variable), we look for the latest solution from the latest sub-
scenario up to the marker. We choose this order (give priority to the latest solution) to
process these temporal variables, because this is statistically the most efficient order
based on experiments done with various scenario models. However, there are still
some models (worst cases) that require numerous combinations of sub-scenarios to
find a solution.

3.5 Extension of the Recognized Scenarios

A way to speed up the recognition process is to reuse what the recognition process did
in the previous times. For that, we suggest to extend a scenario recognized at the
previous time to the current time when its last sub-scenario continues to be recognized
at the current time.
In our representation, the duration of a scenario is a time interval. In fact, a scenario
model can be recognized several times. Its number of occurrences is the duration of
the recognized scenario. If a scenario s has been recognized at frame t1 and ended by a
sub-scenario se, and se is also extended at frame t2 then we have two cases to process s
at frame t2: (1) s is automatically extended to t2 ("stays_at", "vandalism") and (2) there
are some constraints of s are not satisfied with the new state of the observed environ-
ment at frame t2 ("moves_close_to", "moves_away_from"). The scenarios model of
group (2) may contain constraints on the duration of se or on the existence/non-
existence of several other recognized scenarios. Fig. 13 shows an observed sequence
(of states) and the recognized scenarios constituting a scenario "vandalism".

Frame
Scenario
far_from
close_to
moves_close_to
stays_at
moves_away_from
vandalism

Fig. 13. An observed sequence (of states) and the recognized scenarios constituting a scenario
"vandalism".

When a recognized scenario is extended, it makes an extension sequence to the rec-
ognized scenarios ended by it. The process to extend a recognized scenario to the
current instant ct is shown briefly in Fig. 14.

100 115 125 150 170 180 190

Created extended

extend(LT, b, ct)
 if stop time of b < ct
 if b has simple temporal constraints
 then b is automatically extended to ct
 else LT ← LT + {trigger created from b,
 actors of b and sub-scenarios of b}
 for every s in list of scenarios ended by b
 extend(LT, s, ct)

Fig. 14. Extension of a recognized scenario.

For example, at the frame 190 of the sequence shown in Fig. 13, when the scenario
"close_to" is extended to be ended at 190, it makes an extension sequence shown in
Fig. 15. The scenario "moves_close_to" is not extended because its constraint on the
duration of its sub-scenario "close_to" is not satisfied (duration of s2 <= 1).

Fig. 15. Extension sequence at frame 190 of the observed sequence shown in Fig. 13.

To organize the recognized scenarios, we use an oriented graph to express the rela-
tions between the entities in the system. We will discus more detailed about this graph
in the next section.

3.6 Management of the Recognized Scenarios

We organize the recognized scenarios in a graph (called graph of solutions) by its type
("close_to", "far_from",…) and by its actors (person, equipment,…). The first actor of
a scenario is always a person (see 2). We organize this graph in such way that the list
of actors of a recognized scenario shows the path to access to the scenario.

The graph of solutions is an oriented graph. The number of entrance nodes of this
graph is the number of persons a priori in the system. There are three types of nodes in
this graph, the first one is (1) the actors of recognized scenarios, the second one (2) is
the scenario models predefined by expert and the last one (3) is the time interval of the
recognized scenarios. The nodes successive to the persons are of type (2). The termi-
nating nodes are of type (3). Its arcs show the path to access to recognized scenarios
by the ordered list of actors.

close_to [.., 190]

stays_at [.., 190]

vandalism [.., 190]

moves_close_to
the constraint on the
duration of "close_to" is
not satisfied

Fig. 16. Graph of solutions.

For example: the path to access to the time interval of the first instance of state
"close_to" of the person_1 relative to the equipment eq_1 is person_1 → close_to →
eq_1 → I1.

4 Results

We have done two types of experiments: the first experiment consists in testing our
recognition algorithm on real scenarios for a metro monitoring application. For that
we have defined a description language to build seventeen models of states, events and
scenarios. We have defined the model of states of the relative distance of a person to a
piece of equipment (ticket vending machine), or the distance between two persons. We
have defined the models of events "moves close to", "enters a zone". We have defined
the model of scenarios that usually occur in metro scenes, such as "vandalism". We
have correctly recognized these models on a video of 340 frames (10 frames/second)
of a Nuremberg metro station. This video contains few persons and 2 ticket vending
machines. The average processing time per frame is 0.1ms (millisecond) and the
maximal processing time per frame is 0.2ms.

The second experiment consists in evaluating the processing time of the recognition
algorithm. For that, we have defined three complex scenario models with 5, 6 and 9
actor variables in a bank branch monitoring application. We have tested these models
on a video sequence of 500 frames (10 frames/second) with about 5 persons, 20 pieces
of equipment (e.g. counter, chair) and 6 interesting zones (e.g. entrance to the safe). In
the case of 14 previous scenario models, the average processing time per frame is

person_1 person_n…

close_to far_from
moves_
close_to

moves_
away_from stays_at vandlism

eq_1 eq_m

I1 Ip

…

…

…

…

…
… …

… …

10ms and the maximal processing time per frame is 16ms. In the case of 16 complex
scenario models, the average processing time per frame is 40ms and the maximal
processing time per frame is 70ms. In the case of the complex scenario model with 9
actor variables, the processing time is above 1 minute and can not be used for real
time application. These tests can be found in our demo page: http://www-

sop.inria.fr/orion/personnel/Thinh.Vu/demos/Scenario_Recognition/index.html.
These experiments show that the proposed recognition algorithm is efficient and

can be used in real world applications to recognize temporal scenarios. However, there
are still some limitations when the scenario models are too complex.

5 Conclusion

In the paper, we present a scenario recognition algorithm for video interpretation
which is able to process temporal constraints in an efficient way.
To represent temporal scenarios, we defined a generic model that can represent states,
events and scenarios defined on time intervals. This generic model can combine vari-
ous types of constraints (logic, spatial and temporal). We have also defined a descrip-
tion language to help experts of the application domain to describe scenario models in
a declarative way.

We present a recognition algorithm which stores the scenarios recognized at previ-
ous steps in lists ordered in time and organized based on the types of scenario models
and on the actors involved in the scenarios. Thanks to these lists of recognized sce-
narios, we obtain an efficient recognition algorithm able to process in real time (10
frames/second) complex scenarios involving up to seven actors. We have accelerated
the constraint resolution algorithm by structuring the search space of the constraints
using markers in the temporal variable domains. We present also a method to extend
the time interval of recognized scenarios to avoid to redo the recognition process done
in the past.

We have validated the scenario models and the scenario recognition algorithm on a
metro and a bank application. For real world scenario models, the scenario recognition
algorithm was efficient and able to recognize these models in real time. However,
there are still some complex scenarios (worst cases) where the scenario recognition
algorithm gets into combinatory explosion. Our future works consist in analyzing
these worst cases and enhance the processing of temporal constraints in these cases.

References

[1] James F. Allen: Towards a general theory of action and time. Artificial Intelligence,
23:123-154, 1984.

[2] François Bremond: Environnement de résolution de problèmes pour l’interprétation de
séquences d’images. Thèse, INRIA-Université de Nice Sophia Antipolis, 10/1997.

[3] Rina Dechter. Temporal constraint networks. Artificial Intelligence, 49 (1991), pp61-95,
Elsevier Science Publishers B.V.

[4] Christophe Dousson: Suivi d’ évolutions et reconnaissance de chroniques. Thèse,
Université Paul Sabatier de Toulouse, 09/1994.

[5] Christophe Dousson and Malik Ghallab: Suivi et reconnaissance de chroniques. Revue
d’intelligence artificielle, Vol.8, N°1, pp.29-61, 1994.

[6] Malik Ghallab: On Chronicles: Representation, On-line Recognition and Learning. 5th

International Conference on Principles of Knowledge Representation and Reasoning
(KR'96), Cambridge (USA), 5-8 November 1996, pp.597-606.

[7] Somboon Hongeng and Ramakant Nevatia: Multi-Agent Event Recognition. International
Conference on Computer Vision (ICCV2001), Vancouver, B.C., Canada, 9-12/07/2001.

[8] Yuri Ivanov, Chris Stauffer and Aaron Bobick: Video Surveillance of Interactions. In 2nd

International Workshop on Visual Surveillance, pp82-89, Fort Collins, Colorado, 06/1999.
[9] Tony Jebara and Alex Pentland: On Reversing Jensen’ s Inequality. In Neural Information

Processing Systems 13, NIPS 13, 12/2000.
[10] Lina Khatib, Paul Morris, Robert A. Morris and Francesca Rossi: Temporal Constraint

Reasoning With Preferences. IJCAI 2001, pp322-327.
[11] Roger Mohr and Thomas C. Henderson: Arc and Path Consistency Revisited. Research

Note, Artificial Intelligence, pp225-233, vol28, 1986.
[12] Claudio Pinhanez and Aaron Bobick: Human Action Detection Using PNF Propagation of

Temporal Constraints. M.T.T Media Laboratory Perceptual Section Technical Report No.
423, 04/1997.

[13] Nathanael Rota: Contribution à la reconnaissance de comportements humains à partir de
séquences vidéos. Thèse, INRIA-Université de Nice Sophia Antipolis, 10/2001.

[14] Nathanael Rota and Monique Thonnat: Activity Recognition from Video Sequences using
Declarative Models. 14th European Conference on Artificial Intelligence (ECAI 2000),
Berlin, Proceeding ECAI’00 – W. Horn (ed.) IOS Press, Amsterdam, 20-25/08/2000.

[15] Nathanael Rota and Monique Thonnat: Video Sequence Interpretation for Visual
Surveillance. 3rd IEEE International Workshop on Visual Surveillance, VS'00, pp 59-67,
Dublin, Ireland Proceeding IEEE, 07/2000.

[16] Eugenia Ternovskaia: Automata Theory for Reasoning about Actions. The 16th

International Joint Conference on Artificial Intelligence (IJCAI-99), Stockholm, Sweden,
31/07-06/08/1999.

[17] Catherine Tessier: Reconnaissance de scènes dynamiques à partir de données issues de
capteurs: le projet PERCEPTION. Rapport technique, Onera-Cert, 2 avenue Edouard-
Belin, BP4025 31055 Toulouse Cedex France, 08/1997.

[18] Monique Thonnat and Nathanael Rota: Image understanding for visual surveillance
application. Third international workshop on cooperative distributed vision CDV-WS’99,
pp51-82, Kyoto, Japan, 19-20/11/1999

